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Abstract 

We consider an analytic center algorithm for solving generalized monotone variational inequalities in R", which adapts 
a recent result due to Goffin et al. (1993) to the numerical resolution of continuous pseudomonotone variational 
inequalities. 
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1. Introduction 

Although there exists a fairly vast literature on 
generalized monotonicity concepts (see [-13]), little 
is known about algorithms for solving variational 
inequalities involving generalized monotone func- 
tions (see however [8], who analyzes double projec- 
tion algorithms for solving pseudomonotone varia- 
tional inequalities). 

In this paper, we describe a cutting plane algo- 
rithm for solving pseudomonotone variational 
inequalities. This algorithm works on a reformula- 
tion of the variational inequality as a convex feasi- 
bility problem; it is an interior point method based 
on the computation of analytic centers; such 

methods have been shown to be effective in prac- 
tice. Our convergence proof does not rely on vol- 
ume reduction arguments used for the ellipsoid and 
related methods (see [9, 10]). The algorithm gener- 
ates sequences of points that are feasible with re- 
spect to the primal constraints; these sequences 
contain at least one subsequence that converges to 
an equilibrium solution. Complexity results are 
given, under the additional assumption that the 
variational inequality is pseudo-co-coercive. 

Section 2 contains a short description of the 
notation; Section 3 presents an interior cutting 
plane method for solving pseudomonotone + varia- 
tional inequalities. 
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2. Basic concepts and definitions 

Let C be a convex compact subset of ~" and 
F a continuous function from C into ~". A vector 
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x* in ~" is a solution of the variational inequality 
VI(F, C) if and only if it satisfies the system of 
nonlinear inequalities 

F(x*)T(x * - x) ~ O V x  e C. (1) 

It is well known that, under the above assumptions, 
the solution set C* of VI(F, C) is nonempty and 
compact (see [7]). 

We say that the function F is pseudomonotone on 
C if, for all x, y in C, 

F ( x ) X ( y - x ) > ~ O  ~ F ( y ) W ( y - x ) > ~ O ,  (2) 

pseudomonotone + on C if it is pseudomonotone on 
C and, for all x, y in C, 

F(x)V(Y - X) >~ O } ~ F(x) = F(y) ,  (3) 
F ( y ) T ( y - - x )  = 0 

and pseudo-co-coercive with modulus ct on C, for all 
x, y i n C ,  

F ( x ) T ( y  -- x)  >>. 0 

F( y)X ( y - x) >~ ct [1F(x) - F( y ) q[2. (4) 

It follows from the previous definitions that 
pseudo-co-coercive functions are pseudomono- 
tone +, pseudomonotone + functions are pseudo- 
monotone, and that monotone functions are 
pseudomonotone. The reader interested in these 
and other concepts of generalized monotonicity is 
referred to the papers of Schaible [13] and Zhu and 
Marcotte [14]. 

If F is pseudomonotone on C, x* is in C* if and 
only if it is in C and satisfies the system of linear 
inequalities 

F(x)T(x * - x) <~ O V x  e C. (5) 

The solution set C* is characterized as the intersec- 
tion of all valid cutting planes, and is consequently 
convex. 

The inequality systems (1) and (5) can be recast 
into minimization problems by introducing the 
functions 

ge(x) = max F(x)T(x -- y) (6) 
y~C 

and 

go(x) = max F(y)T(x -- y) (7) 
y6C 

Indeed, we have 

C* = arg min gp(X) 
xEC 

= arg min go(x) 
x~C 

= {x  ~ C l g p ( x )  --  0} 

= {x ~ c l g o ( x )  = 0}.  

3. A cutting plane method based on analytic centers 

In this section, we propose a cutting plane 
method to solve (5), based on the computation of 
(approximate) analytic centers of closed, convex 
polyhedra. 

We will assume that F is Lipschitz continuous on 
C, with Lipschitz constant L, that the set C is 
a full-dimensional polyhedron {Ax <~ b} and that 
these inequalities include the inequalities 0 ~< x ~< 
e, where e is a vector of all ones. 

We will set M = maxx~c [I F(x)[[ and denote by 
d the diameter of C, i.e., d = maxx.r~c I I x - y ] [  ~< 
,/a 

We say that a vector x in C is an e-solution of 
VI(F, C) if ge(x) <~ e. It can be checked in poly- 
nomial time that x is an e-solution by solving the 
linear program 

min F(x)~y. 
y~C 

We propose the following algorithm for identifying 
an e-solution of VI(F, C). 

Algorithm 1 

Step 0 (initialization): 

k = O ,  A k = A ,  b k = b ,  

C* = {x [Akx  <~ bk}, 

Step 1 (computation of an approximate analytic 
center): Find an approximate analytic 
center x k of C*. 

Step 2 (stopping criterion): 
Compute gp(X k) = maxx~c F(xk)T(x k - -  X) 

if gp(xk) T = 0 then STOP 
else GOTO Step 3. 
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Step 3 (generation of a cutting plane): 

F(xk)X ' F(xk)Xxk 

H k = { x IF (xk )X (x  - x  k) = 0} is the new 
cutting plane. 
Increase k by one. 
RETURN to Step 1. 

At Step 1 of Algorithm 1, the notion of approx- 
imate analytic center corresponds to that used in 
the paper by Goffin et al. I-6]. 

To the current set of m k linear inequalities 

C k = { x l A k x  + s  = b k, s >1 0} 

is associated the strictly concave dual potential 

q~o= ~ lnsj, 
j = l  

The exact analytic center (gk > O, 2k) of C k is the 
maximizer of the dual potential and thus the exact 
analytic center is, together with a positive dual 
vector ~, the unique solution of the Karush-Kuhn-  
Tucker system 

A k r y  k = O, 

Ak,yk + gk = b k, (8) 

g k f f k  ~- e, 

where I 7 is the diagonal matrix built upon the dual 
vector y. 

An approximate center (s k > O, xk), together with 
a dual vector yk, satisfies the system 

Akiy k = O, 

Akx  k + S k = b k, (9) 

][ yk sk  --e]  ~ t l < l. 

The analytic center also minimizes the primal 
(Karmarkar) potential 

mk 
~oe = m kIn  bk~y -- ~ lnyj.  

j=l 

This potential function has actually been used by 
Goffin et al. [4] to compute an approximate ana- 
lytic center. An efficient updating procedure for 
computing an approximate analytic center after the 

Fig. 1. The geometry of Lemma 1. 

addition of a new cutting plane has been proposed 
by Mitchell and Todd [11] and studied in [4-6].  In 
fact, the computation of x k+l given x k can be 
achieved by performing (at most) four steps of New- 
ton's linear approximation method. 

The convergence proof of Algorithm 1 relies on 
two preliminary results. 

L e m m a l .  Le t  x* ~ C*, 6 = e / ( M + L d )  and 

B(x*, ~5) be the closed ball o f  radius ~ centered at 

x*. W e  have that  x is an e-solution o f  V I (F ,  C) f o r  

all x ~ B ( x * , b ) n C ,  i.e., 9e(x)  <~ e .[or all 

x e B ( x * , 6 ) ~ C  

Proof. Let x ~ B ( x * , 6 ) c ~ C  (see Fig. 1). For any 
y ~ C we have 

F(x)X(x  - y) = F(x )T(x  -- x* )  + F ( x ) r ( x  * -- y)  

<<. V(x)V(x - x*) 

+ (F(x)  - F(x*))T(x  * -- y)  

~ M I I x - x * l r  + L I I x - x * N d  

<<, ( M  + L d ) 6  = ~, 

and x is an e-solution, as required. [] 

Assumption 1. T he  set C is the cube O <<.x <~e, 

where e is a vector o f  all ones. 



4 J.-L. Goffin et al. / Operations Research Letters 20 (1997) 1-6 

This assumption is needed so that the complexity 
analysis of [5] can be used without change. It is not 
restrictive, in the sense that the nature of the results 
(i.e. the complexity as a function of e) carries easily 
to the case of general linear constraints C = {x: 
Ax ~</7, 0 ~< x ~< e}, but the exact algebraic expres- 
sions (i.e. the constants) change. This would need 
a complete and easy but tedious rewriting of [5]. 

The following lemma is simply a restatement of 
the result of Goffin et al. [5] in our context. 

Lemma 2. Let  ,Y be a point in C and B(Y, p) a closed 
ball o f  radius p, centered at ~ and lying inside C. If, at 
iteration k of  a cutting plane algorithm based on 
approximate analytic centers, we have that B(~, p) 
lies in C k, then the following upper bound on p holds: 

p2 .< n {_I l n ( l  + k 
" ~ 2 n + k \ 2  + 2 n  -~-~n2)) • (10) 

We will use Lemma 2 as follows: Given a ball of 
radius p lying in C, there exists an iteration index 
k(p) such that C k does not contain the given ball. 

We are now in position to prove the main result 
of this section. 

Theorem 1. Let  F be pseudomonotone + on C. Then 
Algorithm 1 either stops with a solution of  VI(F,  C) 
after a f inite number of  iterations, or there exists 
a subsequence of  the infinite sequence {x k} that con- 
verges to a point in C*. 

Proof. We divide the proof into two mutually ex- 
clusive cases. 

Case 1: For  some iteration index k and some 
solution x * ~  C*, x* lies on the hyperplane H k 
generated at Step 3 of Algorithm 1. 

We have F(xk )T (x  k - -  X*) = 0 and F ( x * ) T ( x  k - -  X*) 

~> O. Since F is pseudomonotone+, it follows that 
F(x k) = F(x*). Now, for any x in C, 

F(xk)r(x -- x k) --  F ( x k ) T ( x  - -  X*)  + F ( x k ) T ( x  * - -  X k) 

= F(x*)(x  - x*) + 0 

>~0. 

Thus gp(x k) = O, x k is a solution to VI(F, C), and 
the algorithm has found a solution in finite time. 

C 

X* 

Hk(i) 

Fig. 2. Geometry of Theorem I (Case 2): first construction. 

Case 2: There exists an optimal point x* ~ C* 
that never lies o n  H k for any k. 

First note that x * ~  C k for every index k, as 
C* c C k. Let {ffl}~ N be an arbitrary sequence of 
points in the interior of C converging to x*, and 
e~ a sequence of positive numbers such that 
l im~ ~ e~ = 0 and that the sequence of closed balls 
{B(~i, ei)}~ ~ lies in the interior of C (see Fig. 2). 
Note that lim~.® {B(~i, ~i)} = {x*}. 

From Lemma 2, we know that there must exist 
a smallest index k(i) and a point £~ ~ B(~i, ~i) such 
that ~ lies on the wrong side of the hyperplane 
H k¢i), i.e., 

F(xk~i))T (X k~i) -- YCl) < O. 

As F(xk( i ) )T(x  k(i) - - X * )  ~ O, there exists a point 2i 
on the segment [£ i ,x*]  such that F(xk")) x 
(2i _ xk,)) = 0 (see Fig. 3). Since C is compact, we 
can extract from the sequence {xkt°}~ ~ a conver- 
gent subsequence {xkt0}i~ s. Denote by ~c its limit 
point. 

We have 

F(xk~i~)x(~ i -- x kti~) = 0 

and, passing to the limit (recall that F is continuous, 
and that l i m i ~  Ri = x*): 

F(~C)T(X * -- ~) = O. 
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x* Hk(i)""-~ 

Fig. 3. Geometry of Theorem 1 (Case 2): second construction. 

Invoking an argument similar to that used in 
Case 1, this equality implies that ge(~) = 0 and that 

is a solution of VI(F, C). []  

As described, Algorithm 1 is likely to generate an 
infinite sequence {xk}. TO make it finite, one must 
introduce an approximate stopping criterion, i.e., 
substitute Step 2a, described below, for Step 2: 

Step 2a (stopping criterion): 
If ge(x k) <~ e then STOP 

else G O T O  Step 3. 

The resulting algorithm will be denoted Algo- 
rithm la. 

We will now make the stronger assumption that 
F be pseudo-co-coercive with modulus ~t on C and 
consider the following construction. Let e' be a pre- 
determined number, and set 6 = e'/(M + Ld). De- 
fine the ball B(x*, 6) as in Lemma 1 and construct 
a close ball B(ff, p) of radius p, centered at ff and 
lying in CriB(x* ,  6). Let also e = e' + d x / ~ .  

From Lemma 2, we know that there exists 
a smallest index k(p) such that B(ff, p) does not lie 
in C k('). Let yktp) be such that 

F(xk(O))T(xk~O) _ 2k0,)) < 0, 

and yk(p) • B()L p). As before, let 2kt') • [)~(~), X*] 
be a point satisfying, ~ ( ' ) •  B(x* ,6)  and 
F(x~O~)~(2 ~°~ - x ~(~) = O. 

From Lemma 1, we know that ~k(') is an e'- 
solution of VI(F, C), i.e., 

F(~k~'))T(~ k~'~ -- x) <~ e' V x  • C. 

Using the pseudo-co-coercivity of F on C there 
comes 

I[ F(x k(p)) -- F()~k(')) f[ 2 ~< 1 F(~k(p)) T ()~ktp) _ xk(P)) 
O~ 

e' 
4 - - ,  

o~ 

which implies that 

II F(x k(~)) - F(~ ~(~) JP ~ v/F/~. 

Now, for all x in C, 

F ( x k ~ ) ) T ( x  kt~) - -  x )  = F ( X k ~ ' ~ ) T ( ~  k ~  - -  X)  

+ F ( x ~ ( , ~ ) X ( x k ( ~ )  _ .,~k~) 

= F(~k('))X(~ k(p) - x) 

+ (F(x k~p)) -- F(2kO')))x(:~ k~p) -- X) + 0 

<~ e' + dx/-eT/~ 

Therefore, gp(x k~p)) = maXx~cF(x)T(x kt') -- x) <~ 
and x k(°) is an e-solution of VI(F, C). We can sum- 
marize this discussion in a theorem: 

Theorem 2. Under the assumption that F is pseudo- 
co-coercive with modulus • on C, Algorithm la ter- 
minates with an e-solution in at most k(p) iterations, 
where k(p) is the smallest index satisfying 

p2 ~< 2 - - ~  + 2 n l n  l + ~ n  2 , (11) 

e -= e' + d ~ ,  6 = gr iM + Ld)  and B(~, p) is the 
largest ball inscribed in C c~ B(x*, 6). 

Remark 1. The convergence rate result crucially 
depends on the relationship between p and 6, which 
is essentially given by a condition number for the 
system of inequalities C. While this number is diffi- 
cult to estimate for general convex polyhedra, it can 
be obtained in the case of simple structures (cubes, 
simplices, totally unimodular systems, etc.). 

Clearly, for any x* • C*, C ~ B(x*, x/~). For an 
arbitrary ball B(xc, (n) included in C and for every 
2 • [0, 1], one has 

B(2x¢ + (1 -- 2)x*, 2e~) ~ B(x*, 2x//n), 
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and thus 

/9 U) 
>/ /--, 

a x/n 

where the right-hand-side term o /x /~  is related to 
the inverse of the asphericity of the set C. 

For instance, if C is defined only by the box 
inequalities 0 ~< x <~ e, where e is a vector of ones, 
one has 

p 1 /> 
6 2x/n 

and we can derive, using the technique of Altman 
and Kiwiel l-l], 

~min'<'J<-k{ 'qe(xJ)}  i }  
m i n i .  L-O + x/-~) ' 

/ ½ n  + 2n z ln (1  + k / 8 n  2) 
~< (12) 

4 2n + k  

Remark  2. Algorithm 2a, together with the pro- 
posed stopping rule, yields an s-solution. It might be 
interesting to know how close an e-solution is to an 
actual solution of VI(F, C). While it is difficult to 
estimate the proximity of x kw) to C* under our 
general hypothesis, this is easy to achieve if the func- 
tion F is strongly monotone on C, with strong mono- 
tonicity constant fl, say. In this case we can write 

(V(x kw)) - F(x*) )T(x  k(p) -- x*) 

F(xk(t'))'r(X k(p) -- X*) ~ g, 

where x* is the unique solution of VI(F, C). It 
follows that 

fl  II x kl~' - x *  12 ~ ~: 

and that 

II x k(p) - x* II ~< x / ~ '  

4. Extensions 

As we alluded to in Assumption 1, the analysis 
given here extends easily to the case where C is 
a full-dimensional, bounded, polyhedron { A x  <<. b}. 

The algorithm can also be extended to the case of 
a convex set C = {x e ~": hi(x)<~ 0} defined by 

pseudo-convex constraints; if all constraints are 
satisfied at the current point, then a functional cut 
is introduced, as before, but if the current point is 
not feasible (say hi~(x k) > 0) then a standard feasi- 
bility cut would be added: {x: hlk(xk)T(x --  X k) ~ 0}. 
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