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Abstract

To allow the hidden units of a restricted Boltzmann machine to model the
transformation between two successive images, Memisevic and Hinton (2007)
introduced three-way multiplicative interactions that use the intensity of a
pixel in the first image as a multiplicative gain on a learned, symmetric weight
between a pixel in the second image and a hidden unit. This creates cubicly
many parameters which form a three-dimensional interaction tensor. We de-
scribe a low-rank approximation to this interaction tensor that uses a sum of
“factors” each of which is a three-way outer-product. This approximation al-
lows efficient learning of transformations between larger image patches. Since
each factor can be viewed as an image filter, the model as a whole learns op-
timal filter pairs for efficiently representing transformations. We demonstrate
the learning of optimal filter pairs from various synthetic and real image se-
quences. We also show how learning about image transformations allows the
model to perform a simple visual analogy task. Finally, we show how a com-
pletely unsupervised network trained on transformations perceives multiple
motions of transparent dot patterns in the same way as humans.
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1 Introduction

A restricted Boltzmann machine (RBM) is a simple learning module in which a layer of “visible”
units that represent the observed data is connected to a layer of “hidden” units that learn to extract
features from the data. To simplify the inference and learning procedures, there are no connections
within a layer. RBM’s have three important computational properties: (1) Given an observed data
vector on the visible units, it is easy to infer the states of the hidden units because the lack of
connections between hidden units makes them conditionally independent, given the states of the
visible units. (2) It is easy to produce a “reconstruction” of the data from the hidden states because
the lack of connections between visible units makes them conditionally independent, given the states
of the hidden units. (3) There is a simple and efficient learning procedure for updating the weights
on the connections. Each weight update is proportional to the difference between the correlation of a
visible and a hidden unit when the hidden units are driven by data and by reconstructions (Hinton,
2002).

These three properties are all preserved when the hidden and visible units receive additional,
conditioning inputs from previous states of the visible units (Taylor, Hinton and Roweis, 2007). The
conditioning inputs have the effect of dynamically changing the biases of the units, and the weights
on these inputs can be learned by using the derivatives for the biases, provided that the previous
states of the visible units are not changed when the data is reconstructed.

A much more powerful way of conditioning on previous visible states is to allow them to have
multiplicative effects on the weights of the RBM rather than additive effects on the biases. Boltzmann
machines that contain multiplicative interactions between more than two units are known, in general,
as higher-order Boltzmann machines (Bell and Sejnowski, 1997). Memisevic and Hinton (2007) show
how conditioning an RBM using multiplicative interactions between hidden, visible and conditioning
variables leads to a type of higher order Boltzmann machine that retains the computational benefits
of RBM’s, like being amenable to contrastive divergence training and allowing for efficient inference
schemes that use alternating Gibbs sampling.

Unfortunately, the model suffers from an explosion in the number of parameters, which scales
as the product of conditioning, hidden and visible variables. In particular, when modeling image
transformations the number variables in each of these three groups of units is approximately equal
to the number of pixels in an image, which restricts the applicability to small image patches. As a
partial solution to this problem (Memisevic and Hinton, 2007) suggest adding a preprocessing layer
to the model that can reduce the dimensionality of the input image. However, they note that an
extra layer on the output image would not be so easy to accommodate, as it is not compatible with
conditional contrastive divergence learning.

One could perform dimensionality reduction on both images in a separate preprocessing step.
Unfortunately, this decouples feature extraction from learning, yielding features that are not optimized
to represent transformations, but only the (separate) static structure in input and output images. In
particular, in the absence of any structure within the images (for example, when observing transformed
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random images) such a feature extraction scheme would be useless, as there would be no static
structure to learn from the images – the fact that there can be regularities in the way the images
transform would be entirely ignored by a separately trained feature extraction module.

In this paper we describe a factorization of the interaction tensor in a higher order RBM that
reduces the number of parameters while retaining the model’s ability to learn complicated transfor-
mations from real world images. Our factorization leads to a “filter-matching” interpretation of the
three-way model, in which transformations are modelled with pairs of filters. Feature extraction is an
integral part of training the three-way interaction model. As a result, training on transformed images
yields pairs of linear filters that are optimized to represent the observed class of transformations. The
model discovers Fourier components as the optimal filters for global shifts, for example, or a log-polar
variant of the Fourier transform for representing global rotations. We demonstrate the extraction of
these and other features using both synthetic and real image sequences. We also show experimentally
how the factorization can improve training efficiency, and we demonstrate the use on larger image
patches.

The task of learning about image transformations is closely related to the problem of dealing with
visual invariances. In fact, knowledge about allowable transformations can be used to build systems
that ignore these transformations and thus perform invariant recognition (for example, Simard et al.,
1992). When transformations are not known a-priori, not stationary, or difficult to model, we can
still perform invariant recognition using a system that can learn about allowable transformations
from training examples, as suggested, for example, by Olshausen et al. (2007), Miao and Rao (2007),
Memisevic and Hinton (2007). An early approach to learning image transformations in a biologically
plausible way, using temporal coherence, is described in Foldiak (1991). More recently, several multi-
linear and spatio-temporal filtering models were suggested for this task (for example, Tenenbaum and
Freeman, 2000; Olshausen et al., 2007; Olshausen, 1994; Grimes and Rao, 2005; Rao and Ballard,
1997; van Hateren and Ruderman, 1998; Vasilescu and Terzopoulos, 2002). The idea behind these
approaches is to use multiple independent groups of hidden variables in order to model the multiple
independent latent factors that contribute to the variability in the data. Bi-linear models contain
exactly two groups of hidden variables: A “what”-component accounts for the images and a “where”-
component for the transformations (Olshausen et al., 2007).

Unfortunately, the presence of two or more groups of hidden variables leads to a “chicken-and-
egg” problem that can make learning and inference difficult (Tenenbaum and Freeman, 2000). Miao
and Rao (2007), Olshausen et al. (2007), and Memisevic and Hinton (2007) overcome this issue by
conditioning transformed images on un-transformed ones, rather than trying to simultaneously model
both the images and the transformations1. As a result, the models contain only a single group of
hidden variables, and these are responsible only for encoding transformations. Operating on raw
pixels rather than features, however, leads to the issues discussed above.

In this paper, we show how factorization allows us to define a conditional model with a single
group of hidden variables, that nevertheless makes it possible to extract features from the images,
and thus to model “what” components in addition to “where” components. The “what” components,
however, are tied to the observed transformations. In particular, when the images are random, they
turn into filters that represent only the transformations. As we shall show, the reason that there is
no “chicken-and-egg problem” is that the factors, which take on the role of the feature extractors,
behave like deterministic functions rather than stochastic hidden variables. Inference and learning
are therefore basically the same as in an unfactored model.

We demonstrate the use of the factorized model in various tasks, including an analogy making
problem and the task of representing optical flow in the presence of transparency.

1More specifically, Olshausen et al. (2007) discuss both a conditional and a bi-linear model. The conditional model
is referred as “remapping model” in their paper.
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2 Unfactored higher-order restricted Boltzmann machines

One way to learn about image transformations from pairs of images x and y, is by modelling the
conditional distribution p(y|x) =

∑

h p(y,h|x), of the transformed output image y given the original
input image x, where h is a vector of hidden variables. We restrict our attention to binary images
and hidden variables for now, that can take on the values 0 or 1. However, this restriction can easily
be removed easily as we discuss later.

The idea behind this approach to modelling image transformations is that by training on a set
of image pairs (xα,yα) the hidden variables can learn from data how to efficiently encode transfor-
mations. In contrast to the well-known task of learning static structure from independent images
(for example, Olshausen and Field, 1996; Bell and Sejnowski, 1997), the goal here is to learn about
structure in how images change over time (Memisevic and Hinton, 2007). As in the case of still
images, transformations of images in, say, natural video, can be highly structured and regular, which
suggests that hidden variables can be used to discover and represent these transformations efficiently.

To be able to capture all possible correlations between input, output and hidden variables, Memi-
sevic and Hinton (2007) suggest using the following three-way energy function in order to define the
conditional distribution:

−E(y,h;x) =
∑

ijk

wijkxiyjhk +
∑

k

wh
khk +

∑

j

w
y
j yj, (1)

where i, j and k index input, output and hidden units, respectively, xi is the binary state of input pixel
i, yj the binary state of output pixel j and hk the binary state of hidden unit k. The components wijk

of a three-way interaction tensor connect units xi, yj and hk. The terms
∑

k wh
khk and

∑

j w
y
j yj are

bias terms used to model the “base rates” of activity of the hidden and observable units, respectively.
In general, a higher order Boltzmann machine can also contain higher order bias terms (Memisevic
and Hinton, 2007), but we do not use these in this paper. Since hidden units encode mappings from
x to y, we refer to them also as “mapping units”. We use “hidden units” and “mapping units”
interchangeably in the following.

The energy function is turned into a probability distribution by exponentiating and normalizing:

p(y,h|x) =
1

Z(x)
exp (−E(y,h;x)) , (2)

Z(x) =
∑

h,y

exp (−E(y,h;x)) (3)

Note that normalization is over y and h, thus defining the conditional distribution p(y,h|x) rather
than the joint p(y,h,x), which simplifies inference and learning (Memisevic and Hinton, 2007).

Note that the energy function contains multiplicative interactions between triplets of units xi,
yj and hk, but not between any pairs of output units or pairs of hidden units. As a result, the
conditionals p(y|h;x) p(h|y;x) factorize, which, as in RBMs, greatly simplifies both learning and
inference, since it facilitates efficient Gibbs sampling. More specifically, we have:

p(y|h;x) =
∏

j

p(yj |h;x) (4)

with p(yj = 1|h;x) =
1

1 + exp(−
∑

i,k wijkxihk − w
y
j )

(5)

and

p(h|y;x) =
∏

k

p(hk|y;x) (6)

with p(hk = 1|y;x) =
1

1 + exp(−
∑

i,j wijkxiyj − wh
k )

. (7)
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Figure 1 (left plot) shows two ways of interpreting the three-way model: Like a mixture of experts,
the model can be viewed as a non-linear blend of linear regressors, where in contrast to a mixture of
experts, the number of mixture components is exponential in the number of hidden units. This allows
for a factorial decomposition of the dependencies between x and y (left-most plot). Alternatively,
the model can be viewed as an RBM whose connections are modulated by input pixels, which can
consequently “vote” for linear filters that jointly model the output image (Memisevic and Hinton,
2007).
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Figure 1: Left: Two views of an unfactored gated RBM. Right: One factor in a factored gated
RBM.

The model can also be viewed as a standard RBM modelling p(y,h), but with weights wjk that are
defined as linear functions

∑

i xiwijk of the inputs x. Thus, extensions that have been suggested for
RBMs typically apply to these models as well. An example is the generalization of the model to use
exponential family distributions for hidden and observed variables (Welling, Rosen-Zvi and Hinton,
2005; Memisevic and Hinton, 2007). Because the energy function is a sum over all input, output and
hidden units (Eq. 1), time complexity for inference or one step inference is O(IJK), where I is the
number of input, J the number of output and K the number of hidden units. In practice, the number
of hidden units is typically on the order of the number of input and output units. Thus, when applied
to images learning scales cubically with the number of pixels and is therefore slow even on relatively
small image patches. The large number of parameters usually also requires large amounts of training
data to generalize well.

3 Factoring three-way interactions

In many applications that require multiplicative interactions, there are strong underlying regularities
that allow the data to be modeled using less than the cubically many parameters implied by three-way
weights. Image transformations, for example, do not involve arbitrary motions of individual pixels.
This suggests that it may be possible to represent the required three-way interaction tensor using far
fewer parameters.

The central idea of this paper is to factor the interaction tensor in a particular way: The three-way
energy of a joint configuration of the visible and hidden units is defined as:

−E(y,h;x) =
F
∑

f=1

∑

ijk

xiyjhkw
x
ifw

y
jfwh

kf +
∑

k

wh
khk +

∑

j

w
y
j yj, (8)
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where f indexes the factors. In other words, the I × J × K parameter tensor is replaced by three
matrices with sizes I×F , J×F and K×F . If the number of factors is comparable with the number of
units in the visible and hidden groups, the factorization reduces the number of parameters from O(N3)
to O(N2). Using this factorization, the weight wijk in Eq. 1 is implemented by

∑

f wx
ifw

y
jfwh

kf . The
bias terms remain unchanged. As in the unfactored model (Eq. 3), exponentiation and normalization
defines the conditional p(y,h|x).

It is instructional to re-write the energy, using the distributive law, as:

−E(y,h;x) =
∑

f

(

∑

i

xiw
x
if

)





∑

j

yjw
y
jf





(

∑

k

hkw
h
kf

)

+
∑

k

wh
khk +

∑

j

w
y
j yj (9)

which shows that each factor f corresponds to a triplet of linear filters, one for the input, one for the
output, and one for the hidden unit activities. Figure 1 (right-most plot), is a graphical representation
of this way of factoring the interaction tensor. The three filter-responses for each factor are matched
multiplicatively. As a result, each pattern of activity in the hidden units corresponds to one way of
matching input filter responses to output filter responses. Learning amounts to finding a suitable set
of corresponding filters that can represent the transformations in the training data.

Unlike the common unsupervised approaches to learning image filters, like sparse coding (Ol-
shausen and Field, 1996), ICA (Bell and Sejnowski, 1997), and others, here it is the relationship
between images that filters need to account for, not the structure within a single image. As we shall
show the model learns highly structured filters even when trained on images that are entirely random.

3.1 The inference procedure for RBM’s with multiplicative factors

Depending on the application, there are several ways to define the inference-task for a trained model.
One common task is to compute p(h|y,x) from a given test image pair (x,y). It amounts to inferring
the transformation from an image pair. This task can be solved easily and efficiently because of the
factorization of the conditional distribution (Eq. 6). Another possible task is to compute p(y|h,x)
from an input image x and a given, fixed transformation h. This task can be thought of as a form of
analogy making, as we shall discuss in detail in Section 4.2. It can be solved easily, too, because of
the factorization (Eq. 4).

A third possible task consists in computing, or sampling from, p(y|x) after seeing a test input
image x (which was not part of the training data). This task requires marginalizing over the hidden
variables h. The exact computation is intractable if the number of hidden variables is large. However,
since the conditional distribution takes the form of an RBM, we can use alternating Gibbs sampling
to sample from it, as is common in RBMs. In particular, the factorization of the conditionals (Eqs. 4
and 6) suggests sampling from p(y,h|x) by alternating between sampling from p(y|h,x) and sampling
from p(h|y,x).

To perform Gibbs sampling in the factored model, each hidden unit must compute the energy
difference between its two states. So the input that a hidden unit, hk, requires from the factors in
order to perform Gibbs sampling by using the logistic function is:

−∆Ek =
∑

f

wh
kf

∑

i

xiw
x
if

∑

j

yjw
y
jf + wh

k (10)

The input that a visible unit in the second image must receive from the factors is:

−∆Ej =
∑

f

w
y
jf

∑

i

xiw
x
if

∑

k

ykw
h
kf + w

y
j (11)

where i indexes pixels in the first image. This resembles belief propagation because the message
∑

i xiw
x
if

∑

j yjw
y
jf that factor f sends to all the hidden units does not involve the input it receives
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from the hidden units. In this respect, the deterministic factors act very differently from stochastic
“units” which send the same message (i.e. their state) everywhere. If the factors are replaced
by a layer of “intermediate” stochastic units or “mean-field” units, the hidden units cease to be
conditionally independent so inference and learning become much more difficult.

3.2 The learning procedure for RBM’s with multiplicative factors

To train the factored model we need to maximize the average log-probability L =
∑

α log p(yα|xα))
of a set of training pairs {(xα,yα)}. The derivative of the negative log-probability wrt. any element
θ of the parameter tensor is given by:

−
∂L

∂θ
=
∑

α

〈

∂E(yα,h;xα)

∂θ

〉

h

−

〈

∂E(y,h;xα)

∂θ

〉

h,y

(12)

where 〈〉z denotes average wrt. to variable z. By differentiating Eq. 8 wrt. the model parameters,
we get:

−
∂Ef

∂wh
kf

= hk

∑

i

xiw
x
if

∑

j

yjw
y
jf , (13)

−
∂Ef

∂w
y
jf

= yj

∑

i

xiw
x
if

∑

k

hkw
h
kf , (14)

−
∂Ef

∂wx
if

= xi

∑

j

yjw
y
jf

∑

k

hkw
h
kf , (15)

where Ef denotes the energy contributed by a single factor f (one summand on the rhs. of Eq. 9).
Derivatives of the bias terms are the same as in a standard RBM: − ∂E

∂wh
k

= hk and − ∂E
∂w

y
j

= yj .

Computing the average over all hidden and observable units in Eq. 12 is intractable. But we
can approximate the averages using alternating Gibbs sampling, as discussed in Section 3.1. In our
experiments, we use contrastive divergence learning (Hinton, 2002), which amounts to performing
each gradient update by starting the Gibbs sampler at the training observations, yα, followed by
performing a single Gibbs iteration.

4 Experiments

4.1 Learning filters that represent transformations

Since the factorization leads to a matching of filter-responses, an interesting question to ask is what
forms the filter pairs take on when trained on different types of transformation.

To answer this question, we trained the factorized model2 with binary hidden and binary ob-
servable units on transformations of random dot images. We experimented with a variety of image
sizes, ranging from 8× 8 to 40× 40 pixels, all with similar results. (Unlike the non-factorized model,
training on patches larger than 12 × 12 pixels is fairly efficient.) We trained on various kinds of
transformation, including shifts, scaling, rotation, affine, and convolution with random kernels, as
well as split-screen settings with multiple transformations in one image. We trained the models to
predict transformed images from the originals as described in Section 3.2. Images were generated
randomly with typically about 10% of the pixels “on” and the rest “off”. Each class of transformation
furthermore contains parameters (like direction of shift, scaling amount, rotation angle, etc.) which
were chosen independently and randomly for each example image pair. Some of the transformations,

2A Python implementation of the model, along with example code to apply the model on synthetic transformations,
is available at learning.cs.toronto.edu/˜rfm/factored/
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like shifts and scaling, are fairly local in the sense that each position in the image is moved by no
more than about 3 pixels. Others, like rotations in Section 4.2, are global, and can move pixels across
the whole image. We generated the training images on-the-fly and trained the model online on the
resulting stream of image pairs using batches of size 20 to 100 for each gradient update. We used
contrastive divergence learning with a small learning rate (usually about 0.01) in the experiments.

In all the experiments, we used a number of hidden units between 50 and 200 and a number of
factors that was usually 100. The exact number of hidden units and factors did not have a strong
influence on the result. The reason is that the numbers of hidden units and factors are already
in a regime where they can reconstruct the transformed images almost perfectly. Since we trained
the models without using weight-decay or any other kind of regularization, there were no additional
parameters of the cost function to be set. The model parameters were initialized to small random
values in all experiments. Despite the non-linearity of the objective function, we did not encounter
any problems with local optima. In particular, multiple runs with different random initializations
and different random instantiations of the training data tend to give qualitatively very similar results
(up to indeterminacies, like ordering of the filters). Apart from using a small learning rate and
small parameter initializations, we therefore did not need to make use of any tricks, like annealing or
random restarts, to avoid local optima.

As mentioned above, there is no structure at all in the images themselves, which are composed of
random pixels. The only source of structure in the data comes from the way the images transform.
Figure 2 depicts the filters learned from various transformations and shows that they are nevertheless
highly structured and tuned explicitly to the transformation they were trained on. The plots show the
strengths of the connections to the input or output pixels using gray-values for each factor (brighter
means larger).

When trained on shifts in random directions the model learns to extract a 2-dimensional Fourier
basis on both the input and output images. Each output filter is exactly a phase-shifted version of the
corresponding, matched input filter (see figure 2, top). Many of the resulting filter-pairs are roughly
in quadrature, i.e. they show about a 90 degrees phase difference. We also found that within each of
the two filter-banks, many filters tend to come in quadrature pairs.

Random shifts provide a clear illustration of the role of factors and hidden variables: Each factor
(given by a pair of corresponding input/output filters in the figure) represents a phase-shift for a given
frequency/orientation pair, since input and output filter in each pair are tuned to about the same
frequency and orientation and differ only in phase. Furthermore, the filters cover the space of possible
frequencies and orientations fairly uniformly. Each hidden unit on the other hand is connected, with
variable strengths, to the factors and thus can detect specific combinations of frequency, orientation
and phase-shift in the data.

Figure 2 (middle and bottom) shows the input filters learned from rotations and scalings, respec-
tively. The filters take on very different forms than for shifts. The rotation-filters resemble a log-polar
version of the Fourier transform (sometimes referred to as “circular harmonics”), with circular and
spiral-like features. For scalings the filter set contains mainly concentric shapes, that are scaled up
or down in the corresponding output filters. We also observed (not shown in these plots) that train-
ing on split-screen transformations, where the top half of the image is subjected to a different and
independent transformation than the bottom half, leads to filters that are indifferent (zero) in one
half of the image and contain the usual transformation-specific filter in the other half.

Training on convolutions with random kernels yields Fourier components, as with random shifts3.
The filters look very similar to those in figure 2 (top). The model represents a convolution of an
image by first transforming the image into the frequency domain, where it then modifies its spectrum
by using a re-mapping of Fourier components, and subsequently composing the output image from
the target components. – The model discovers that the frequency domain is useful for representing

3In fact, a shift can be thought of as a special case of convolution with a particular kernel, which has the value zero
everywhere, except for one pixel, where it has the value one.
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Figure 2: Image filters learned from shifted, rotated and rescaled random images (top, middle and
bottom row, respectively). There is no structure in the training images, only in how they transform.
(Left column: input filters wif , right column: output filters wjf ).
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convolutions entirely by watching randomly convolved images.
Since the learned filter-banks are optimized to encode the observed transformations, one should

expect the resulting filters within a bank to be relatively invariant wrt. those transformations. To test
if this is the case, we used the 100 input filters trained on affine transformations as a linear feature-
representation for the USPS-digit dataset (whose images are known to be not very well registered),
and obtained a k-nearest neighbor error rate of 4.4% as compared to 4.8% for the original images,
and as compared to 11.0% when using 100 PCA-features4.

Figure 3: Learning curves gated RBM vs. factored gated RBM for various image sizes.

To gain insight into the learning speed of the factored vs. the unfactored model, we trained both
models on the random shifts for various patch-sizes, holding the learning rate constant. Figure 3
shows the projection error for a test-set as a function of time and shows that the speed advantage
grows as the patch-size increases: There is a slight slow-down in convergence for very small patch-
sizes, but the gain due to the factorization starts to kick in at about 12×12 pixels. More importantly,
the plot shows that the gain in performance is a function of input dimensionality.

4.2 Analogy making

After learning transformations, it is possible to apply the learned transformations by analogy: Pre-
senting a pair of “source” images allows us to extract the binary transformation code h. Holding h

fixed and providing a new target image as the input, then makes it possible to transform the target
image the same way as seen in the source image pair (where the definition of “the same” is at the
model’s discretion). This is a simple model of analogy making in a restricted domain.

Figure 4 shows digit and face images produced by a model that was trained on rotated random
dots (of size 16×16). We used as the source input a bar image (shown framed, in the top-left corner
of the plot), and as the source output one of five rotated versions of the bar (the five images below
in the same column). As target inputs we used digit and face-images shown framed in the top row
(we picked the first occurrence of each class in the USPS-training set, and binarized face-images of
10 different subjects from the Olivetti-faces data-set). Below each target image we show the model-
output inferred from the corresponding source image pair. The model produces clear, rotated versions
of the images. It is important to note that the model never saw any digits or faces during training;
the ability to produce digit and face images as the output images is entirely due to generalization.

Analogy making is a capability that, arguably, relies on the separation of the representation
of objects from the representation of how they are related. It is therefore not surprising that the
binary encoding of image transformations that the model learns allows it to make analogies in this

4To more rigorously exploit the invariance properties, one should identify the quadrature pairs within a filter-bank
and use the sum of the squares of the corresponding filter-outputs as features. This would provide the phase-invariant
magnitude spectrum for the case of Fourier components, and an analogue for from the more general filters.
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toy-domain. Our approach bears some loose resemblances to the “Copycat”-project introduced by
Hofstadter (1984), which is also a stochastic, sampling-based approach to analogy making. One
major difference is that in our approach learning about the domain plays the most important role,
after which inference is straightforward, whereas for Copycat knowledge about the domain, and the
representation of objects, is hard-coded, and inference is the main, and most difficult, task. Similarly,
Tenenbaum and Freeman (2000) demonstrate an analogy making approach based on a bi-linear model
using letter images. They also use a rich, hard-coded representation to restrict the set allowable
transformations to ones that are sensible in their domain.

Figure 4: Analogy making: After seeing the transformation of a bar (left-most column), a model
trained on rotated pairs of random dot images can apply the same transformation to images that
it never saw before, like digits or faces. Prototype images are shown in the top row, the model’s
renderings below each prototype. Neither bars nor digits or faces were part of the training-data.

A problem that is related to analogy making is transfer learning, that is the problem of learning
when training data is drawn from a different distribution than test data. As a practical example,
we consider the task of predicting face identity using training faces that are shown in a different
orientation than test faces. We used the binarized Olivetti-faces data-set, where we rotated the
training data with random angles between −90 and 90 degrees. For this task we sub-sampled the face
images to 32 × 32 pixels. The data contains 40 subjects with 10 cases each. We used the randomly
rotated first 5 occurrences for each subject as training data and the last 5 as test data, which amounts
to using 200 data-points for training and 200 for testing. This is obviously a difficult classification
problem (given that there are 40 classes), and the best kNN performance (which occurs at k = 1) is
4.5% correct which is slightly better than random guessing.

After training a model on rotations we can use it to define a metric that is invariant to rotation by
measuring how well the model can reconstruct cases from one another. To determine the (asymmetric)
distance between two cases d1 and d2, we first clamp d1 and d2 as input and output, respectively, and
infer the transformation h. We then apply the inferred transformation by computing a reconstruction
d̂2 for d2 (where now d1 and h are clamped). Now we can define the distance between d1 and d2 as
the reconstruction error ‖d2−d̂2‖

2 between d2 and its reconstruction from d1. The kNN performance
using this metric yields a recognition rate of 36%. Using the model-induced metric effectively allows
us to transfer information contained in one data-set (faces depicted in one orientation) to a different,
but related data-set (faces depicted in a different orientation).

4.3 The optimal filter pairs for natural video

To extract filters from natural images, we trained a model with 200 factors and 100 mapping units on
image-patch pairs of size 28×28, cut randomly from adjacent frames of digitized television broadcast.
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We used the broadcast TV database introduced by van Hateren and Ruderman (1998), which was
used also by Memisevic and Hinton (2007) (with much smaller patch-sizes). We trained the model on
a binarized version of the real-valued data (obtained simply by thresholding). We also experimented
with Gaussian observables and obtained similar results. We found that the binary model is more
stable for large learning rates and therefore much faster to train.

Figure 5: Left plots: A subset of the filters learned by watching broadcast television. Input filters
on the left, corresponding output filters on the right. Right plots: Direction selectivity of top-level
RBM units after training on shifts of random dot images.

Interestingly, most of the filters we obtain are very clean, phase-shifted Fourier components. The
64 filters that are the largest in terms of Euclidean norm are shown in Figure 5 (many of the 200
factors were almost zero after training, and thus do not contribute much to the transformation).
This shows that, even at a fairly large patch-size, uniform shifts of the entire visual field are the
predominant mode of variability. However, it is possible that even larger patch sizes, or training on
down-sampled versions of the entire frames, could allow us to obtain locally more constrained filters.

If the transformations encountered in the world are responsible in part for the ability to perform
invariant recognition, learning about transformations should improve recognition performance. We
tested the model’s ability to discriminate MNIST-digits5, by using a metric that is invariant to the
transformations seen in the television database. We define the metric as in Section 4.2. The best kNN
classification error on the data using this metric is 4.6 as compared to 5.1 for Euclidean distance (the
optimal k is 5 in both cases). When we shift both the training and test cases by a pixel in random
directions, we obtain an even larger difference of 5.1 vs. 7.2. Differences of 0.2% classification error
are considered statistically significant in this dataset, showing that watching TV can improve digit
recognition (so it is not a complete waste of time).

5 Extracting transparent motion

Memisevic and Hinton (2007) describe how gated RBMs can be used to infer motion from image
pairs. We extend that approach and, using the factorized model, we show that it is possible to deal
with transparency as well. For this purpose, we trained a factored model with 50 hidden units and
200 factors on shifts of random dots (size 13 × 13). We found that the hidden units tend to encode
observed motion in a population code. Therefore, we also trained a second-level RBM with a sparsity
penalty using the mapping unit responses as data. The second-level RBM had 50 binary visible units
directly connected to 48 binary hidden units6. Figure 5 shows the direction selectivity of the second-

5yann.lecun.com/exdb/mnist/
6As an alternative to the RBM, we also experimented with using logistic regression to predict motion direction from

mapping unit activities. This improves the prediction accuracy as compared to using the RBM, but it is not an entirely
unsupervised approach.

11



level hidden units, which we obtained by presenting random shifts in 24 different directions multiple
times and averaging, for each second-level hidden unit, the resulting activities. Most second-level
hidden units are either indifferent or clearly tuned to one direction, as shown in the figure.

In order to predict the direction from test-image pairs, we first infer the mapping by computing
p(h|y;x), from which we compute the 48 second-level hidden unit activities. Using these activities
as weights, we average the orientation tuning fields shown in the right plot of figure 5 (an approach
commonly referred to as “vector averaging”). Figure 6 depicts the resulting distribution over observed
directions when several motions are presented simultaneously. The figure shows that the model uses
a multi-modal distribution to encode multiple motions, and can clearly correctly identify the different
directions. We were able to obtain similar results when using the filters learned from broadcast TV
(which is not surprising, given the similarities of the filters learned in both settings). However, in the
case of real video, several additional difficulties (such as a strong preference for horizontal motion)
complicate the results.

It might appear at first sight that there is a much simpler, ad-hoc approach that could mimic
the model’s ability to recognize transparent motions. One could independently train or build several
motion models, each one tuned to a specific direction, and subsequently in some way combine the
models’ responses to test data showing simultaneous motions. Note, however, that to replicate the
described experiment one would need to build roughly as many models as there are angles that our
model can distinguish. Our model’s ability to tell apart the different motions relies crucially on its
ability to represent several motions using its (binary) code of hidden unit activities (which, in turn,
relies on the fact that it uses a factorial code for representing transformations.) In contrast, note that
most common approaches to recognizing motion cannot even represent two transformations.

Figure 6: Responses of top-level RBM to two overlayed dot-patters moving in different directions. The
two vertical lines represent the actual directions of the two dot-patterns; the overlayed bar diagram
the resulting probability distribution over directions as perceived by the model.

The model’s perception of motion shows several properties that are consistent with findings on
human motion perception. The model shows the merging of modes at small angles, which results in
averaging of presented motion directions. Interestingly, we found also that, at angles slightly larger
than those where merging occurs, the model slightly but consistently over-estimates the observed
angles, which is consistent with the well-known phenomenon of “motion-repulsion”. It should be
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noted that none of the observed effects were part of the design-consideration of the transformation
model, whose only goal is to model a conditional probability over output images given an input image.

6 Discussion

In this paper, we introduced a factored version of a conditional higher-order RBM and showed how
the model allows us to obtain image filter pairs that are optimal at representing transformations of
images. This is in contrast to the well-known work on learning static structure from independent
images, and the filters that the model learns are quite different from those typically obtained from
static images.

Besides giving rise to the filter pairs, the factorization can also help reduce the number of model
parameters and speed up learning as we discussed in detail in the paper. A possible question to ask is
whether one can apply similar kinds of factorization to other graphical models as well. It is important
to note in this context that training in our case relies crucially on the particular independence as-
sumptions that make inference fast and simple. In particular, there are no within-group connections,
in other words no connections between mapping units or between output units. The factorization has
the nice property that it keeps this independence structure intact and thus does not interfere with
inference and learning. It is not immediately obvious to what degree graphical models with entirely
different kinds of independence assumptions could benefit from similar factorizations. Undirected
models that have a similar independence structure as the model discussed in this paper, such as the
various exponential family variants of RBMs, as well as their extensions, however, certainly can.

We used exclusively contrastive divergence learning to train all models in this paper, mainly
because it is fast, robust and worked very well in all the experiments. Similar results could probably
be achieved using full maximum likelihood learning of the models, by using prolonged Gibbs sampling.
However it seems unlikely that there are benefits that would warrant the much longer training time.
It is also possible to define non-probabilistic variations of the model. Memisevic (2008), for example,
discusses various non-probabilistic formulations of the unfactored version of the model, and similar
formulations would be possible for the factored model. The non-probabilistic models can be trained
using gradient-based optimization.

We considered only first-order bias terms in this paper, so the only connections we used are
factored three-way connections and the (unfactored) simple bias terms. Learned filters therefore need
to represent only the transformations. It might be interesting to investigate adding factored second-
order biases connecting hidden units to output units, which would separately model, and possibly
factor out, purely static structure in the images.

Memisevic and Hinton (2007) describe a convolutional version of the unfactored model, which
can be used to model sets of large images with possibly variable sizes. A convolutional version of the
factored model is an interesting direction for further research. Another research direction is the use
of sparsity. Imposing sparsity constraints on hidden variables has been a common way of obtaining
localized filters in static image coding models (for example, Olshausen and Field, 1996) and recently
also in bi-linear models of transformations (for example, Grimes and Rao, 2005). Sparsity constraints
on the mapping units could be useful also in our model and might give rise to more localized (less
distributed) codes for the observed motions.
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