An analytic center cutting plane method for pseudomonotone variational inequalities

Jean-Louis Goffin ${ }^{\text {a, }, ~}$, Patrice Marcotte ${ }^{\text {b,* }}$, Daoli Zhu ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Management and GERAD, McGill University, Montréal, Québec, Canada H3C 3J7
${ }^{\text {b }}$ Centre de recherche sur les transports, Université de Montréal, Montréal, Québec, Canada H3C 3 J 7

Received 1 May 1995; revised 1 April 1996

Abstract

We consider an analytic center algorithm for solving generalized monotone variational inequalities in \mathbb{B}^{n}, which adapts a recent result due to Goffin et al. (1993) to the numerical resolution of continuous pseudomonotone variational inequalities.

Keywords: Variational inequalities; Interior point methods; Cutting planes; Generalized monotonicity

1. Introduction

Although there exists a fairly vast literature on generalized monotonicity concepts (see [13]), little is known about algorithms for solving variational inequalities involving generalized monotone functions (see however [8], who analyzes double projection algorithms for solving pseudomonotone variational inequalities).

In this paper, we describe a cutting plane algorithm for solving pseudomonotone variational inequalities. This algorithm works on a reformulation of the variational inequality as a convex feasibility problem; it is an interior point method based on the computation of analytic centers; such

[^0]methods have been shown to be effective in practice. Our convergence proof does not rely on volume reduction arguments used for the ellipsoid and related methods (see [9, 10]). The algorithm generates sequences of points that are feasible with respect to the primal constraints; these sequences contain at least one subsequence that converges to an equilibrium solution. Complexity results are given, under the additional assumption that the variational inequality is pseudo-co-coercive.

Section 2 contains a short description of the notation; Section 3 presents an interior cutting plane method for solving pseudomonotone ${ }^{+}$variational inequalities.

2. Basic concepts and definitions

Let C be a convex compact subset of \mathbb{R}^{n} and F a continuous function from C into \mathbb{R}^{n}. A vector
x^{*} in \mathbb{R}^{n} is a solution of the variational inequality $\mathrm{VI}(F, C)$ if and only if it satisfies the system of nonlinear inequalities
$F\left(x^{*}\right)^{\mathrm{T}}\left(x^{*}-x\right) \leqslant 0 \quad \forall x \in C$.
It is well known that, under the above assumptions, the solution set C^{*} of $\operatorname{VI}(F, C)$ is nonempty and compact (see [7]).

We say that the function F is pseudomonotone on C if, for all x, y in C,

$$
\begin{equation*}
F(x)^{\mathrm{T}}(y-x) \geqslant 0 \quad \Rightarrow \quad F(y)^{\mathrm{T}}(y-x) \geqslant 0, \tag{2}
\end{equation*}
$$

pseudomonotone ${ }^{+}$on C if it is pseudomonotone on C and, for all x, y in C,
$\left.\begin{array}{l}F(x)^{\mathrm{T}}(y-x) \geqslant 0 \\ F(y)^{\mathrm{T}}(y-x)=0\end{array}\right\} \Rightarrow F(x)=F(y)$,
and pseudo-co-coercive with modulus α on C, for all x, y in C,
$F(x)^{\mathrm{T}}(y-x) \geqslant 0 \quad \Rightarrow$
$F(y)^{\mathrm{T}}(y-x) \geqslant \alpha\|F(x)-F(y)\|^{2}$.
It follows from the previous definitions that pseudo-co-coercive functions are pseudomonotone ${ }^{+}$, pseudomonotone ${ }^{+}$functions are pseudomonotone, and that monotone functions are pseudomonotone. The reader interested in these and other concepts of generalized monotonicity is referred to the papers of Schaible [13] and Zhu and Marcotte [14].
If F is pseudomonotone on C, x^{*} is in C^{*} if and only if it is in C and satisfies the system of linear inequalities
$F(x)^{\mathrm{T}}\left(x^{*}-x\right) \leqslant 0 \quad \forall x \in C$.
The solution set C^{*} is characterized as the intersection of all valid cutting planes, and is consequently convex.
The inequality systems (1) and (5) can be recast into minimization problems by introducing the functions
$g_{P}(x)=\max _{y \in C} F(x)^{\mathrm{T}}(x-y)$
and
$g_{D}(x)=\max _{y \in C} F(y)^{\mathrm{T}}(x-y)$

Indeed, we have

$$
\begin{aligned}
C^{*} & =\arg \min _{x \in C} g_{P}(x) \\
& =\arg \min _{x \in C} g_{D}(x) \\
& =\left\{x \in C \mid g_{P}(x)=0\right\} \\
& =\left\{x \in C \mid g_{D}(x)=0\right\} .
\end{aligned}
$$

3. A cutting plane method based on analytic centers

In this section, we propose a cutting plane method to solve (5), based on the computation of (approximate) analytic centers of closed, convex polyhedra.

We will assume that F is Lipschitz continuous on C, with Lipschitz constant L, that the set C is a full-dimensional polyhedron $\{A x \leqslant b\}$ and that these inequalities include the inequalities $0 \leqslant x \leqslant$ e, where e is a vector of all ones.

We will set $M=\max _{x \in C}\|F(x)\|$ and denote by d the diameter of C, i.e., $d=\max _{x, y \in C}\|x-y\| \leqslant$ \sqrt{n}.

We say that a vector x in C is an ε-solution of $\mathrm{VI}(F, C)$ if $g_{P}(x) \leqslant \varepsilon$. It can be checked in polynomial time that x is an ε-solution by solving the linear program

$$
\min _{y \in C} F(x)^{T} y .
$$

We propose the following algorithm for identifying an ε-solution of $\operatorname{VI}(F, C)$.

Algorithm 1

Step 0 (initialization):

$$
\begin{aligned}
& k=0, A^{k}=A, b^{k}=b, \\
& C^{k}=\left\{x \mid A^{k} x \leqslant b^{k}\right\},
\end{aligned}
$$

Step 1 (computation of an approximate analytic center): Find an approximate analytic center x^{k} of C^{k}.
Step 2 (stopping criterion):
Compute $g_{P}\left(x^{k}\right)=\max _{x \in \mathcal{C}} F\left(x^{k}\right)^{\mathrm{T}}\left(x^{k}-x\right)$
if $g_{P}\left(x^{k}\right)^{\mathbf{T}}=0$ then STOP else GOTO Step 3.

Step 3 (generation of a cutting plane):
$A^{k+1}=\binom{A^{k}}{F\left(x^{k}\right)^{\mathrm{T}}}, \quad b^{k+1}=\binom{b^{k}}{F\left(x^{k}\right)^{\mathrm{T}} x^{k}}$
$H^{k}=\left\{x \mid F\left(x^{k}\right)^{\mathrm{T}}\left(x-x^{k}\right)=0\right\}$ is the new cutting plane.
Increase k by one.
RETURN to Step 1.
At Step 1 of Algorithm 1, the notion of approximate analytic center corresponds to that used in the paper by Goffin et al. [6].

To the current set of m^{k} linear inequalities
$C^{k}=\left\{x \mid A^{k} x+s=b^{k}, s \geqslant 0\right\}$
is associated the strictly concave dual potential
$\varphi_{D}=\sum_{j=1}^{m^{k}} \ln s_{j}$,
The exact analytic center $\left(\bar{s}^{k}>0, \bar{x}^{k}\right)$ of C^{k} is the maximizer of the dual potential and thus the exact analytic center is, together with a positive dual vector \bar{y}, the unique solution of the Karush-KuhnTucker system
$A^{k^{k}} \bar{y}^{k}=0$,
$A^{k} \bar{x}^{k}+\bar{s}^{k}=b^{k}$,
$\bar{Y}^{k} \bar{S}^{k}=e$,
where \bar{Y} is the diagonal matrix built upon the dual vector \bar{y}.
An approximate center $\left(s^{k}>0, x^{k}\right)$, together with a dual vector y^{k}, satisfies the system
$A^{k^{k}} y^{k}=0$,
$A^{k} x^{k}+s^{k}=b^{k}$,
$\left\|Y^{k} s^{k}-e\right\| \leqslant \eta<1$.
The analytic center also minimizes the primal (Karmarkar) potential

$$
\varphi_{P}=m^{k} \ln b^{k^{T}} y-\sum_{j=1}^{m^{k}} \ln y_{j} .
$$

This potential function has actually been used by Goffin et al. [4] to compute an approximate analytic center. An efficient updating procedure for computing an approximate analytic center after the

Fig. 1. The geometry of Lemma 1.
addition of a new cutting plane has been proposed by Mitchell and Todd [11] and studied in [4-6]. In fact, the computation of x^{k+1} given x^{k} can be achieved by performing (at most) four steps of Newton's linear approximation method.

The convergence proof of Algorithm 1 relies on two preliminary results.

Lemma 1. Let $\quad x^{*} \in C^{*}, \quad \delta=\varepsilon /(M+L d) \quad$ and $B\left(x^{*}, \delta\right)$ be the closed ball of radius δ centered at x^{*}. We have that x is an ε-solution of $\mathrm{VI}(F, C)$ for all $x \in B\left(x^{*}, \delta\right) \cap C, \quad$ i.e., $\quad g_{P}(x) \leqslant \varepsilon$ for all $x \in B\left(x^{*}, \delta\right) \cap C$

Proof. Let $x \in B\left(x^{*}, \delta\right) \cap C$ (see Fig. 1). For any $y \in C$ we have

$$
\begin{aligned}
F(x)^{\mathrm{T}}(x-y)= & F(x)^{\mathrm{T}}\left(x-x^{*}\right)+F(x)^{\mathrm{T}}\left(x^{*}-y\right) \\
\leqslant & F(x)^{\mathrm{T}}\left(x-x^{*}\right) \\
& +\left(F(x)-F\left(x^{*}\right)\right)^{\mathrm{T}}\left(x^{*}-y\right) \\
\leqslant & M\left\|x-x^{*}\right\|+L\left\|x-x^{*}\right\| d \\
\leqslant & (M+L d) \delta=\varepsilon,
\end{aligned}
$$

and x is an ε-solution, as required.
Assumption 1. The set C is the cube $0 \leqslant x \leqslant e$, where e is a vector of all ones.

This assumption is needed so that the complexity analysis of [5] can be used without change. It is not restrictive, in the sense that the nature of the results (i.e. the complexity as a function of ε) carries easily to the case of general linear constraints $C=\{x$: $\tilde{A} x \leqslant \tilde{b}, 0 \leqslant x \leqslant e\}$, but the exact algebraic expressions (i.e. the constants) change. This would need a complete and easy but tedious rewriting of [5].

The following lemma is simply a restatement of the result of Goffin et al. [5] in our context.

Lemma 2. Let \bar{x} be a point in C and $B(\bar{x}, \rho)$ a closed ball of radius ρ, centered at \bar{x} and lying inside C. If, at iteration k of a cutting plane algorithm based on approximate analytic centers, we have that $B(\bar{x}, \rho)$ lies in C^{k}, then the following upper bound on ρ holds:
$\rho^{2} \leqslant \frac{n}{2 n+k}\left(\frac{1}{2}+2 n \ln \left(1+\frac{k}{8 n^{2}}\right)\right)$.
We will use Lemma 2 as follows: Given a ball of radius ρ lying in C, there exists an iteration index $k(\rho)$ such that C^{k} does not contain the given ball.
We are now in position to prove the main result of this section.

Theorem 1. Let F be pseudomonotone ${ }^{+}$on C. Then Algorithm 1 either stops with a solution of $\mathrm{VI}(F, C)$ after a finite number of iterations, or there exists a subsequence of the infinite sequence $\left\{x^{k}\right\}$ that converges to a point in C^{*}.

Proof. We divide the proof into two mutually exclusive cases.

Case 1: For some iteration index k and some solution $x^{*} \in C^{*}, x^{*}$ lies on the hyperplane H^{k} generated at Step 3 of Algorithm 1.

We have $F\left(x^{k}\right)^{\mathrm{T}}\left(x^{k}-x^{*}\right)=0$ and $F\left(x^{*}\right)^{\mathrm{T}}\left(x^{k}-x^{*}\right)$ $\geqslant 0$. Since F is pseudomonotone ${ }^{+}$, it follows that $F\left(x^{k}\right)=F\left(x^{*}\right)$. Now, for any x in C,

$$
\begin{aligned}
F\left(x^{k}\right)^{\mathrm{T}}\left(x-x^{k}\right) & =F\left(x^{k}\right)^{\mathrm{T}}\left(x-x^{*}\right)+F\left(x^{k}\right)^{\mathrm{T}}\left(x^{*}-x^{k}\right) \\
& =F\left(x^{*}\right)\left(x-x^{*}\right)+0 \\
& \geqslant 0 .
\end{aligned}
$$

Thus $g_{P}\left(x^{k}\right)=0, x^{k}$ is a solution to $\operatorname{VI}(F, C)$, and the algorithm has found a solution in finite time.

Fig. 2. Geometry of Theorem 1 (Case 2): first construction.

Case 2: There exists an optimal point $x^{*} \in C^{*}$ that never lies on H^{k} for any k.

First note that $x^{*} \in C^{k}$ for every index k, as $C^{*} \subset C^{k}$. Let $\left\{\bar{x}_{i}\right\}_{i \in N}$ be an arbitrary sequence of points in the interior of C converging to x^{*}, and ε_{i} a sequence of positive numbers such that $\lim _{i \rightarrow \infty} \varepsilon_{i}=0$ and that the sequence of closed balls $\left\{B\left(\bar{x}_{i}, \varepsilon_{i}\right)\right\}_{i \in N}$ lies in the interior of C (see Fig. 2). Note that $\lim _{i \rightarrow \infty}\left\{B\left(\bar{x}_{i}, \varepsilon_{i}\right)\right\}=\left\{x^{*}\right\}$.

From Lemma 2, we know that there must exist a smallest index $k(i)$ and a point $\tilde{x}_{i} \in B\left(\bar{x}_{i}, \varepsilon_{i}\right)$ such that \tilde{x}_{i} lies on the wrong side of the hyperplane $H^{k(i)}$, i.e.,
$F\left(x^{k(i)}\right)^{\mathrm{T}}\left(x^{k(i)}-\tilde{x}_{i}\right)<0$.
As $F\left(x^{k(i)}\right)^{\mathrm{T}}\left(x^{k(i)}-x^{*}\right) \geqslant 0$, there exists a point \hat{x}^{i} on the segment $\left[\tilde{x}_{i}, x^{*}\right]$ such that $F\left(x^{k(i)}\right)^{\mathbf{T}}$ $\left(\hat{x}^{i}-x^{k(i)}\right)=0$ (see Fig. 3). Since C is compact, we can extract from the sequence $\left\{x^{k i(i)}\right\}_{i \in \mathbb{N}}$ a convergent subsequence $\left\{x^{k(i)}\right\}_{i \in \mathbf{S}}$. Denote by \check{x} its limit point.

We have
$F\left(x^{k(i)}\right)^{\mathrm{T}}\left(\hat{x}^{i}-x^{k(i)}\right)=0$
and, passing to the limit (recall that F is continuous, and that $\lim _{i \rightarrow \infty} \hat{x}^{i}=x^{*}$):
$F(\check{x})^{\mathrm{T}}\left(x^{*}-\check{x}\right)=0$.

Fig. 3. Geometry of Theorem 1 (Case 2): second construction.

Invoking an argument similar to that used in Case 1 , this equality implies that $g_{P}(\check{x})=0$ and that \check{x} is a solution of $\mathrm{VI}(F, C)$.

As described, Algorithm 1 is likely to generate an infinite sequence $\left\{x^{k}\right\}$. To make it finite, one must introduce an approximate stopping criterion, i.e., substitute Step 2a, described below, for Step 2:

Step 2a (stopping criterion):
If $g_{P}\left(x^{k}\right) \leqslant \varepsilon$ then STOP else GOTO Step 3.

The resulting algorithm will be denoted Algorithm 1a.

We will now make the stronger assumption that F be pseudo-co-coercive with modulus α on C and consider the following construction. Let ε^{\prime} be a predetermined number, and set $\delta=\varepsilon^{\prime} /(M+L d)$. Define the ball $B\left(x^{*}, \delta\right)$ as in Lemma 1 and construct a close ball $B(\bar{x}, \rho)$ of radius ρ, centered at \bar{x} and lying in $C \cap B\left(x^{*}, \delta\right)$. Let also $\varepsilon=\varepsilon^{\prime}+d \sqrt{\varepsilon^{\prime} / \alpha}$.

From Lemma 2, we know that there exists a smallest index $k(\rho)$ such that $B(\bar{x}, \rho)$ does not lie in $C^{k(\rho)}$. Let $\tilde{x}^{k(\rho)}$ be such that
$F\left(x^{k(\rho)}\right)^{\mathrm{T}}\left(x^{k(\rho)}-\tilde{x}^{k(\rho)}\right)<0$,
and $\tilde{x}^{k(\rho)} \in B(\bar{x}, \rho)$. As before, let $\hat{x}^{k(\rho)} \in\left[\tilde{x}^{k(\rho)}, x^{*}\right]$ be a point satisfying, $\hat{x}^{k(\rho)} \in B\left(x^{*}, \delta\right)$ and $F\left(x^{k(\rho)}\right)^{\mathbf{T}}\left(\hat{x}^{k(\rho)}-x^{k(\rho)}\right)=0$.

From Lemma 1, we know that $\hat{\chi}^{k(\rho)}$ is an $\varepsilon^{\prime}-$ solution of $\operatorname{VI}(F, C)$, i.e.,
$F\left(\hat{x}^{k(\rho)}\right)^{\mathrm{T}}\left(\hat{x}^{k(\rho)}-x\right) \leqslant \varepsilon^{\prime} \quad \forall x \in C$.

Using the pseudo-co-coercivity of F on C there comes

$$
\begin{aligned}
\left\|F\left(x^{k(\rho)}\right)-F\left(\hat{x}^{k(\rho)}\right)\right\|^{2} & \leqslant \frac{1}{\alpha} F\left(\hat{x}^{k(\rho)}\right)^{\mathrm{T}}\left(\hat{x}^{k(\rho)}-x^{k(\rho)}\right) \\
& \leqslant \frac{\varepsilon^{\prime}}{\alpha}
\end{aligned}
$$

which implies that

$$
\left\|F\left(x^{k(\rho)}\right)-F\left(\hat{x}^{k(\rho)}\right)\right\| \leqslant \sqrt{\varepsilon^{\prime} / \alpha} .
$$

Now, for all x in C,

$$
\begin{aligned}
& F\left(x^{k(\rho)}\right)^{\mathrm{T}}\left(x^{k(\rho)}-x\right)= F\left(x^{k(\rho)}\right)^{\mathrm{T}}\left(\hat{x}^{k(\rho)}-x\right) \\
&+F\left(x^{k(\rho)}\right)^{\mathrm{T}}\left(x^{k(\rho)}-\hat{x}^{k(\rho)}\right) \\
&= F\left(\hat{x}^{k(\rho)}\right)^{\mathrm{T}}\left(\hat{x}^{k(\rho)}-x\right) \\
& \quad+\left(F\left(x^{k(\rho)}\right)-F\left(\hat{x}^{k(\rho)}\right)\right)^{\mathrm{T}}\left(\hat{x}^{k(\rho)}-x\right)+0 \\
& \leqslant \varepsilon^{\prime}+d \sqrt{\varepsilon^{\prime} / \alpha} \\
&= \varepsilon .
\end{aligned}
$$

Therefore, $\quad g_{P}\left(x^{k(\rho)}\right)=\max _{x \in C} F(x)^{\mathrm{T}}\left(x^{k(\rho)}-x\right) \leqslant \varepsilon$ and $x^{k(\rho)}$ is an ε-solution of $\operatorname{VI}(F, C)$. We can summarize this discussion in a theorem:

Theorem 2. Under the assumption that F is pseudo-co-coercive with modulus α on C, Algorithm $1 a$ terminates with an ε-solution in at most $k(\rho)$ iterations, where $k(\rho)$ is the smallest index satisfying
$\rho^{2} \leqslant \frac{n}{2 n+k}\left(\frac{1}{2}+2 n \ln \left(1+\frac{k}{8 n^{2}}\right)\right)$,
$\varepsilon=\varepsilon^{\prime}+d \sqrt{\varepsilon^{\prime} / \alpha}, \delta=\varepsilon^{\prime} /(M+L d)$ and $B(\bar{x}, \rho)$ is the largest ball inscribed in $C \cap B\left(x^{*}, \delta\right)$.

Remark 1. The convergence rate result crucially depends on the relationship between ρ and δ, which is essentially given by a condition number for the system of inequalities C. While this number is difficult to estimate for general convex polyhedra, it can be obtained in the case of simple structures (cubes, simplices, totally unimodular systems, etc.).

Clearly, for any $x^{*} \in C^{*}, C \subset B\left(x^{*}, \sqrt{n}\right)$. For an arbitrary ball $B\left(x_{\mathrm{c}}, \omega\right)$ included in C and for every $\lambda \in[0,1]$, one has
$B\left(\lambda x_{\mathrm{c}}+(1-\lambda) x^{*}, \lambda \omega\right) \subset B\left(x^{*}, \lambda \sqrt{n}\right)$,
and thus
$\frac{\rho}{\delta} \geqslant \frac{\omega}{\sqrt{n}}$,
where the right-hand-side term ω / \sqrt{n} is related to the inverse of the asphericity of the set C.

For instance, if C is defined only by the box inequalities $0 \leqslant x \leqslant e$, where e is a vector of ones, one has
$\frac{\rho}{\delta} \geqslant \frac{1}{2 \sqrt{n}}$,
and we can derive, using the technique of Altman and Kiwiel [1],

$$
\begin{align*}
& \min \left\{\frac{\min _{1 \leqslant j \leqslant k}\left\{g_{P}\left(x^{j}\right)\right\}}{L(1+\sqrt{n})}, \frac{1}{4}\right\} \\
& \leqslant \sqrt{\frac{1}{2} n+2 n^{2} \ln \left(1+k / 8 n^{2}\right)} \tag{12}\\
& 2 n+k
\end{align*} .
$$

Remark 2. Algorithm $2 a$, together with the proposed stopping rule, yields an ε-solution. It might be interesting to know how close an ε-solution is to an actual solution of $\operatorname{VI}(F, C)$. While it is difficult to estimate the proximity of $x^{k(\rho)}$ to C^{*} under our general hypothesis, this is easy to achieve if the function F is strongly monotone on C, with strong monotonicity constant β, say. In this case we can write

$$
\begin{aligned}
& \left(F\left(x^{k(\rho)}\right)-F\left(x^{*}\right)\right)^{\mathbf{T}}\left(x^{k(\rho)}-x^{*}\right) \\
& \quad \leqslant F\left(x^{k(\rho)}\right)^{\mathbf{T}}\left(\tilde{x}^{k(\rho)}-x^{*}\right) \leqslant \varepsilon,
\end{aligned}
$$

where x^{*} is the unique solution of $\operatorname{VI}(F, C)$. It follows that
$\beta \| x^{k(\rho)}-\left.x^{*}\right|^{2} \leqslant \varepsilon$
and that
$\left\|x^{k(\rho)}-x^{*}\right\| \leqslant \sqrt{\varepsilon / \beta}$.

4. Extensions

As we alluded to in Assumption 1, the analysis given here extends easily to the case where C is a full-dimensional, bounded, polyhedron $\{A x \leqslant b\}$.

The algorithm can also be extended to the case of a convex set $C=\left\{x \in \mathbb{R}^{n}: h_{i}(x) \leqslant 0\right\}$ defined by
pseudo-convex constraints; if all constraints are satisfied at the current point, then a functional cut is introduced, as before, but if the current point is not feasible (say $h_{i^{*}}\left(x^{k}\right)>0$) then a standard feasibility cut would be added: $\left\{x: h_{i^{k}}^{\prime}\left(x^{k}\right)^{\mathbf{T}}\left(x-x^{k}\right) \leqslant 0\right\}$.

References

[1] A. Altman and K.C. Kiwiel, "A note on some analytic center cutting plane methods for convex feasibility and minimization problems", Comput. Optim. Appl. 5, 175-180 (1996).
[2] A. Auslender, Optimisation. Méthodes numériques, Masson, Paris, 1976.
[3] F.E. Browder, "Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces", Trans. Amer. Math. Soc. 118, 338-351 (1965).
[4] J.-L. Goffin, A. Haurie and J.-P. Vial, "Decomposition and nondifferentiable optimization with the projective algorithm", Management Sci. 38, 284-302 (1992).
[5] J.-L. Goffin, Z.Q. Luo and Y. Ye, "On the complexity of a column generation algorithm for convex or quasiconvex feasibility problems", in: W.W. Hager, D.W. Hearn and P.M. Pardalos, (eds.) Large Scale Optimization: State of the Art, Kluwer, New York, 1993.
[6] J.-L. Goffin, Z.Q. Luo and Y. Ye, "Complexity analysis of an interior cutting plane method for convex feasibility problems", SIAM J. Optim. 6, 638-652 (1996).
[7] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
[8] I.V. Konnov, "Combined relaxation methods for finding equilibrium points and solving related problems", Russian Math. (Izvestiya VUZ Matematika) 37, 46-53 (1993).
[9] H.J. Luithi, "On the solution of variational inequalities by the ellipsoid method", Math. Oper. Res. 10, 515-522 (1985).
[10] T.L. Magnanti and G. Perakis, "A unifying geometric framework for solving variational inequalities", Math. Programming 71, 327-351 (1995).
[11] J.E. Mitchell and M.J. Todd, "Solving combinatorial optimization problems using Karmarkar's algorithm", Math. Programming 56, 245-284 (1992).
[12] Y. Nesterov, "Cutting plane algorithms from analytic centers: Efficiency estimates", in: J.-L. Goffin and J.-P. Vial (eds.), Nondifferentiable and Large Scale Optimization, Math. Programming Ser. B. 69, 149-176 (1995).
[13] S. Schaible, "Generalized monotonicity", in: F. Giannessi, (ed.), Proc. 10th Internat. Summer School on Nonsmooth Optimization, Analysis and Applications, Erice, Italy, 1991, Gordon and Breach, Amsterdam, London, 1992.
[14] D. Zhu and P. Marcotte, "New classes of generalized monotonicity", JOTA 87, 457-471 (1995).
[15] S.I. Zuhovickii, R.A. Polyak and M.E. Primak, "Two methods of search for equilibrium of points of n person concave games", Sov. Math. Math. Dokl. 10, 279-282 (1969).

[^0]: * Corresponding author. Research supported by NSERC grant A5789 and by the FCAR.
 ${ }^{1}$ Research supported by NSERC grant OPG0004152 and by the FCAR.

