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Abstract

We consider an analytic center algorithm for solving generalized monotone variational inequalities in R”, which adapts
a recent result due to Goffin et al. (1993) to the numerical resolution of continuous pseudomonotone variational

inequalities.
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1. Introduction

Although there exists a fairly vast literature on
generalized monotonicity concepts (see [13]), little
is known about algorithms for solving variational
inequalities involving generalized monotone func-
tions (see however [8], who analyzes double projec-
tion algorithms for solving pseudomonotone varia-
tional inequalities).

In this paper, we describe a cutting plane algo-
rithm for solving pseudomonotone variational
inequalities. This algorithm works on a reformula-
tion of the variational inequality as a convex feasi-
bility problem; it is an interior point method based
on the computation of analytic centers; such
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methods have been shown to be effective in prac-
tice. OQur convergence proof does not rely on vol-
ume reduction arguments used for the ellipsoid and
related methods (see [9, 10]). The algorithm gener-
ates sequences of points that are feasible with re-
spect to the primal constraints; these sequences
contain at least one subsequence that converges to
an equilibrium solution. Complexity results are
given, under the additional assumption that the
variational inequality is pseudo-co-coercive.

Section 2 contains a short description of the
notation; Section 3 presents an interior cutting
plane method for solving pseudomonotone* varia-
tional inequalities.

2. Basic concepts and definitions

Let C be a convex compact subset of R" and
F a continuous function from C into R”. A vector

0167-6377/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved

PI1 S0167-6377(96)00029-6



2 J.-L. Goffin et al. |/ Operations Research Letters 20 (1997) -6

x* in R" is a solution of the variational inequality
VI(F,C) if and only if it satisfies the system of
nonlinear inequalities

FOx¥)T(x*—x)<0 VxeC(C. (0

It is well known that, under the above assumptions,
the solution set C* of VI(F, C) is nonempty and
compact {see [71).

We say that the function F is pseudomonotone on
C if, for all x, y in C,

Fx)'(y—x)=20 = F(»'(y—x)=0, 2

pseudomonotone* on C if it is pseudomonotone on
C and, for all x, y in C,

Fx)'(y —x) 20

= F(x)=F(y), 3
F(y)T(y—x):O} (x) = F(y) (3

and pseudo-co-coercive with modulus « on C, for all
x, yin C,

Fx)y-x)=20 =
F()"(y—x) = al|[F(x) ~ F(y)|*. (4)

It follows from the previous definitions that
pseudo-co-coercive functions are pseudomono-
tone™, pseudomonotone™ functions are pseudo-
monotone, and that monotone functions are
pseudomonotone. The reader interested in these
and other concepts of generalized monotonicity is
referred to the papers of Schaible [13] and Zhu and
Marcotte [14].

If F 1s pseudomonotone on C, x* is in C* if and
only if it 18 in C and satisfies the system of linear
inequalities

F(x)"(x* —x)<0 VxeC. (5

The solution set C* is characterized as the intersec-
tion of all valid cutting planes, and is consequently
convex.

The inequality systems (1) and (5) can be recast
into minimization problems by introducing the
functions

gr(x) = max F(x)T(x —y) (6)
and
gp(x) = max F(y)'(x —y) (7)

Indeed, we have
C* = arg min gp(x)
xeC

= arg min gp(x)
xeC

= {x € Clgp(x) =0}
= {x e Clgp(x)=0}.

3. A cutting plane method based on analytic centers

In this section, we propose a cutting plane
method to solve (5), based on the computation of
{(approximate) analytic centers of closed, convex
polyhedra.

We will assume that F is Lipschitz continuous on
C, with Lipschitz constant L, that the set C is
a full-dimensional polyhedron {Ax < b} and that
these inequalities include the inequalities 0 < x <
e, where e is a vector of all ones.

We will set M = max,.¢ | F(x)| and denote by
d the diameter of C, ie.,, d = max, ,cllx —y| <

n.

We say that a vector x in C is an g-solution of
VI(F, C) if gp(x) < e It can be checked in poly-
nomial time that x is an e-solution by solving the
linear program

min F(x)"y.
yeC

We propose the following algorithm for identifying
an g-solution of VI(F, C).

Algorithm 1
Step O (initialization):
k=0,4*= A, b*=b,
Ck = {x| A*x < b*},

Step 1 (computation of an approximate analytic
center): Find an approximate analytic
center x* of C*.
Step 2 (stopping criterion):
Compute gp(x*) = max,.c F(x*)T(x* — x)
if gp(x*)T = 0 then STOP
else GOTO Step 3.
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Step 3 (generation of a cutting plane):

+1 __ Ak k+1 __ bk
Ak - <F(xk)T>’ b t= <F(xk)Txk>

H* = {x| F(x*)T(x — x*) = 0} is the new
cutting plane.

Increase k by one.

RETURN to Step 1.

At Step 1 of Algorithm 1, the notion of approx-
imate analytic center corresponds to that used in
the paper by Goffin et al. [6].

To the current set of m* linear inequalities

Ck={x]|A*% +s=b" s> 0}

is associated the strictly concave dual potential
op= 3, Ins;,
j=1

The exact analytic center (5* > 0, x*) of C* is the
maximizer of the dual potential and thus the exact
analytic center is, together with a positive dual
vector j, the unique solution of the Karush—-Kuhn—
Tucker system

Ak'yk — 0,
AREE 45+ = b, ®)
YE5* = e,

where Y is the diagonal matrix built upon the dual
vector y.

An approximate center (s* > 0, x*), together with
a dual vector y*, satisfies the system

Ay =0
A*xE 4+ s* = bh, 9)
| YEsk —e| <5< 1.

The analytic center also minimizes the primal
(Karmarkar) potential

pp=m"Inb"y— Y Iny,.
j=1

This potential function has actually been used by
Goffin et al. [4] to compute an approximate ana-
lytic center. An efficient updating procedure for
computing an approximate analytic center after the

Fig. 1. The geometry of Lemma 1.

addition of a new cutting plane has been proposed
by Mitchell and Todd [11] and studied in [4-6]. In
fact, the computation of x**! given x* can be
achieved by performing (at most) four steps of New-
ton’s linear approximation method.

The convergence proof of Algorithm 1 relies on
two preliminary results.

Lemma 1. Let x*e C* J=¢/(M +Ld) and
B(x*, ) be the closed ball of radius & centered at
x*. We have that x is an e-solution of VI(F, C) for
all xe B(x*0)nC, ie, gplx)<e for all
x € B(x*,6)nC

Proof. Let x € B(x*,6)nC (see Fig. 1). For any
y € C we have

F(x)T(x —y) = F(x)T(x —x*) + F(x)"(x* — y)
< F(x)T(x — x*)
+ (F(x) — F(x*))T(x* — y)
<SM|x—x*[|+ L|x—x*|d
<(M +Ld)s =e,

and x is an g-solution, as required. [

Assumption 1. The set C is the cube 0 < x <ee,
where e is a vector of all ones.
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This assumption is needed so that the complexity
analysis of [ 5] can be used without change. It is not
restrictive, in the sense that the nature of the results
(i.e. the complexity as a function of &) carries easily
to the case of general linear constraints C = {x:
Ax<bh,0<x < e}, but the exact algebraic expres-
sions (i.e. the constants) change. This would need
a complete and easy but tedious rewriting of [5].

The following lemma is simply a restatement of
the result of Goffin et al. [5] in our context.

Lemma 2. Let X be a point in C and B(X, p) a closed
ball of radius p, centered at X and lying inside C. If, at
iteration k of a cutting plane algorithm based on
approximate analytic centers, we have that B(X, p)
lies in C*, then the following upper bound on p holds:

1 k
2< n — —
P \2n+k(2+2n1n(1+8n2>>' (10)

We will use Lemma 2 as follows: Given a ball of
radius p lying in C, there exists an iteration index
k(p) such that C* does not contain the given ball.

We are now in position to prove the main result
of this section.

Theorem 1. Let F be pseudomonotone™ on C. Then
Algorithm 1 either stops with a solution of VI(F, C)
after a finite number of iterations, or there exists
a subsequence of the infinite sequence {x*} that con-
verges to a point in C*.

Proof. We divide the proof into two mutually ex-
clusive cases.

Case 1: For some iteration index k and some
solution x* € C* x* lies on the hyperplane H*
generated at Step 3 of Algorithm 1.

We have F(x*)T(x* — x*) = 0 and F(x*)T(x* — x*)
= 0. Since F is pseudomonotone™, it follows that
F(x*) = F(x*). Now, for any x in C,

F(x)T(x — x*) = F(x*)T(x — x*) + F(x*)T(x* —x*)
= F(x*)(x —x*) +0
= 0.

Thus gp(x*) = 0, x* is a solution to VI(F, C), and
the algorithm has found a solution in finite time.

Hk(:' )

*

z

Fig. 2. Geometry of Theorem 1 (Case 2): first construction.

Case 2: There exists an optimal point x* € C*
that never lies on H* for any k.

First note that x* € C* for every index k, as
C* c C* Let {X;};.n be an arbitrary sequence of
points in the interior of C converging to x*, and
& a sequence of positive numbers such that
lim; .. & = 0 and that the sequence of closed balls
{B(X;, &)} lies in the interior of C (see Fig. 2).
Note that lim,_, ,, {B(X;, &)} = {x*}.

From Lemma 2, we know that there must exist
a smallest index k(i) and a point X; € B(X;, ¢;) such
that x; lies on the wrong side of the hyperplane
H* e,

F(x )T (xk _ %) < 0.

As F(x*MT(x*® — x*) > 0, there exists a point %'
on the segment [X;,x*] such that F(x*®)T
(%" — x*9) = 0 (see Fig. 3). Since C is compact, we
can extract from the sequence {x*®},_y a conver-
gent subsequence {x*®}, . Denote by x its limit
point.

We have

F(Xk(i))T(xAi _ xk(i)) =0

and, passing to the limit (recall that F is continuous,
and that lim,_, , X' = x*):

F(3)T(x* — %) = 0.
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Fig. 3. Geometry of Theorem 1 (Case 2); second construction.

Invoking an argument similar to that used in
Case 1, this equality implies that gp(x) = 0 and that
X is a solution of VI(F,C). O

As described, Algorithm 1 is likely to generate an
infinite sequence {x*}. To make it finite, one must
introduce an approximate stopping criterion, i.e.,
substitute Step 2a, described below, for Step 2:

Step 2a (stopping criterion):
If gp(x*) < ¢ then STOP
else GOTO Step 3.

The resulting algorithm will be denoted Algo-
rithm 1la.

We will now make the stronger assumption that
F be pseudo-co-coercive with modulus o« on C and
consider the following construction. Let ¢ be a pre-
determined number, and set § = &'/AM + Ld). De-
fine the ball B(x*, §) as in Lemma 1 and construct
a close ball B(x, p) of radius p, centered at X and
lying in CnB(x*,0). Let alsoe =¢ + d\/s_’/_c;c.

From Lemma 2, we know that there exists
a smallest index k(p) such that B(X, p) does not lie
in C*¥®_ Let £® be such that

F(xk(p))T(xk(p) _ ~k(p)) < 0’

and ¥ ¢ B(x, p). As before, let ¥ ¢ [x*®), x*]
be a point satisfying, £*® e B(x* J) and
F(xk("’)T()E"“’) - xk(p)) =Q.

From Lemma 1, we know that x*® is an ¢'-
solution of VI(F, C), i.e.,

FEO(#) —x) <& VYxeC.

Using the pseudo-co-coercivity of F on C there
comes

“ F(x"(”)) _ F()'c"‘(”)) “2 < 1 F(fk(p))T ()gkw) — xk(p))
o

o]

<

B

R |

which implies that
| F(x) — FE) | < /&/a.
Now, for all x in C,
F(xMP)T(xMP) _ x) = F(xX)T(£k0) _ x)
+ F(ckOT(xk®) _ gkoy
— F(x*k(p))T()ek(p) _ x)
+ (F(x*®)) — F(£FP) (¥ — x) +0
<& +d /e
=¢&.

Therefore, gp(x*) = max,.cF(x)T(x*” —x) < ¢
and x*® is an e-solution of VI(F, C). We can sum-
marize this discussion in a theorem:

Theorem 2. Under the assumption that F is pseudo-
co-coercive with modulus o on C, Algorithm la ter-
minates with an e-solution in at most k(p) iterations,
where k(p) is the smallest index satisfying

1 k
2N 1 K
p \2n+k(2+2nln(1+8n2)>, (11)

e=¢&+dJe/n, 6 =¢/(M + Ld) and B(x, p) is the
largest ball inscribed in C~ B(x*, d).

Remark 1. The convergence rate result crucially
depends on the relationship between p and d, which
is essentially given by a condition number for the
system of inequalities C. While this number is diffi-
cult to estimate for general convex polyhedra, it can
be obtained in the case of simple structures (cubes,
simplices, totally unimodular systems, etc.).

Clearly, for any x* € C*, C < B(x*, ﬁ). For an
arbitrary ball B(x., w) included in C and for every
A €[0,1], one has

B(ix, + (1 — A)x*, Aw) < B(x*, 2/n),
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where the right-hand-side term w/ﬁ is related to
the inverse of the asphericity of the set C.

For instance, if C is defined only by the box
inequalities 0 < x < e, where e is a vector of ones,
one has

py !

o7 2\/;1’
and we can derive, using the technique of Altman
and Kiwiel [1],

min {minl <j sk{gP(xj)} 1 }

L+ /n) 4

- in + 2n%In(1 + k/8n?)
h 2n +k '

(12)

Remark 2. Algorithm 2a, together with the pro-
posed stopping rule, yields an -solution. It might be
interesting to know how close an &-solution is to an
actual solution of VI(F, C). While it is difficult to
estimate the proximity of x*®' to C* under our
general hypothesis, this is easy to achieve if the func-
tion F is strongly monotone on C, with strong mono-
tonicity constant f, say. In this case we can write

(F(xk“’)) _F(x*))T(xk(p) —x¥*)
< F(xk(p))'r(ik(p) — x*) <e,

where x* is the unique solution of VI(F,C). It
follows that

ﬁ ka(ﬂl _x*|2 <e

and that

1 e —x* | <\ /e/B.

4. Extensions

As we alluded to in Assumption 1, the analysis
given here extends easily to the case where C is
a full-dimensional, bounded, polyhedron {Ax < b}.

The algorithm can also be extended to the case of
a convex set C = {x € R hy(x) <0} defined by

pseudo-convex constraints; if all constraints are
satisfied at the current point, then a functional cut
is introduced, as before, but if the current point is
not feasible (say hx(x*) > 0) then a standard feasi-
bility cut would be added: {x: hix(x*)"(x —x*) < 0}.
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