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Abstract. Motivated by the study of parametric convex programs, we consider approximation of concave
functions by piecewise affine functions. Using dynamic programming, we derive a procedure for selecting
the knots at which an oracle provides the function value and one supergradient. The procedure is adaptive
in that the choice of a knot is dependent on the choice of the previous knots. It is also optimal in that the
approximation error, in the integral sense, is minimized in the worst case.
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1. Introduction

The present work is motivated by a bicriterion network equilibrium problem modeled as
a variational inequality (see Marcotte and Zhu [5]). In the linearization algorithm whose
implementation is discussed in Marcotte, Nguyen and Tanguay [6], parametric shortest
path problems have to be solved repeatedly. Since this is computationally costly, it is
natural to consider the approximation of the value function of this parametric program
by a piecewise linear function involving a small number of evaluation points (knots). In
order to be consistent with the stopping criterion used in the linearization algorithm, the
quality of the approximation has to be measured in the integral sense, i.e., with respect
to the L1 norm. This yields the problem of selecting the knots such as to minimize the
approximation error, in the worst case.

In a general setting, consider a proper, concave function f defined over the interval
[0, 1], normalized such that f (0) = 0 and f (1) = 1. At each point x̄ ∈ (0, 1) an oracle
provides the value f (x̄) and that of one supergradient ξ ∈ ∂f (x̄), i.e., a point satisfying
the inequality

f (x) ≤ f (x̄)+ ξ(x − x̄) ∀x ∈ [0, 1].
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In the sequel we denote an arbitrary supergradient ξ by f ′(x̄), even when f is not dif-
ferentiable at x̄. From this information we derive the under and over-approximations of
f over the interval (0,1):

L(t) = min

{
f (x̄)

x̄
t,

1 − f (x̄)

1 − x̄
(t − x̄)+ f (x̄)

}

U(t) = f (x̄)+ f ′(x̄)(t − x̄)

which yield the error bound
∫ 1

0 (U(t) − L(t)) dt . The aim of the present paper is to
minimize the above error term through a sequential procedure for knot selection, and
prove that this procedure is optimal in the sense that it minimizes the error term in the
worst case. The procedure is adaptive in the sense that the selection of the current knot
is dependent on the locations of previous knots.

Novak [7] and Sonnevend [9] have shown that, for the problem of approximating
the integral of a convex function using function values and derivatives, the worst-case
behavior of adaptive algorithms is not superior to that of passive algorithms, i.e., proce-
dures that set the locations of all knots simultaneously. However, since the worst case
is unlikely to occur in practice, an adaptive algorithm may take advantage of available
information to produce an improved approximation. This led Sukharev [10] to the defini-
tion of sequentially optimal algorithms, i.e., adaptive algorithms that make optimal use,
at each step, of available information. In view of the high computational complexity of
such methods, we limit our analysis to algorithms where knot ordering is fixed a priori,
and we have chosen the left-to-right order for simplicity. Our algorithm has the same
low complexity as Sonnevend’s algorithm, namely O(n), where n denotes the number of
evaluation points. Note that the results of Novak and Sonnevend imply that all orderings
are equivalent, in the worst case.

Approximation algorithms based on the bounding functionsL andU have been stud-
ied in the literature under the name of “sandwich algorithms”, the difference between
L and U being measured with respect to the uniform, L1 or Hausdorff distance (the
Hausdorff distance between the graphs of the functions L and U ). At a given iteration
of a sandwich algorithm, a knot that lies in the interval of largest estimated error is
determined. Fruhwirth, Burkard and Rote [3] propose, in the case of the Hausdorff dis-
tance, three subdivision rules that achieve the optimal asymptotic bound O(n−2), while
a bound of the same order was also obtained by Burkard, Hamacher and Rote [2] for
the uniform norm. In the paper by Rote [8] four subdivision rules are studied both from
a theoretical and numerical point of view. However, two of the subdivision methods
require, at each iteration, the solution of an optimization problem involving the func-
tion f itself; this violates a condition of our problem which states that no more than n
function evaluations must be performed. Actually, Yang and Goh [11] showed that, if
f is easy to compute, the sandwich algorithm can dispense altogether with first-order
(derivative or supergradient) information.

In discussing optimal sandwich methods, Rote mentions the problem of determin-
ing an evaluation strategy that minimizes the maximal error. Our analysis brings a
partial answer to this problem and improves upon previous works in two important
respects:
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Fig. 1. Upper and lower approximation of the function f (n = 2)

– We obtain both the optimal convergence rate and optimal selection rules for each n.
– Our result is parameter-free: no a priori information about the function to be approx-

imated is required.

2. Problem definition

Let f be a proper concave function defined over the unit interval [x0, xn+1] = [0, 1]
and normalized so that f (0) = 0 and f (1) = 1. We wish to sequentially select n points
x1, . . . , xn in order to minimize the measure

E(x1, . . . , xn) = 1

2

∫ 1

0
[U(t)− L(t)] dt (1)

where (see Figure 1)

L(t) = min
i=1,... ,n+1

{
f (xσ(i−1))

(t − xσ(i))

xσ(i−1) − xσ(i)
+ f (xσ(i))

(t − xσ(i−1))

xσ(i) − xσ(i−1)

}

U(t) = min
i=0,... ,n+1

{
f (xi)+ f ′(xi)(t − xi)

}

and σ is the permutation that reorders the knots and the two endpoints from left to right:

0 = xσ(0) < xσ(1) < · · · < xσ(n) < xσ(n+1) = 1.

For a given class of functions F ⊂ C[0, 1], let En denote the worst-case error cor-
responding to an optimal selection of n knots (n > 0). More precisely, let A be the
class of all algorithms that construct the approximation U+L

2 using the information(
f (x1), f

′(x1), . . . , f (xn), f
′(xn)

)
obtained by evaluating the function f ∈ F and one

supergradient at n points x1, . . . , xn of [0, 1]. We consider here deterministic adaptive
algorithms, where the choice of the point xi may depend on the previous information
x1, f (x1), f

′(x1), . . . , xi−1, f (xi−1), f
′(xi−1).
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We denote by α ∈ A the application that maps the function f ∈ F into its approx-
imation α(f ), and we define the optimal worst-case error with respect to the L1 norm
as

En(a, b) = inf
α∈A

sup
f∈F

|| f − α(f ) ||1.

It is not difficult to show that the supremum in the above expression is given by the
integral on the right-hand side of (1).

In the terminology of Sukharev [10], our procedure is an adaptive algorithm of the
form α = (N, φ), where the information operator is

N(f ) = (
f (x1), f

′(x1), . . . , f (xn), f
′(xn)

)

and the terminal operation φ is defined by

φ(N(f )) = U + L

2
.

It can be shown that φ is central and thus optimal in the sense that for each f , andN(f )
already computed, it minimizes

sup
f̃∈Ff

|| f̃ − α(f ) ||1,

whereFf is the subset of functions f̃ inF that satisfy f̃ (xi) = f (xi) and f̃ ′(xi) = f ′(xi)
for all i.

The information operatorN described above is consistent with the information avail-
able and the choice of the particular terminal operation φ is justified by its optimality.
Therefore, the construction of an approximation algorithm reduces here to the choice
of the n evaluation points x1, . . . , xn. The optimal worst-case error En and the optimal
evaluation points can be computed through the recursion

En−k(zk) = min
xk+1∈(0,1)

max
(f (xk+1),f

′(xk+1))∈C
En−(k+1)(z

k+1)

k = 0, . . . , n− 1

where the current information is aggregated into the vector

zk = (
x1, . . . , xk, f (x1), . . . , f (xk), f

′(x1), . . . , f
′(xk)

)

andC represents the set of constraints that must be satisfied by the values of f (xk+1) and
f ′(xk+1) in order to be compatible with the first k functional and supergradient values
of the concave function f .

As mentioned previously, the above system is too complex to be solved in closed
form and, for this reason, we limit our analysis to the identity permutation, i.e., the knots
will be determined in a left-to-right fashion.
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v = ax

v = bx + 1 − b

v = µx + v1 − µx1

1

1

Fig. 2. Case n = 1

Set a = f ′(0), b = f ′(1) and denote by En(a, b) the optimal worst-case error when
knots are selected from left to right. By definition E0(a, b) is equal to the area of the
triangle OPT in Figure 2, i.e.

E0(a, b) = 1

2

(1 − b)(a − 1)

a − b
.

In the case where n = 1, let x denote the evaluation point and set v = f (x),µ = f ′(x)1.
Since the graph off is entirely contained within the triangleOPT , the following require-
ments must be met by v and µ:

x ≤ v ≤ ax if x ∈ [0, 1−b
a−b ]

x ≤ v ≤ bx + 1 − b if x ∈ [ 1−b
a−b , 1]

1 − v

1 − x
≤ µ ≤ v

x
.

(2)

The error bound E1(a, b) corresponds to the sum of the areas of the trianglesOML and
LNT of Figure 2 and can be expressed in term of E0:

E1(a, b) =
min
x∈(0,1)

max
v

max
µ

{
xvE0

(x
v
a,
x

v
µ

)
+ (1 − x)(1 − v)E0

(
1 − x

1 − v
µ,

1 − x

1 − v
b

)}
,

where v and µ must satisfy the geometric constraints (2), and the scaling factors mul-
tiplying E0, a, b and µ are derived from elementary geometric arguments. Now, for an
arbitrary number n, the worst-case error term can be defined recursively as

1 From now on, we drop knot indices, with the exception of Figure 2, where they have been retained in
order to avoid a collision of the symbol x with itself.
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En(a, b) =
min
x∈(0,1)

max
v

max
µ

{
xvE0

(x
v
a,
x

v
µ

)
+ (1 − x)(1 − v)En−1

(
1 − x

1 − v
µ,

1 − x

1 − v
b

)}

(3)

under constraints (2). Any minimizer x of En(a, b) is called optimal. The next point of

evaluation is then set to a minimizer of En−1

(
1−x

1−f (x)f
′(x), 1−x

1−f (x)b
)

, and so on to the

nth knot. Our main result follows.

Theorem 1. The optimal worst-case error is equal to

En(a, b) = 1

2(n+ 1)2
(a − 1)(1 − b)

(a − b)
(4)

and the minimum in (3) is achieved at the point

x∗ = 1

(n+ 1)2

(
1 + 2n

1 − b

a − b

)
. (5)

Note that, whenever f is concave increasing and no a priori information is available
on the slopes a and b, i.e., a = +∞ and b = 0, the above formula collapses to

En(a, b) = 1

2(n+ 1)2
.

3. Proof of the theorem

The proof of Theorem 1 is lengthy, due to the many cases and subcases that have to be
probed, and we only provide an outline. The reader interested in the complete proof is
referred to Guérin [4]. The proof proceeds by induction on n. The result clearly holds
for n = 0. For n ≥ 1 we evaluate the expression

Rn(x) = max
v

max
µ

{
xvE0

(x
v
a,
x

v
µ

)
+ (1 − x)(1 − v)En−1

(
1 − x

1 − v
µ,

1 − x

1 − v
b

)}
,

working backwards with respect to the two “max” operators. For fixed x and v, let us
consider the function

φ(µ) = 2

[
xvE0

(x
v
a,
x

v
µ

)
+ (1 − x)(1 − v)En−1

(
1 − x

1 − v
µ,

1 − x

1 − v
b

)]
.

Using the induction hypothesis to eliminate the terms E0 and En−1, φ can be expressed
as

φ(µ) = A
v − µx

a − µ
+ B

(1 − x)µ− (1 − v)

n2(µ− b)
,

where A = ax − v and B = 1 − v − (1 − x)b are nonnegative scalars.
The rational function φ, which is illustrated on Figure 3, possesses two local optima,

denoted µ− and µ+, respectively. Its maximum µmax on [(1 − v)/(1 − x), v/x] is
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µ

φ(µ)

µ−
µ+

ab 1−v
1−x

v
x

Ax + B

n2 (1 − x)

Fig. 3. The function φ (case µmax = µ+)

v = ax + 1−a
n+1

y = bx + 1 − b

v = ax

v = bx + 1−b
n+1

O

Q

R

S

P

T
1

1

I II

III

Fig. 4. Three cases for µ

achieved either at µ+ or at one of the endpoints of the interval. This yields three cases,
each one corresponding to an area of the triangle OPT in Figure 4. The three areas
I, II and III are defined, respectively, as the quadrilateral PQRS, the triangle RST
and the triangle ORQ. The maximum of φ occurs at µ+ if (x, v) belongs to area I, at
(1 − v)/(1 − x) if (x, v) belongs to area II and at v/x if (x, v) belongs to area III.

For notational purposes we introduce, for fixed x, the scaling:

ψ(v) = n2(a − b)φ(µmax).

The value vmax at which ψ reaches its maximum defines a piecewise smooth function
of x consisting of three linear and one quadratic pieces. The analysis must consider two
cases, depending whether n is larger or less than (a − 1)/(1 − b). The function vmax,
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1 − a + ax + (a − 1)
√

1 − xbx + (1 − b)
√
x

00

(1,1)(1,1)

W

Q

D

E

SS

F

G

V

xx

vv

Case n ≥ a−1
1−bCase n ≤ a−1

1−b

Fig. 5. The function vmax

illustrated on Figure 5, is defined as

vmax =




ax if x ∈ (0,W1]

bx + (1 − b)
√
x if x ∈ [W1,D1]

a + b

2
x + 2(n+ 1)− a − (2n+ 1)b

2(n+ 1)2
if x ∈ [D1, E1]

bx + (1 − b) if x ∈ [E1, 1)

in the case n ≤ (a − 1)/(1 − b), and by

vmax =




ax if x ∈ (0, F1]

a + b

2
x + 2(n+ 1)− a − (2n+ 1)b

2(n+ 1)2
if x ∈ [F1,G1]

1 − a + ax + (a − 1)
√

1 − x if x ∈ [G1, V1]

bx + (1 − b) if x ∈ [V1, 1)

if n ≥ (a − 1)/(1 − b). (Subscript “1” refers to the x-coordinate of a point.)
Next, we determine the minimum of the function Rn(x) over the interval (0, 1) by

computing the minimal value of Rn over each subinterval. Next, we check that the min-
imum occurs at the point x∗, with minimal value given by the formula of Theorem 1.
The minimum occurs when (x, v) belongs to area I and

vmax = a + b

2
x + 2(n+ 1)− a − (2n+ 1)b

2(n+ 1)2
.

This brings the argument to its conclusion.
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4. Numerical tests

Based on the optimal formula provided by Theorem 1, we implemented the adaptive
algorithm DYN, which computes the optimal location of n points from left to right or

1
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0 2 4 6 8 10 12 14 16 18 20
n
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2 4 6 8 10 12 14 16 18 20
n

(b)

1

1.02
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1.06

1.08
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n
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1
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n

(d)

1

1.05
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1.25
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n

(e)

1

1.05

1.1
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1.2

1.25

1.3

2 4 6 8 10 12 14 16 18 20
n

(f)

Fig. 6. Ratio SONN over DYN of average errors for (a) smooth concave increasing, (b) smooth concave, (c)
PL concave increasing, (d) PL concave, (e) PS concave increasing and (f) PS concave functions
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right to left. The choice of the direction is determined by a heuristic procedure based
on a priori information. The performance of DYN is compared with that of SONN, the
optimal passive algorithm proposed by Sonnevend [9]. The computational complexity
of both algorithms is O(n) function and derivative evaluations.

The performance of DYN and SONN was tested on sets of randomly generated con-
cave functions. Three functional forms were considered: smooth, piecewise linear (PL)
and piecewise smooth (PS). For each form, two samples were produced: one consisting
of concave increasing functions and the other of general concave functions.

For each sample, the average error was computed for values of n ranging from 1
to 20. This is consistent with the range considered in the bicriteria traffic equilibrium
problem discussed in the introduction. The results from both algorithms, which were
compared by taking the ratio of the average error of SONN over the average error of
DYN, are illustrated in Figures 6(a)-6(f).

• On average, DYN performed much better that SONN on all six samples. Gains in
accuracy were largest for piecewise smooth functions and least for smooth functions,
with gains for piecewise linear functions falling in between.

• For nearly all functions tested, DYN performed at least as well as SONN. In the case
were DYN’s performance is worse, the difference in accuracy is at most 2%.

• On some specific functions, the gain in accuracy achieved by DYN is as high as
400%. Large gains were observed on functions exhibiting strong curvature near the
endpoints.
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