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Abstract. Whole genome duplication (WGD) is a rare evolutionary
event that has played a dramatic role in the diversification of most eu-
caryotic lineages. Given a set of species known to have evolved from a
common ancestor through one or many rounds of WGD together with a
set of genome rearrangements, and a phylogenetic tree for these species,
the goal is to infer the pre-duplicated ancestral genomes. We use a two
step approach: (1) Compute a score for each possible ancestral adjacency
at each internal node of the phylogeny; (2) Combine adjacencies to form
ancestral chromosomes. The main contribution of our method is the com-
putation of a rigorous score for each potential ancestral adjacency (a, b),
reflecting the maximum number of times a and b can be adjacent in the
whole phylogeny, for any setting of ancestral genomes. We first apply
our method on simulated datasets and show a high accuracy for adja-
cency prediction. We then infer the pre-duplicated ancestor of a set of 11
yeast species and compare it to a manually assembled ancestral genome
obtained by Gordon et al. (2009).

1 Introduction

Whole genome duplication (WGD) is a spectacular evolutionary event that has
the effect of simultaneously doubling all the chromosomes of a genome. Evidence
for WGD events has shown up across the whole eukaryote spectrum, from the
protist Giardia to the yeast species [7], including most plant lineages, several
insect, fish, amphibians, and even to mammalian species. For some genomes,
recent duplication is easily detected by the presence of a nearly complete set of
duplicated chromosomes. However, in most cases, due to a series of intrachromo-
somal and interchromosomal movements disrupting the initial perfectly doubled
structure of the genome, all that we can observe is a set of duplicated blocks
(chromosomal segments or genes) representing a high proportion of the genome,
scattered throughout the genome.

Studying the evolution of a set of species that have been subject to one or
many WGD events during their common evolution is challenging due to the
high rates of paralogy in their genomes. Inferring the content and chromosome



organization of ancestral genomes preceding the WGD events is a major step
towards solving this difficulty, and also answering numerous biological questions
such as the mechanisms of polyploid formation, the variation in rearrangement
rates, gene losses and gains through the phylogenetic tree, and the consequence
of such variations on the genetic and physiological specificities of species.

In 2003, we have presented the first formal result related to genome dupli-
cation, which is an exact linear-time algorithm for solving the genome halving

problem [5]: Given a present-day genome G represented as a set of strings (chro-
mosomes) with each block present exactly twice, the genome halving problem
asks to infer a perfectly duplicated genome H (a genome with exactly two copies
of each chromosome) minimizing the rearrangement distance to G (inversions,
reciprocal translocations or both). Our results have been reformulated recently
by Alekseyev and Pevzner [1] using an alternative representation of the break-
point graph. Subsequently, Sankoff and colleagues [16, 15], and more recently
Gavranović and Tannier [6], used variations of the genome halving strategy
(Guided Genome Halving or GGH) to find the preduplicated ancestor of a dou-
bled genome in the presence of a non-duplicated outgroup [16, 15]. As noticed
in [7], the GGH algorithms can hardly be generalized to a complete phylogenetic
tree, with more than one WGD event on a path from an extant species to the
root of the tree, and an arbitrary number of post-WGD genomes and non-WGD
outgroups. Moreover, as for genome halving, GGH algorithms can only consider
genes that have retained two copies after the WGD. In the case of reconstructing
the ancestor of Saccharomyces cerevisiae, Gordon et al. [7] have noticed that less
than 20% of all genes can be taken into account by the GGH strategy. Subse-
quent work shows that this limitation can be circumvented by grouping genes
into double conserved syntenies [12, 6].

In this paper, we consider the general problem of inferring the pre-duplicated
genome preceding the first duplication event in a multi-species evolutionary his-
tory involving WGDs, rearrangement events, and block losses. The input of our
problem is a set of extant genomes, each represented as a set of strings on
an alphabet of blocks, each block potentially present more than once in each
genome, a phylogenetic tree representing the evolution of the species, with spe-
cific branches marked with WGD events. Such data and phylogenetic informa-
tion is available for a variety of eukaryotic lineages, such as the yeast species [7],
grass genomes [14], angiosperms [13] and many other lineages. Our approach for
ancestral genome prediction is to maximize the conservation of block adjacen-
cies in the phylogeny. We use a two-step methodology: (1) at each node of the
phylogeny, compute the adjacency score of each pair (a, b) of blocks; (2) infer a
pre-duplicated ancestral genome by an optimal chaining of adjacencies.

The main contribution of our method is the computation of a rigorous score
for each potential ancestral adjacency (a, b), reflecting the maximum number
of times a and b can be adjacent in the whole phylogeny, for any setting of
ancestral genomes. As it is the case for the other local approaches [4], in the
absence of a complete set of reliable syntenies, the output of our algorithm is



a set of Contiguous Ancestral Regions fragments (CAR) [11, 4], rather than a
completely assembled ancestral genome.

The approaches most comparable to ours are those developed by Ma et al.

(see the method in [11] for single gene copies, and its generalization to genomes
with duplications in [9]), both of which using a Fitch approach for inferring
ancestral adjacencies. We show that our approach outperforms the former on
simulated data. The latter can only be used if accurate gene trees, with branch
lengths, are available, which is often limiting. In contrast, our approach works
under stronger assumptions but requires only a species tree and extant genomes
as input. Our paper is structured as follows: after introducing basic notations,
we introduce the notion of adjacency scores, show how to compute it, and how
to use it to assemble putative ancestral genomes by solving an instance of the
traveling salesperson problem. We then show, using simulated data, that the
predicted pre-WGD genomes are highly accurate, even in the presence of a large
number of rearrangements. Finally, we apply our approach to the prediction
of the ancestral pre-WGD yeast genome and obtain results very similar to the
hand-curated ancestral genome produced by Gordon et al. [7].

2 Preliminaries

Notation: Let B be a set of unsigned blocks (e.g. genes, or any other type of
genomic markers). A string is a sequence of blocks from B, where each block is
signed (+ or −) to mark its orientation. A genome G is a collection of strings
C1, C2, · · ·CN called its chromosomes , where each element of B may be present
more than once. To represent chromosomal ends, we add an artificial block O,
which is also added to our alphabet B, at an extremity of each chromosome, and
consider each chromosome as circular. We denote by ΣG ⊆ B the set of blocks
present in G (including O), and by mult(a, G) the multiplicity of block a in G. In
particular, the multiplicity of O is the number of chromosomes of G. We denote
by ±ΣG the set obtained from ΣG by considering each block in its positive and
negative directions. By convention, the artificial block O is always considered
positively signed. A multiset of ±ΣG is a subset of ±ΣG with possibly repeated
blocks.

Let a ∈ ΣG and b ∈ ±ΣG. We say that b is a left-adjacency of a in G iff
“b +a” or “−a −b′′ is a substring of G. Symmetrically, b is a right-adjacency of
a in G iff “+a b′′ or “−b −a” is a subsequence of G. We denote by LA(G, a) and
RA(G, a) the multisets of left- and right-adjacencies of the one or more copies
of a in G.

Evolutionary model: A Whole Genome Duplication (or WGD for short) is an
event transforming a genome G = {C1, C2 · · ·CN} into a genome GD contain-
ing 2N chromosomes, i.e. GD = {C1, C

′
1, C2, C

′
2 · · ·CN , C′

N}, where, for each
1 ≤ i ≤ N , Ci = C′

i. Let G1, G2, · · ·Gn be a set of n related species at the
leaves of a species tree T , assumed to have evolved from a common ancestor
through WGD events, intra-chromosomal (inversions or transpositions of chro-
mosomal segments) and inter-chromosomal (reciprocal translocations between



two chromosomes, fusions of two chromosomes or fissions of one chromosome)
rearrangements, and block losses. A phylogeny for (Gi)

n
i=1 is a tree T with n

leaves, where Gi, for 1 ≤ i ≤ n, is the label of leaf i, and each internal node
(also called speciation node) has exactly two children and represents a speciation
event.

In our model, WGDs are the only duplication events responsible for block
multiplicity (in particular, single-block duplications are not considered). In ad-
dition, we suppose that, in each genome, at least one block reflects the doubling
status of the genome, i.e. there exists a block that has not lost any copies. As
noticed by Zheng et al. [16], under this assumption, a history with a minimum
number of WGD events can be easily deduced from the number of copies of the
most frequent genes found in each genome. In order to account for those duplica-
tion events, we create new internal nodes in T , called WGD nodes , and position
them appropriately on the edges of T . Contrary to speciation nodes, each WGD
node has only a single child. Moreover, if all genomes Gi, for 1 ≤ i ≤ n, have
multiplicity greater than 1, then we have to add one or more WGD nodes above
the root r of T . In this case, we create a new root D, that we call the duplication

root of T .
Assuming a model with no convergent evolution and minimum losses, the

multiset of blocks Σu present at node u can be obtained as follows. Let A(a) be
the node of T representing the least common ancestor of the leaves that contain
a given block a. Then, we assign a to each node belonging to a path from A(a)
to any leaf containing a. In order to define the multiset Σu, we also need to
know the multiplicity of each block at u, which can be recursively defined as
the maximum of its multiplicities in u’s two children. See Figure 1 left, for an
example.

3 Problem definition

Given a species tree T for the genomes (Gi)
n
i=1, augmented with WGD nodes as

described in the previous section, we want to infer the pre-duplicated ancestral
genomes, i.e. the ancestral genomes just preceding the WGD nodes on the paths
from the root D of T to a leaf. We will use a parsimony criteria seeking a
solution with a minimum number of adjacency changes along the branches of T ,
or, equivalently, a maximum of adjacency conservation.

Ancestral genome assignment. We assume that the multiset Σu of blocks present
at each internal node of T has already been determined. A genome assignment

G(u) at u is a genome on B respecting the content and multiplicity constraints
given by Σu. If u is a WGD node, an additional constraint is that G(u) must be
a duplicated genome.

Let u and v be two nodes of T with u being the parent of v. In the case
of genomes with single gene copies, it is easy to define the number of adja-
cencies preserved along branch (u, v) as the number of common substrings of
size 2 between them. This definition is not directly transposable to the case of
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Fig. 1. Left: A species tree with each leaf labeled with its corresponding genome and
multiplicity number, and each internal node labeled with the multiplicity and block set
of the ancestral genome just preceding the speciation or WGD event. Squares indicate
speciation nodes, and the double circle indicates a WGD node. Right: An illustration of
Algorithm Lbelow for the adjacencies of gene a. Each edge (u, v) is labeled by its valid
multisubsets. For each branch (u, v) and each multisubset X, the indicated number is
the value of Lbelow

(u,v) (a,X).

genomes with multiple gene copies, as the one to one orthology between genes
is not set. Instead, for each block a, we compare its left and right-adjacency
multisets in G(u) and G(v). More precisely, we define adjCons(a, G(u), G(v)) =
|LA(G(u), a)∩LA(G(v), a)|+ |RA(G(u), a)∩RA(G(v), a)|, as the number of left
and right conserved adjacencies of a on the branch (u, v), and

adjCons(G(u), G(v)) =
∑

a∈Σu∩Σv

adjCons(a, G(u), G(v))

as the total number of left and right conserved adjacencies on the branch (u, v).
In both formulas, intersections and cardinalities are taken over multisets. Notice
that adjCons(G(u), G(v)) accounts for each adjacency conservation twice.

We then define adjCons(T ) as the maximum number of conserved adjacen-
cies in T , over all possible ancestral genome assignments G(u1), · · ·G(uk) at all
internal (speciation and WGD) nodes n1, · · ·nk of T :

adjCons(T ) = max
G(u1),...,G(uk)

∑

(u,v)∈E(T )

adjCons(G(u), G(v))

Finally, for a given ancestral node ui with genome assignment H(ui), define

adjCons(T |G(ui)=H(ui)) = max
G(u1),...,G(uk)|G(ui)=H(ui)

∑

(u,v)∈E(T )

adjCons(G(u), G(v)),

which is the maximum number of adjacencies that can be preserved along the
branches of T , if the genome at node ui is set to H(ui). We can now state our
optimization problem precisely.



Ancestral Genome Assignment Problem:

Input: A species tree T for the genomes (Gi)
n
i=1 augmented with one or more

WGD nodes as described in the previous section; The multiset of blocks at each
internal node; A particular WGD node u of interest.
Output: An ancestral genome assignment H(u) to u such that
adjCons(T |G(u)=H(u)) is maximized.

Of course, one may formulate the same reconstruction problem for non-WGD
nodes. However, those are typically less well constrained by the data at the
leaves, yielding a large number of potential optimal solutions. In contrast,
optimal assignments at WGD nodes, although not generally unique, have less
flexibility. In this paper, we focus on inferring the pre-duplicated genomes
preceding a first WGD event on a branch from the root of T to a leaf. In other
words, u is the first WGD node on a branch from the root of T to a leaf.

4 Method

We start by defining an upper bound on our objective function,
adjCons(T |G(u)=H(u)). We define adjCons(a, T |u,Z) as the maximum number
of left and right adjacencies of a that can be preserved over the whole tree, for
any assignment G(u1), ..., G(uk) of ancestral genomes such that G(u) satisfies
the set of constraints specified in Z. Then, it is straightforward to show that

adjCons(T |G(u)=H(u)) ≤
∑

a

adjCons(a, T |LA(a,G(u))=LA(a,H(u)),RA(a,G(u))=RA(a,H(u)))

≤
∑

a

adjCons(a, T |LA(a,G(u))=LA(a,H(u))) +

adjCons(a, T |RA(a,G(u))=RA(a,H(u)))

Our ancestral reconstruction algorithm thus seeks a genome H such that the
above term is maximized. It proceeds in two steps:

1. For each internal node u of the tree (speciation or WGD node), each block
a ∈ Σu, and each multisets X of possible left adjacencies of a at node u,
we compute adjCons(a, T |LA(a,G(u))=X), reflecting the maximum number of
left-adjacencies that can be preserved over the whole tree, for any setting
of ancestral genome assignment to internal nodes with the condition that
the genome G(u) satisfies LA(a, G(u)) = X . These quantities are computed
using a dynamic programming algorithm described below. We then proceed
similarly for right adjacencies.

2. For the WGD node u for which an ancestral genome is sought, we obtain
the desired pre-duplicated genome by chaining the adjacencies at node u in
a optimal way.

4.1 Computing adjacency scores

We first describe how to compute adjCons(a, T |LA(a,G(ui))=X), for any node ui,
block a ∈ Σui

, and candidate left-adjacencies X . The algorithm to compute



right-adjacencies is very similar. Consider an edge (u, v) in T , where u is the
parent of v. Let X be a multisubset of ±Σu. Let G(u) be a genome assignment
at node u such that LA(a, G(u)) = X . We define Lbelow

(u,v) (a, X) as the maximum

number (over all possible genome assignments of T ’s internal nodes) of left-
adjacencies involving the copies of a that can be preserved along the branch
(u, v) and all the branches of the subtree rooted at node u. Similarly, we define
Labove

(u,v) (a, X) as the maximum number of left-adjacencies involving a that can be

preserved, along branch (u, v) and all the branches outside the subtree rooted
at node u. Then, for an internal node u with children v and w and parent p, we
obtain

adjCons(a, T |LA(a,G(u))=X) = Lbelow
(u,v) (a, X) + Lbelow

(u,w)(a, X) + Labove
(p,u) (a, X).

Notice that, if u is a WGD node, then u has a single child v, and thus the term
Lbelow

(u,w)(a, X) should be removed from the above formula. Similarly, if u is the

root of the tree, then the term Labove
(p,u) (a, X) should be removed.

We are thus interested in calculating the tables Lbelow
(u,v) and Labove

(u,v) for each

edge (u, v) of T . Those are obtained by the dynamic programming algorithms
shown in Figures 5 and 6. An illustration of this algorithm is given on the right
tree of Figure 1.

Although expressed in a recursive manner for simplicity, both algorithms
can be re-written using a dynamic programming approach that proceeds in a
bottom-up fashion to obtain Labove and in a top-down fashion to obtain Lbelow.
The running time to compute adjCons(a, T |LA(a,G(u))=X) is thus Σ(u,v)∈T (| ±

Σu|
mult(a,G(u)) × | ± Σv|

mult(a,G(v))).

4.2 Assembling an adjacency-preserving pre-duplication ancestral

genome

We now seek to build a solution to the Ancestral Genome Assignment Prob-
lem, i.e. to infer a pre-duplication genome at a given WGD node u, aiming to
maximize the number of conserved adjacencies on T . We achieve this by solv-
ing a Traveling Salesperson Problem (TSP) on a complete undirected graph
where vertices correspond to blocks. We initially weighted edges according to
our upper bound Lall

u . However, this weighting gives too much importance to
adjacencies implying blocks with high multiplicity. Thus, we decided to weight
the edges according to the ratio rLall

u (a, X) = Lall
u (a, X)/adjConsMax(a, T ),

where adjConsMax(a, T ) = Σ(u,v)∈E(T ) min(mult(a, Gu), mult(a, Gv)). Notice
that adjConsMax(a, T ) represents the number of conserved adjacencies for the
block a in T if a is always adjacent to the same gene in all leaves of T . This ratio
allows us to evaluate the confidence of an inferred adjacency (see Figures 3 and
4 top right).

More precisely, we build an undirected graph Q that contains a pair of vertices
at, ah for each block a ∈ Σu, as well as a set of vertices O1, O2, Ok marking
chromosome ends, where k is chosen to be at least as large as (but possibly larger



than) the maximum number of chromosomes in the ancestral genome we seek
to infer. Edges weights are chosen as follows, for a 6= b ∈ Σu, i 6= j ∈ {1, ..., k},
and M some large number:

w(ah, bt) = rRall
u (a, {+b}) + rLall

u (b, {+a}) w(at, ah) = M
w(ah, bh) = rRall

u (a, {−b}) + rRall
u (b, {−a}) w(Oi, a

t) = 2 × rLall
u (a, {O})

w(at, bt) = rLall
u (b, {−a}) + rLall

u (a, {−b}) w(Oi, a
h) = 2 × rRall

u (a, {O})
w(at, bh) = rLall

u (a, {+b}) + rRall
u (b, {+a}) w(Oi, Oj) = 0

Because at and ah are connected by heavy edges, any maximum weight hamil-
tonian path must include all of them. A hamiltonian cycle through Q thus de-
fines a set of strings (chromosomes; delimited by O vertices), with some possibly
empty (two consecutive O vertices). Starting from O1, the cycle visits pairs
(at, ah) (corresponding to +a) or (ah, at) (corresponding to −a). The heavi-
est hamiltonian cycle through Q thus corresponds to an hypothetical ancestral
genome H at u that preserves a large number of adjacencies.

The instance of the TSP we need to solve here is a symmetrical weighted
graph with 2·|Σu|+k vertices. In the case of the application to the reconstruction
of the ancestral pre-duplication yeast genome, |Σu| = 4705, so the graph is
quite large. Although an NP-Complete problem, TSP is one of the best studied
algorithmic problems and excellent heuristics exist. We considered two of them.
The first is a simple greedy approach that repeatedly selects the heaviest edge
remaining unless this results in the premature closing of a cycle. The second is
the Chained Lin-Kernighan heuristic [10] implemented in the Concord package
[2]. Although not guaranteed to produce an optimal solution, this heuristic has
proved highly accurate in other contexts [3].

5 Results

Studying the evolution of genomes through whole genome duplication is only pos-
sible on species exhibiting clear traces of genome duplication. Moreover, a strong
prerequisite for reconstructing accurate ancestral genomes is to have enough data
on extant species, and sufficient colinearity of gene order among a reasonably
large number of related species. Yeast genomes are a perfect example of a data
set satisfying all these conditions. Following the extensive work of Wolfe and
colleagues during the last decade, it is now almost universally accepted that
Saccharomyces cerevisiae is the descendant of an ancient whole-genome duplica-
tion event. Moreover, the availability of a large number of completely sequenced
yeast genomes spanning a large evolutionary time-depth (comparable to that
of the vertebrates), as well as the Yeast Gene Order Browser [7], provides the
material for an accurate ancestral genome reconstruction. We therefore focus,
on this paper, on the study of the yeast species data sets.

To be able to evaluate our reconstructed pre-duplicated ancestor of Saccha-

romyces cerevisiae, we first test our method on a data set obtained through a
simulated evolution that is as close as possible to the one observed for yeast
species. This is explained in the following section.



5.1 Simulated data sets

The phylogenetic tree given in Figure 2 reflects the evolution of the 11 yeast
species recorded in the Yeast Gene Order Browser, as given by [8]. Gene sets
at leaves are those provided in [7], and gene sets at internal nodes, as well as
the number of gene losses on each branch, are directly inferred from those at
the leaves. To simplify the study, we only consider the 4705 genes present at the
pre-duplicated ancestral node (i.e. we remove from the gene content of each leaf
those genes that are not in the ancestor).

Based on this tree, we simulate the evolution of 11 genomes, starting from
an ancestor with 4705 genes distributed among 8 chromosomes (the number of
chromosomes of the pre-duplicated ancestor as predicted by Gordon et al.), and
performing a certain number of rearrangements (inversion, translocation, fusion,
fission) and gene losses on each branch of the tree. The number of gene losses is
simply the one observed in the phylogenetic tree of Figure 2 (genes to be removed
are chosen randomly). The number of rearrangements is selected randomly from
an interval [µ/2, µ], where µ is a parameter chosen prior to the generation, and
the size of each rearrangement is random. As for the rate of rearrangement
operations it is chosen to be similar to that reported for S. cerevisiae in [7].
More precisely we choose the rates (Inv : Trans : Fus+Fiss) = (5 : 4 : 1).
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Fig. 2. Left:Yeast phylogenetic tree used for the simulations. The ancestors (pre-
duplicated and non-duplicated) are represented by black dots. The branch lengths
represents the number of gene losses. The ones in parentheses are the distances used
for the Ma et al. method. * indicates partially sequenced organisms. On leaves, the top
number is the number of chromosomes, contigs or scaffolds. The bottom number is the
number of genes. Right: Size distribution of true CARs in our inferred pre-duplicated
yeast ancestor, considering the Gordon et al. [7] ancestor as the “true” ancestor.



Notice that four among the species represented in the phylogenetic tree of
Figure 2 Left (those indicated by * ), are partially sequenced species for which
only scaffolds are available. To account for this specificity of the data, we perform
random fissions on four of our simulated genomes. Moreover, as scaffolds just
represent parts of chromosomes, adjacencies at the extremities are not relevant
to our study and are not taken into account.

Simulations without WGD.

In the absence of WGD events, the method that is most comparable to ours is
the ancestral genome reconstruction methods of Ma et al. [11, 9]. The method
in [11] has been successfully applied to mammalian genomes, as the predicted
Boreoeutherian ancestor appears to approach the results obtained by cytogeneti-
cists. The software availability of [11] and the fact that it is directly applicable
to our data sets (DUPCAR [9] requires, in addition to the species tree, a set of
reliable gene trees with branch length) make it a natural software to compare
with ours. We refer to this software as the Ma method.

We simulate data sets based on the subtree of the yeast phylogeny containing
only the five non-duplicated yeast species. Moreover, as the Ma et al. algorithm
does not support losses, we only consider the set of genes present in all five
species. We performed our simulations with 10 different values of µ (the maxi-
mum number of rearrangements per branch), varying from 100 to 1000. For each
of those 10 µ values, 50 different data sets are obtained (50 different simulated
histories), an ancestor is inferred for each dataset and compared to the “true”
known ancestor.

Results (error rates and number of preserved CARs) are averaged over all
data sets showing a comparable ancestral genome divergence, where the genome
divergence of a data set is the fraction of adjacencies in the ancestor that are
preserved in at least one leaf of the tree. In Figure 3, the error rate is the rate of
inferred adjacencies that are not present in the true ancestor, and the proportion
of true CARs is the proportion of inferred CARs that are present in the true
ancestor. Recall that a CAR is chromosomal segment inferred by the algorithm,
and it is “true” if it is a subsequence of the ancestral genome. We arbitrarily
imposed a minimum size of 5 adjacencies to consider a CAR a true CAR.

Comparing the error rates of the Ma method, and our methods using the
greedy or TSP approach (Figure 3 top left), we first notice that the three methods
have a good performance (less than 10% errors for genome divergence of 40%),
but with the TSP method outperforming the two others. However, a drawback
of the TSP approach is the fact that it outputs very few CARs, typically one
or two for a genome divergence above 40%. In all cases, our approaches (greedy
and TSP) infer fewer CARs than the Ma method (Figure 3 bottom left), and
fewer that the actual number of chromosomes of the true ancestor.

In order to improve the proportion of true CARs inferred, we “force” the
production of more CARs by defining “TSP τ” which is the TSP method aug-
mented with the procedure of cutting, from the inferred ancestor, all adjacencies
with weight less than a certain threshold τ . Figure 3 top right gives the error rate
associated to the set of adjacencies of a given weight (rate of such adjacencies in
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Fig. 3. Simulations for a tree without WGD. (1) Top left: Error rate of the inferred
ancestral genomes. (2) Top right: Error rate of adjacencies depending on their weight.
(3) Bottom left: Proportion of true CARs inferred. (4) Bottom right: Proportion of
genes in the ancestral genome that are covered by the inferred CARs that are true.. See
the text for explanation about “Ancestral genome divergence”, “Error rate”, “TSP”,
“TSP τ” and “MA’.

our results that are false predictions). Based on this figure, we choose τ = 1.4. As
observed in Figure 3 bottom left, the proportion of true CARs inferred is greatly
improved compared to the TSP approach without edge cut, but more interest-
ingly compared to the greedy approach and the Ma method. However whereas
the “true adjacencies” of the TSP approach where covering more that 90% of
the genome, the number of genes covered by the “true CARs” is less than 40%
for a genome divergence of more than 40%. However, this gene coverage remains
higher that that of the Ma method (Figure 3 bottom right).

Simulations with WGD.

We now simulate datasets based on the whole yeast tree (Figure 2). Sets of
genomes have been generated, with µ (maximum number of rearrangements per
branch) varying from 0 to 500, with increments of 50. For each of those 11 µ
values, 50 data sets have been generated. Notice first that the addition, in our
simulations, of gene loss, increases the ancestral genome divergence (range x-
axis in Figure 3 compared to Figure 4). In this case, the TSP approach clearly
infers fewer false adjacencies than the greedy approach, regardless of the an-
cestral genome divergence. Its error rate remains under 10% for ancestors with
divergence under 50%.

Based on Figure 4 top right, we choose two thresholds for edge-cut τ = 1.6
and τ = 1.7. We observe from Figure 4 (bottom left and bottom right) that the
proportion of true CARs inferred by TSP1.7 is over 80% for a gene divergence
under 0.3 with a gene coverage over 60%, and over 40% for a genome divergence
under 0.5, but with a significantly lower gene coverage (only over 20%).
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Fig. 4. Simulations for a tree with WGD. See Figure 3.

5.2 Comparison with the Gordon et al. ancestor

We applied our method to the yeast species tree (Figure 2) with the gene
datasets of the Yeast Gene Order Browser [7] described above, to infer the pre-
duplicated ancestral genome of Sccharomyces cerevisiae. Compared with the
ancestral genome manually inferred by Gordon et al. [7], about 98% of the ad-
jacencies inferred by our method are also present in the Gordon et al. ancestor.
However, our TSP approach without edge-cut leads to only 4 CARs compared
to the 8 likely ancestral chromosomes.

We tried two cutoff values for edge weight to decrease the number of incorrect
adjacencies. With a cutoff value of 1.6, we obtain smaller CARs (average length
26), 84% of them (covering 79% of the genes) being “true” CARs of the Gordon
et al. ancestor. With a cutoff value of 1.7, CARs are even smaller (12 in average)
with 95% true CARs, covering 75% of the genes. Figure 2 Right illustrates the
size distribution of true CARs with the different TSP strategies.

6 Conclusion

We have developed a general method for inferring the ancestral pre-duplicated
genomes of a set of species known to have evolved through one or many rounds of
whole genome duplication, interspersed with genome rearrangements and gene
losses. The input to our method is a phylogenetic tree representing the evolution
of the species, with positions of the WGD events, and genomes represented as
ordered sets of oriented blocks (genes or any other kind of markers), each block
appearing in one or many copies in each genome. As WGD is assumed to be the
only mechanism giving rise to gene duplicates, gene content and multiplicity at
each internal node of the tree can be inferred without resorting to reconciliation.
We developed a local approach consisting in inferring ancestral adjacencies and
then chaining them in an optimal way. The originality of this method compared



to all other local approaches is the computation of a rigorous score for each an-
cestral set of adjacencies, reflecting the maximum number of conservation of this
set of adjacencies among the whole tree. This is done by a rigorous dynamic pro-
gramming algorithm running, which is sufficiently fast to run on large data sets
(e.g. complete yeast genomes). Chaining adjacencies is then performed using a
traveling salesman strategy on a graph representation of all possible adjacencies.

Applying our method, first on simulated datasets and then on the yeast
genomes, reveals a high accuracy for adjacency prediction. However, the number
of inferred CARs strongly depends on the cutoff value used to separate good
adjacencies from noise. Although the TSP strategy seems appropriate, other
chaining strategies may be considered and may improve the quality of our results.

In this paper, we focused on inferring the ancestral genomes preceding a first
WGD event on the tree. In other words, the inferred genome has a single copy
of each chromosome. This restriction is only required for the chaining part of
the method, as the first step that consists in computing the score of each set of
adjacencies at each internal node of the tree is general. However, if the ancestor
of interest has more than one copy of each gene, then it is not clear how to
assemble a set of relevant adjacencies to form CARs as the TSP representation
breaks down. This is one of the future directions to our project that we aim to
pursue.
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Annex 1

Algorithm : Lbelow
(u,v) (a, X)

If X 6⊂ ±Σu Or |X| 6= mult(a, Σu),
Lbelow

(u,v) (a,X) = −∞ (a solution is impossible);

Otherwise

If v is a leaf,
If u is a speciation node,

Lbelow
(u,v) (a,X) = |X ∩ LA(G(v), a)|;

If u is duplication node,

Lbelow
(u,v) (a,X) = |(X ∪ X) ∩ LA(G(v), a)|;

Otherwise v is an internal node
If v is a speciation node with children x and y,

If u is a speciation node,

Lbelow
(u,v) (a, X) = maxX′{Lbelow

(v,x) (a,X ′) + Lbelow
(v,y) (a, X ′) + |X ∩ X ′|};

If u is a duplication node,
Lbelow

(u,v) (a, X) = maxX′{Lbelow
(v,x) (a,X ′) + Lbelow

(v,y) (a, X ′)

+|(X ∪ X) ∩ X ′|};
Otherwise v is a duplication node with one child w,

Lbelow
(u,v) (a,X) = maxX′{Lbelow

(v,x) (a, X ′) + |X ∩ X ′|};

End If

End If

End If

Fig. 5. Computing Lbelow
(u,v) (a, X)



Annex 2

Algorithm : Labove
(p,u) (a, X)

If X 6⊂ ±Σu Or |X| 6= mult(z, Σu),
Labove

(p,u) (z, X) = −∞ (a solution is impossible);

Otherwise

If u is the root r of T , then p = D and
Labove

(p,u) (z, X) = 0 if X is an eligible set of left adjacencies

of a, and −∞ otherwise;
Otherwise let p′ be the parent of p,

If p is a speciation node and s is the sibling of u,
Labove

(p,u) (a,X) = maxX′{Labove
(p′,p)(a, X ′) + Lbelow

(p,s) (a, X ′) + |X ∩ X ′|},

If p is a duplication node (its only child is u),

Labove
(p,u) (a,X) = maxX′{Labove

(p′,p)(a, X ′) + |X ∩ (X ′ ∪ X ′)|},

End If

End If

End If

Fig. 6. Computing Labove
(p,u) (a,X)


