
Learning to Solve QBF

Horst Samulowitz and Roland Memisevic
Department of Computer Science

University of Toronto
Toronto, Canada

[horst|roland]@cs.toronto.edu

Abstract

We present a novel approach to solving Quantified Boolean
Formulas (QBF) that combines a search-based QBF solver
with machine learning techniques. We show how classifica-
tion methods can be used to predict run-times and to choose
optimal heuristics both within a portfolio-based, and within a
dynamic, online approach. In the dynamic method variables
are set to a truth value according to a scheme that tries to
maximize the probability of successfully solving the remain-
ing sub-problem efficiently. Since each variable assignment
can drastically change the problem-structure, new heuristics
are chosen dynamically, and a classifier is used online to pre-
dict the usefulness of each heuristic. Experimental results on
a large corpus of example problems show the usefulness of
our approach in terms of run-time as well as the ability to
solve previously unsolved problem instances.

Introduction
Quantified boolean formulas (QBF) are a powerful gener-
alization of the satisfiability problem (SAT) in which the
variables are also allowed to be universally as well as ex-
istentially quantified. The ability to nest universal and exis-
tential quantification in arbitrary ways makes QBF consider-
ably more expressive than SAT. While any NP problem can
be encoded in SAT, QBF allows us to encode any PSPACE
problem: QBF is PSPACE-complete.

This expressiveness opens a much wider range of po-
tential application areas for a QBF solver, including ar-
eas like automated planning (particularly conditional plan-
ning), non-monotonic reasoning, electronic design automa-
tion, scheduling, model checking and verification. The dif-
ficulty, however, is that QBF is in practice a much harder
problem to solve than SAT. (It is also much harder theo-
retically, assuming that PSPACE 6= NP). One indication of
this practical difficulty is the fact that current QBF solvers
are typically limited to problems that are about 1-2 orders
of magnitude smaller than the instances solvable by current
SAT solvers (1000’s of variables rather than 100,000’s).

Nevertheless, this limitation in the size of the instances
solvable by current QBF solvers is somewhat misleading. In
particular, many problems have a much more compact en-
coding in QBF than in SAT. For example, (Ali et al. 2005)

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

give an innovative application of QBF to hardware debug-
ging, showing that the QBF encoding of the problem is many
times smaller than an equivalent SAT encoding. Results like
this demonstrate the potential of QBF and the importance of
continuing to improve QBF solvers.

In this paper we develop a framework to solving QBF that
combines a search-based QBF solver with machine learning
techniques. We use statistical classification to predict opti-
mal heuristics within a portfolio-, as well as in a dynamic,
online-setting. Our experimental results show that it is pos-
sible to obtain significant gains in efficiency over existing
solvers in both settings.

While a few preliminary approaches exist that apply ma-
chine learning methods to solve SAT, no such approaches
have been reported yet for QBF. For SAT, (Nudelman et
al. 2004) describe a methodology that starts with a fixed
set of pre-chosen solvers and uses learning to determine
which solvers to use for given problem instances. Similarly,
(Hutter et al. 2006) describe an approach to choosing opti-
mal solvers along with optimal parameter settings for a set
of problem instances, by trying to predict their run-times.
Common to these and similar approaches is, that they make
use of a fixed, pre-determined set of solvers. Learning meth-
ods are used to make an optimal assignment ahead of time,
as a pre-processing step.

The main motivation behind such portfolio-based ap-
proaches is that they can make use of already developed and
already highly optimized machinery, since they merely need
to solve a simple assignment problem. A potential disad-
vantage is that they give up on the opportunity to obtain en-
tirely novel methods that show a qualitatively different be-
havior than previous methods. Our dynamic approach there-
fore make use of a portfolio-based scheme only on the level
of sub-components and uses classification to choose online
among a set of heuristics to solve sub-instances.

Among existing work on using learning to solve SAT
the method that comes closest to our approach is probably
(Lagoudakis & Littman 2001). The approach uses reinforce-
ment learning to dynamically adjust the branching behavior
of a solver, but does not make use of the properties of sub-
instances that need to be solved in each step, and it failed to
show an improvement over non-learning based approaches.
In this paper, in contrast we use discriminative learning in
order to dynamically predict optimal branching heuristics

from the (sub-)instances a solver encounters at each step.

Background

A quantified boolean formula has the form ~Q.F , where F

is a propositional formula expressed in CNF and ~Q is a se-
quence of quantified variables (∀x or ∃x). We require that
no variable appear twice in ~Q and that all variables in F

appear in ~Q (i.e., F contains no free variables).
For example, ∃e1e2.∀u1u2.∃e3e4.(e1,¬e2, u2, e4) ∧

(¬u1,¬e3) is a QBF with ~Q = ∃e1e2.∀u1u2.∃e3e4 and
F = (e1,¬e2, u2, e4) ∧ (¬u1,¬e3). The quantifier blocks
in order are ∃e1e2, ∀u1u2, and ∃e3e4, the ui variables are
universal while the ei variables are existential, and e1 ≤q

e2 <q u1 ≤q u2 <q e3 ≤q e4. A QBF solver has to respect
the quantifier ordering when branching on variables.

QBF solvers are interested in answering the question of
whether or not ~Q.F expresses a true or false assertion, i.e.,
whether or not ~Q.F is true or false. The reduction of a
CNF formula F by a literal ` is the new CNF F |` which
is F with all clauses containing ` removed and ¬`, the
negation of `, removed from all remaining clauses. For
example, let ~Q.F =

(
∀xz.∃y.(ȳ, x, z) ∧ (x̄, y)

)
. Then,

~Q.F |x = ∀z.∃y(ȳ, z). The semantics of a QBF can be de-
fined recursively in the following way:

1. If F is the empty set of clauses then ~Q.F is true.

2. If F contains an empty clause then ~Q.F is false.

3. ∀v ~Q.F is true iff both ~Q.F |v and ~Q.F |¬v are true.

4. ∃v ~Q.F is true iff at least one of ~Q.F |v and ~Q.F |¬v is
true.

Dynamic Prediction
In this section we present our approach to integrate machine
learning techniques within a search-based QBF solver. First,
we briefly explain how a search-based solver works in gen-
eral. Second, we point out the main idea behind our ap-
proach and how it differs from the standard way of solving
QBF.

Search-Based QBF Solver

Search-based QBF solvers are based on a modification of
the Davis-Putnam-Longman algorithm (DPLL, (Davis, Lo-
gemann, & Loveland 1962)). DPLL works on the principle
of assigning variables, simplifying the formula to account
for that assignment and then recursively solving the simpli-
fied formula. The main difference to the original algorithm
used to solve SAT is the fact that with QBF it is not only nec-
essary to backtrack from a conflict but also from a solution
in order to verify both settings of each universally quantified
variable. A recursive version of this algorithm can be stated
as follows (ignoring Lines 4 to 5).

bool Learn-QBF(~Q.F)1
if F contains an [empty clause/is empty] then2

return([FALSE/TRUE])3

[Compute features of F]4
[Predict best heuristic h among h1, ..., hn]5
Select variable v according to heuristic function h6

~Q.F ′ = ~Q.F |lv7

bool bValue = Learn-QBF(~Q.F ′)8
if bValue==false and v is universal then9

return false10

else if bValue==true and v is existential then11
return true12

~Q.F ′ = ~Q.F |¬lv13

return Learn-QBF(~Q.F ′)14

The algorithm simply reflects the earlier stated semantic
definition of QBF. Modern backtracking QBF solvers em-
ploy conflict as well as solution learning to achieve a bet-
ter performance (e.g., (Zhang & Malik 2002), (Letz 2002)).
Furthermore, several degrees of reasoning at each search
node have been proposed. In addition to the standard closure
under unit propagation, stronger inference rules like hyper-
binary resolution were introduced (Samulowitz & Bacchus
2006). Consequently, at each node the theory is not sim-
ply reduced by a single literal only, but further reasoning is
applied.

This iterative application of reduction steps is likely to
change the structural properties of the initial theory in an
essential way. And since it is a well-known fact that the
performance of a heuristic varies essentially across different
instances it is one of our purposes in this work to show that
the performance of a heuristic can also change dynamically
as we descend into the search tree.

Our change to the recursive algorithm is depicted in the
scheme shown above (Lines 4 to 5). Before selecting a
new variable we compute the properties of the current the-
ory, which has been dynamically generated. Then, we use a
previously trained classifier to determine which heuristic is
suited best for this theory.

In the following subsections we describe the different
heuristics we designed and how we capture the properties
of a theory.

Heuristics
In order to achieve a wide variety of solver characteristics we
developed 10 different heuristics. All heuristics are crafted
so that each of them tries to be orthogonal to the others. The
next branching literal was mainly selected based on one or
a combination of the VSIDS score and cube score, the num-
ber of implied unit propagations and satisfied clauses. While
the VSIDS score (Moskewicz et al. 2001) is mainly based
on recent conflicts occurred during the search, the cube score
(Zhang & Malik 2002) is based on the recently encountered
solutions. Stated differently, branching according to VSIDS
tries to discover another conflict space while the cube score
guides the search towards the solution space. The other two
measures behave in a similar dual fashion. For instance,
picking a literal with a high number of implied literals is

likely to reduce and constrain the remaining theory maxi-
mally. In contrast, a literal that satisfies the highest number
of clauses reduces the theory as well, but it does not neces-
sarily reduce the length of the remaining clauses in an es-
sential way. We also use the inverse of these measures in
several heuristics.

We also employ other measures like the weighted sum
between the number of literals forced by a literal and its
corresponding VSIDS score in order to provoke a conflict
even more drastically. In addition, there exist several other
parameters (e.g., detect pure literals), but space restrictions
prevent us from going into great detail about all the differ-
ent heuristics. However, it is worth mentioning that we also
use a heuristic that simply employs a static variable ordering
which performs surprisingly well on a subset of benchmarks
(see heuristic H10). In SAT it is provable that an inflexible
variable ordering can cause an exponential explosion in the
size of the backtracking search tree. However, the given dis-
played results might indicate that the behaviour of a static
variable ordering is more complex in the QBF setting. One
reason for this could be the employed solution learning with
QBF which could potentially benefit from a static variable
ordering.

Feature Choice
In this section we point out the basic measures and give an
intuition on how we generated other features from these.
Again, the limited amount of space precludes a detailed list-
ing and description of all features we used in our approach.

In total, we selected 78 features to capture the structure
contained within an instance. All features are mainly based
on the following basic properties of a QBF instance:
• # Variables (# Existentials, # Universals)
• # Clauses (# binary, # ternary, # k-ary)
• # Quantifier Alternations
• # Literal Appearances (# in binary, # in ternary, # in k-ary)
Based on these fundamental attributes we additionally com-
pute several ratios between combinations of these attributes,
like the clause/variable ratio. Again, we also compute this
ratio in the context of binary, ternary, and n-ary clauses.

While we compute many features that are also applica-
ble with SAT (see e.g., (Nudelman et al. 2004)) we also
take into account properties that are specific to QBF. For in-
stance, based on the the number of binary clauses that con-
tain existentially quantified variables we compute the ratio
of existentials and binary clauses further weighted by the
number of universals. This weighted ratio tries to capture
the degree of constrainedness of an instance: The lower the
ratio the more constrained are the existentials.

While this ratio focuses on the two different quantification
types, we also took the number of quantifier alternations into
account. For instance, we weighted the number of literal
appearances by the number of the corresponding quantifier
block. This is motivated by the fact that variables from inner
quantifier blocks are often less constrained than variables
from outer quantifier blocks.

Classification
In the following we describe the approach that we use for
predicting optimal heuristics for problem (sub-)instances. A

key requirement for the predictor is run-time efficiency, be-
cause it can potentially get applied very often when solving
a given problem instance. Furthermore, it is important to ob-
tain well-calibrated outputs that reflect the confidences in the
classification decisions over all possible heuristics. If cali-
brated correctly, these confidences allow us to determine at
run-time, when it is worth switching the heuristic, and when
not.

A simple classifier that satisfies both these requirements is
multinomial logistic regression (see e.g., (Hastie, Tibshirani,
& Friedman 2001)): We maximize the probability p(h|x) of
predicting the correct heuristic h from an instance x based
on a set of training cases. Here, x denotes the feature-
representation of an instance. Using a linear response func-
tion, the probability can be defined as

p(h|x) =
exp(wT

h x)∑
h′ exp(wT

h′x)
. (1)

For training, we can maximize the regularized (log-) prob-
ability of training data:∑

i

log p(hi|xi) + λ‖w‖2 (2)

wrt. the parameters w := (wh)h=1,...,n. Any gradient based
optimization method can be used for this purpose. Since the
objective is convex, there are no local minima. At test-time,
classification decisions can be made by finding the maxi-
mum of Eq. 1, or equivalently of wT

h x, wrt. the heuristic
h.

To obtain the training set we applied each heuristic as
the top-level decision on a set of benchmark datasets and
recorded the run times resulting from using each heuris-
tic. We defined as the winning heuristic for each problem
instance the one whose overall runtime is smallest. This
dataset is certainly suboptimal because of its limited size,
and to obtain even better performance additional training
data could be gathered from the running system by collect-
ing sub-instances. However, we obtained very good results
already using this limited dataset, which shows that there is a
sufficient degree of ’self-similarity’ present in the problem-
instances: The features of top-level problem instances have
properties that are comparable to those of sub-instances and
are good enough for generalization.

Experimental Evaluation
To evaluate the empirical effect of our new approach we
considered all of the non-random benchmark instances from
QBFLib 2005 and 2006 (Narizzano, Pulina, & Tacchella
2006) (723 instances in total). In order to increase the num-
ber of non-random instances we applied a version of static
partitioning on all instances. A QBF can be divided in to
disjoint sub-formulas as long as each of these sub-formulas
do not share any existentially quantified variables (see, e.g.,
(Samulowitz & Bacchus 2007)). This way we obtained a
total of 1647 problem instances. However, among these in-
stances there existed several duplicates (instances that fall
into symmetric sub-theories) and instances that were solved
by all approaches in 0 seconds. We discarded all of these
cases and ended up with 897 instances across 27 different

benchmark families. To obtain a larger dataset for training
we used 800 additional random instances, that were not used
for testing. On all test runs the CPU time limit was set to
5, 000 seconds. All runs were performed on 2.4GHz Pen-
tiums with 4GB of memory (SHARCNET 2007).

Variable Elimination vs. Search
To see whether QBF can gain from statistical approaches
similarly as previously SAT, we first experimented with a
pure portfolio-approach, where the goal is to predict which
method from a set of pre-defined methods is the one best for
a given instance.

-3 -2 -1 0 1 2 3

1. principal component

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

2
.

p
ri

n
c
ip

a
l
c
o
m

p
o
n
e
n
t

Figure 1: Low dimensional projection of problem instances
that could be solved either by variable elimination (circles)
or the search-based method (diamonds).

It is often easy to construct specialized methods that are
very good at solving a very small set of problems, but it is
much more difficult to develop a method that shows consis-
tently good performance across a large set of problems. The
advantage of using learning based approaches is that they
allow us to combine highly specialized methods, since they
can predict the right method for each (sub-)instance.

To illustrate that the features of instances can capture this
orthogonality, we visualize a subset of the above mentioned
data using principal components analysis (Hastie, Tibshi-
rani, & Friedman 2001). Figure 1 shows instances that could
be solved by exactly one of two solvers (but not by both si-
multaneously), using different symbols to indicate which of
the two solvers was able to solve each instance. The two
solvers are based on (i) variable elimination (Biere 2004)
and (ii) search as described earlier.

The plot shows that there is a quite clear separation of
these instances already in two dimensions, and suggests
that a linear classifier using all available features should in-
deed yield good performances in practice. As described
above, we used logistic regression to predict which of the
two methods to use in each case. We estimated λ using
cross-validation on the training set. All reported final per-
formances were computed on an independent test set. Each
of the two methods has a time-out of 5000 seconds, after

Table 1: Performances: Variable elimination vs. search.

PROBLEMS
SOLVED

TIME
SPENT (IN
SEC)

ONLY VARIABLE ELIMINATION 595 7918.58
ONLY SEARCH-BASED 423 31116.24
AUTOMATIC PREDICTION 666 27923.81

which we declare it as unable to solve the instance within a
reasonable amount of time.

Table 1 displays the results on the test set and shows that
choosing the best heuristic based on the data on an item-by-
item basis yields much better performance than each of the
two methods alone. In fact, the automatic prediction com-
pared to variable elimination achieves a 12% improvement
while the performance of the search based solver can be im-
proved by more than 50%.

These results further underline the orthogonality of these
two approaches. The two distinct characteristics were ex-
ploited also by the winning QBF solver of the 2006 QBF-
competition (Narizzano, Pulina, & Taccchella 2006). The
winning search-based solver used Quantor (a solver based
on variable elimination (Biere 2004)) as a time-limited pre-
processor. Here we are able to uncover this difference and
use learning to exploit it in an automated fashion.

Predicting Heuristics
In this section we take the top-scoring search-based solver
2clsQ (Samulowitz & Bacchus 2006) from the QBF com-
petition (Narizzano, Pulina, & Taccchella 2006). We add
9 new heuristics to the original heuristic. Furthermore, we
add the functionality to compute features on the fly for the
current theory, and enable the solver to compute the linear
classification decision in order to determine the most suit-
able heuristic for this theory.

We tested all heuristics on all instances and recorded their
CPU times. This data was used in part to train the classifier
off-line. Therefore, the data was split into a training set (628
instances, including random instances) and test set (576 in-
stances across 20 benchmark families). All parameters were
set on the training set (using cross-validation for λ).

We show a summary of the results for each heuristic
(H1,..,H10) on each benchmark family in Table 2 contained
in the test set. The heuristic H1 is the original heuristic
employed in 2clsQ and consequently the perfomance dis-
played under H1 is a reference to the state of the art. In
addition, we show the performance of the portfolio version
in this context. Finally, we also include the results of the
solver that dynamically alters its heuristic. In the table we
show in the first row the CPU time in seconds required on
solved instances. As shown, all versions of the search-based
solvers are roughly comparable in terms of CPU time over
their solvable instances. We consider instances to be solv-
able, if they were solved by at least one approach. In the
second row we display the average percentage of solvable
instances among all solved instances per benchmark fam-
ily and approach. On this measure all approaches using a
fixed heuristic for all instances vary between 70% and 83%.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 PF DYN

CPU(S) 26,178 29,255 22,757 14,781 26,732 26,722 31,136 25,570 28,079 18,485 23,816 30,530
% SOL 81% 74% 81% 81% 70% 77% 83% 79% 80% 79% 90% 93%

Table 2: Summary of the results achieved by the 10 different heuristics, the portfolio solver (PF), and the dynamic version (DYN) on
instances across 20 benchmark families contained in the test set. For each approach the total CPU time required for the solved instances
amongst all benchmark families is shown. For each approach the average percentage of solved instances amongst all solved instances per
family is shown in the last row.

This variability in performance reflects the degree of vari-
ance induced by changes in heuristic only. The table also
shows that the portfolio approach – choosing a heuristic on
a per-instance basis – is able to significantly outperform any
approach employing a fixed heuristic. More importantly, the
strategy to dynamically adjust the heuristic performs best
among all approaches. In fact, it is able to outperform the
best fixed heuristic by 10% on average. Furthermore, it is
able to perform better than choosing the best heuristic on a
per-instance basis.

In Table 3 and 4 we display more detailed results. Again
we show the percentage of solved instances among all in-
stances solved by any approach per benchmark family and
approach as well as the CPU times for each approach and
benchmark family. Also on these more detailed results the
dynamic approach displays a robust performance (e.g., be-
ing the best method on 5 benchmark families). Table 3 also
shows that our approach of dynamically adjusting the heuris-
tic choice is able to solve instances not solvable by any other
approach (see e.g., the K benchmark). Furthermore, Table 4
also shows that the overhead introduced by the dynamic fea-
ture extraction and classification is negligible.

In total, our empirical results show that the portfolio ap-
proach as well as dynamically adjusting the variable branch-
ing heuristics can be a very effective tool for solving QBF.

Conclusions and Future Work
We believe that machine learning can be helpful to a much
larger degree when solving hard search-based problems than
it is already shown here. With QBF there exist many ad-
ditional choices besides heuristics (e.g., whether to apply
stronger inference/partitioning or not) that, if selected au-
tomatically, could drastically improve the performance of a
QBF solver. Since the problem of predicting multiple labels
simultaneously can entail a combinatorial explosion, recent
work on structure prediction (see e.g., (Memisevic 2006) for
an overview) could be useful for this purpose.

Further directions for future work include optimal fea-
ture selection, and the use of non-linear prediction models.
The hardest challenge for the latter will be run-time effi-
ciency, which might rule out kernel-based, and other non-
parametric, methods.

References
Ali, M.; Safarpour, S.; Veneris, A.; Abadir, M.; and Drech-
sler, R. 2005. Post-verification debugging of hierarchical
designs. In International Conf. on Computer Aided Design
(ICCAD), 871–876.
Biere, A. 2004. Resolve and expand. In Seventh Interna-

tional Conference on Theory and Applications of Satisfia-
bility Testing (SAT), 238–246.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem-proving. Communications
of the ACM 4:394–397.
Hastie, T.; Tibshirani, R.; and Friedman, J. 2001. The
Elements of Statistical Learning. Springer.
Hutter, F.; Hamadi, Y.; Hoos, H. H.; and Leyton-Brown, K.
2006. Performance prediction and automated tuning of ran-
domized and parametric algorithms. In 12th International
Conference on Constraint Programming, CP 06.
Lagoudakis, M., and Littman, M. 2001. Learning to se-
lect branching rules in the dpll procedure for satisfiability.
In Workshop on Theory and Applications of Satisfiability
Testing (SAT 01).
Letz, R. 2002. Lemma and Model Caching in Decision
Procedures for Quantified Boolean Formulas. In Proceed-
ings of Tableaux 2002, LNAI 2381, 160–175. Springer.
Memisevic, R. 2006. An introduction to structured
discriminative learning. Technical report, University of
Toronto, Toronto, Canada.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.
In Proc. of the Design Automation Conference (DAC).
Narizzano, M.; Pulina, L.; and Taccchella, A. 2006.
QBF solvers competitive evaluation (QBFEVAL).
http://www.qbflib.org/qbfeval.
Narizzano, M.; Pulina, L.; and Tacchella, A. 2006. The
third QBF solvers comparative evaluation. Journal on Sat-
isfiability, Boolean Modeling and Computation 2:145–164.
Nudelman, E.; Leyton-Brown, K.; Devkar, A.; Shoham,
Y.; and Hoos, H. 2004. Satzilla: An algorithm portfolio for
sat. In Seventh International Conference on Theory and
Applications of Satisfiability Testing, 13–14.
Samulowitz, H., and Bacchus, F. 2006. Binary clause rea-
soning in qbf. In Ninth International Conference on Theory
and Applications of Satisfiability Testing (SAT 06).
Samulowitz, H., and Bacchus, F. 2007. Dynamically parti-
tioning for solving qbf. In Tenth International Conference
on Theory and Applications of Satisfiability Testing (SAT).
SHARCNET. 2007. Shared hierarchical academic research
computing network. http://www.sharcnet.ca.
Zhang, L., and Malik, S. 2002. Towards symmetric treat-
ment of conflicts and satisfaction in quantified boolean sat-
isfiability solver. In Principles and Practice of Constraint
Programming (CP2002), 185–199.

BENCHMARK FAMILY H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 PORTFOLIO DYNAMIC

ADDER 83 33 83 78 33 83 77 56 50 100 94 67
BLOCKS 75 100 75 75 50 100 100 75 75 75 100 100

C 89 89 100 89 33 100 100 100 100 100 100 89
TOILET 67 67 83 33 67 33 66 100 67 67 83 83
ADDER 88 88 88 80 88 88 92 84 96 88 100 88

COUNTER 75 75 75 75 75 75 75 100 75 75 75 100
EIJK 100 100 100 100 100 100 100 100 100 100 100 100
EV 57 57 57 71 57 57 84 57 100 57 71 100

IRST 100 100 100 100 100 100 100 100 100 100 100 100
K 95 95 95 90 95 90 95 90 90 86 95 100

KEN 100 100 100 100 100 50 100 100 100 50 100 100
LUT 67 67 67 67 67 67 66 67 100 33 67 67

MUTEX 25 25 25 25 25 25 25 25 25 100 75 75
NUSMV 100 100 100 100 100 100 100 100 80 100 100 100

QSHIFTER 57 60 57 57 60 60 60 100 100 100 100 100
S 100 100 100 100 100 100 100 80 100 100 100 100

SORT 94 96 100 92 94 96 94 96 94 94 98 94
SZYMANSKI 100 0 100 100 0 100 100 0 0 13 100 100

TEXAS 50 25 50 100 50 50 50 50 50 50 50 100
TOILET 100 100 71 88 100 65 94 94 100 100 94 88

SUMMARY 81 74 81 81 70 77 83 79 80 79 90 93

Table 3: Success rates achieved by the 10 different heuristics, the portfolio solver, and the dynamic version on instances across 20 benchmark
families contained in the test set. For each benchmark and approach the percentage of solved instances among all solved instances per family
is shown. For each family the solver with highest success rate is shown in bold, where ties are broken by time required to solve these instances.
The summary line shows the average success rate over all benchmark families.

BENCH H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 PF DYN

ADDER 2754 513 4041 387 246 5012 669 7366 6844 2412 2090 1121
BLOCKS 1 3077 3 0 1 161 2002 1 1 4 3077 4413

C 0 0 1 0 0 1 1 1 1 1 1 1
TOILET 450 424 55 116 579 206 749 832 1344 1972 1973 4159
ADDER 6234 8835 2790 938 9767 788 5332 2187 5652 2355 5332 4478

COUNTER 10 10 0 227 10 9 38 903 16 10 16 732
EIJK 255 244 1621 386 191 1782 89 20 4 5 89 255
EV 68 104 35 4423 183 66 3859 24 22 149 96 39

IRST 4 4 2 8 4 2 1 1 1 1 1 1
K 7207 5794 6664 5709 5872 5409 9270 9274 10567 4306 5042 11410

KEN 0 0 0 0 0 0 0 0 0 0 0 0
LUT 0 0 207 4 0 302 3 4 89 0 0 0

MUTEX 0 0 0 0 0 0 0 0 0 1 0 0
NUSMV 22 21 1149 21 21 936 1678 606 342 175 749 938

QSHIFTER 13 2785 13 13 2763 3430 2602 48 41 19 20 23
S 0 0 0 0 0 0 0 0 0 0 0 0

SORT 2216 2640 3252 58 26 4809 2620 3589 1225 57 3250 31
SZYMANSKI 1805 0 1944 1122 0 1133 1103 0 0 4492 1133 1900

TEXAS 0 0 0 0 0 0 0 0 0 0 0 0
TOILET 4090 3847 1 438 6014 1630 3 3 923 1768 15 16

SUMMARY 26178 29255 22757 14781 26732 26722 31136 25570 28079 18485 23816 30530

Table 4: CPU times achieved by the 10 different heuristics, the portfolio solver (PF), and the dynamic version (DYN) on instances across
20 benchmark families contained in the test set. For each benchmark and approach the CPU times used on solved instances is shown. The
summary line shows the total CPU time over all benchmark families.

