
On autoencoder scoring

Hanna Kamyshanska kamyshanska@fias.uni-frankfurt.de

Goethe Universität Frankfurt, Robert-Mayer-Str. 11-15, 60325 Frankfurt, Germany

Roland Memisevic memisevr@iro.umontreal.ca

University of Montreal, CP 6128, succ Centre-Ville, Montreal H3C 3J7, Canada

Abstract

Autoencoders are popular feature learning
models because they are conceptually sim-
ple, easy to train and allow for efficient in-
ference and training. Recent work has shown
how certain autoencoders can assign an un-
normalized “score” to data which measures
how well the autoencoder can represent the
data. Scores are commonly computed by us-
ing training criteria that relate the autoen-
coder to a probabilistic model, such as the
Restricted Boltzmann Machine. In this pa-
per we show how an autoencoder can assign
meaningful scores to data independently of
training procedure and without reference to
any probabilistic model, by interpreting it as
a dynamical system. We discuss how, and un-
der which conditions, running the dynamical
system can be viewed as performing gradient
descent in an energy function, which in turn
allows us to derive a score via integration.
We also show how one can combine multiple,
unnormalized scores into a generative classi-
fier.

1. Introduction

Unsupervised learning has been based traditionally on
probabilistic modeling and maximum likelihood esti-
mation. In recent years, a variety of models have been
proposed which define learning as the construction of
an unnormalized energy surface and inference as find-
ing local minima of that surface. Training such energy-
based models amounts to decreasing energy near the
observed training data points and increasing it every-
where else (Hinton, 2002; lec). Maximum likelihood

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

learning can be viewed as a special case, where the
exponential of the negative energy integrates to 1.

The probably most successful recent examples of non-
probabilistic unsupervised learning are autoencoder
networks, which were shown to yield state-of-the-art
performance in a wide variety of tasks, ranging from
object recognition and learning invariant representa-
tions to syntatic modeling of text (Le et al., 2012;
Socher et al., 2011; Rolfe & LeCun, 2013; Swersky
et al., 2011; Vincent, 2011; Memisevic, 2011; Zou et al.,
2012). Learning amounts to minimizing reconstruction
error using back-prop. Typically, one regularizes the
autoencoder, for example, by adding noise to the in-
put data or by adding a penalty term to the training
objective (Vincent et al., 2008; Rifai et al., 2011).

The most common operation after training is to in-
fer the latent representation from data, which can be
used, for example, for classification. For the autoen-
coder, extracting the latent representation amounts
to evaluating a feed-forward mapping. Since training
is entirely unsupervised, one autoencoder is typically
trained for all classes, and it is the job of the classifier
to find and utilize class-specific differences in the repre-
sentation. This is in contrast to the way in which prob-
abilistic models have been used predominantly in the
past: Although probabilistic models (such as Gaussian
mixtures) may be used to extract class-independent
features for classification, it has been more common
to train one model per class and to subsequently use
Bayes’ rule for classification (Duda & Hart, 2001). In
the case where an energy-based model can assign con-
fidence scores to data, such class-specific unsupervised
learning is possible without Bayes’ rule: When scores
do not integrate to 1 one can, for example, train a
classifier on the vector of scores across classes (Hin-
ton, 2002), or back-propagate label information to the
class-specific models using a “gated softmax” response
(Memisevic et al., 2011).

On autoencoder scoring

1.1. Autoencoder scoring

It is not immediatly obvious how one may compute
scores from an autoencoder, because the energy land-
scape does not come in an explicit form. This is in
contrast to undirected probability models like the Re-
stricted Boltzmann Machine (RBM) or Markov Ran-
dom Fields, which define the score (or negative energy)
as an unnormalized probability distribution. Recent
work has shown that autoencoders can assign scores,
too, if they are trained in a certain way: If noise is
added to the input data during training, minimizing
squared error is related to performing score matching
(Hyvärinen, 2005) in an undirect probabilistic model,
as shown by (Swersky et al., 2011) and (Vincent, 2011).
This, in turn, makes it possible to use the RBM energy
as a score. A similar argument can be made for other,
related training criteria. For example, (Rifai et al.,
2011) suggest training autoencoders using a “contrac-
tion penalty” that encourages latent representations to
be locally flat, and (Alain & Bengio, 2013) show that
such regularization penalty allows us to interpret the
autoencoder reconstruction function as an estimate of
the gradient of the data log probability.1

All these approaches to defining confidence scores rely
on a regularized training criterion (such as denoising
or contraction), and scores are computed by using the
relationship with a probabilistic model. As a result
scores can be computed easily only for autoencoders
that have sigmoid hidden unit activations and linear
outputs, and that are trained by minimizing squared
error (Alain & Bengio, 2013). The restriction of ac-
tivation function is at odds with the growing interest
in unconventional activation functions, like quadratic
or rectified linear units which seem to work better in
supervised recognition tasks (eg., (Krizhevsky et al.,
2012)).

In this work, we show how autoencoder confidence
scores may be derived by interpreting the autoencoder
as a dynamical system. The view of the autoencoder
as a dynamical system was proposed by (Seung, 1998),
who also demonstrated how de-noising as a learning
criterion follows naturally from this perspective. To
compute scores, we will assume “tied weights”, that
is, decoder and encoder weights are transposes of each
other. In contrast to probabilistic arguments based
on score matching and regularization (Swersky et al.,
2011; Vincent, 2011; Alain & Bengio, 2013), the dy-
namical systems perspective allows us to assign con-

1The term “score” is also frequently used to refer to the
gradient of the data log probability. In this paper we use
the term to denote a confidence value that the autoencoder
assigns to data.

fidence scores to networks with sigmoid output units
(binary data) and arbitrary hidden unit activations (as
long as these are integrable). In contrast to (Rolfe &
LeCun, 2013), we do not address the role of dynamics
in learning. In fact, we show how one may derive con-
fidence scores that are entirely agnostic to the learning
procedure used to train the model.

As an application of autoencoder confidence scores we
describe a generative classifier based on class-specific
autoencoders. The model achieves 1.27% error rate on
permutation invariant MNIST, and yields competitive
performance on the deep learning benchmark dataset
by (Larochelle et al., 2007).

2. Autoencoder confidence scores

Autoencoders are feed forward neural networks used
to learn representations of data. They map input data
to a hidden representation using an encoder function

h
(
Wx+ bh

)
(1)

from which the data is reconstructed using a linear
decoder

r(x) = Ah
(
Wx+ bh

)
+ br (2)

We shall assume that A = WT in the following (“tied
weights”). This is common in practice, because it re-
duces the number of parameters and because related
probabilistic models, like the RBM, are based on tied
weights, too.

For training, one typically minimizes squared recon-
struction error (r(x)− x)2 for a set of training cases.
When the number of hidden units is small, autoen-
coders learn to perform dimensionality reduction. In
practice, it is more common to learn sparse represen-
tations by using a large number of hidden units and
training with a regularizer (eg., (Rifai et al., 2011; Vin-
cent et al., 2008)). A wide variety of models can be
learned that way, depending on the activation func-
tion, number of hidden units and nature of the regu-
larization during training. The function h(·) can be
the identity or it can be an element-wise non-linearity,
such as a sigmoid function. Autoencoders defined us-
ing Eq. 2 with tied weights and logistic sigmoid non-

linearity h(a) =
(
1 + exp(−a)

)−1
are closely related

to RBMs (Swersky et al., 2011; Vincent, 2011; Alain
& Bengio, 2013), one can assign confidence scores to
data in the form of unnormalized probabilities.

For binary data, the decoder typically gets replaced by

r(x) = σ
(
Ah
(
Wx+ bh

)
+ br

)
(3)

and training is done by minimizing cross-entropy loss.
Even though confidence scores (negative free energies)

On autoencoder scoring

are well-defined for binary output RBMs, there has
been no analogous score function for the autoencoder,
because the relationships with score matching breaks
down in the binary case (Alain & Bengio, 2013). As
we shall show, the perspective of dynamical systems
allows us to attribute the missing link to the lack of
symmetry. We also show how we can regain symme-
try and thereby obtain a confidence score for binary
output autoencoders by applying a log-odds transfor-
mation on the outputs of the autoencoder.

2.1. Reconstruction as energy minimization

Autoencoders may be viewed as dynamical systems,
by noting that the function r(x)−x (using the defini-
tion in Eq. 2) is a vector field which represents the lin-
ear transformation that x undergoes as a result of ap-
plying the reconstruction function r(x) (Seung, 1998;
Alain & Bengio, 2013). Repeatedly applying the re-
construction function (possibly with a small inference
rate ε) to an initial x will trace out a non-linear tra-
jectory x(t) in the data-space.

If the number of hidden units is smaller than the num-
ber of data dimensions, then the set of fixed points
of the dynamical system will be approximately a low-
dimensional manifold in the data-space (Seung, 1998).
For overcomplete hiddens it can be a more complex
structure.

(Alain & Bengio, 2013), for example, show that for
denoising and contractive autoencoder, the reconstruc-
tion is proportional to the derivative of the log proba-
bility of x:

r(x)− x = λ
∂ logP (x)

∂(x)
+O(λ) (4)

Running the autoencoder by following a trajectory as
prescribed by the vector field may also be viewed in
analogy to running a Gibbs sampler in an RBM, where
the fixed points play the role of a maximum probability
“ridge” and where the samples are deterministic not
stochastic.

Some vector fields can be written as the derivative of a
scalar field: In such a case, running the dynamical sys-
tem can be thought of as performing gradient descent
in the scalar field. We may call this scalar field energy
E(x) and interpret the vector field as a correspond-
ing “force” in analogy to physics, where the potential
force acting on a point is the gradient of the potential
energy at that point. The autoencoder reconstruction
may thus be viewed as pushing data samples in the
direction of lower energy (Alain & Bengio, 2013).

The reason why evaluating the potential energy for

the autoencoder would be useful is that it allows us to
asses how much the autoencoder “likes” a given input
x (up to a normalizing constant which is the same
for any two inputs). That way, the potential energy
plays an analogous role to the free energy in an RBM
(Hinton, 2002; Swersky et al., 2011). As shown by
(Alain & Bengio, 2013), the view of the autoencoder as
modeling an energy surface implies that reconstruction
error is not a good measure of confidence, because the
reconstruction error will be low at both local minima
and local maxima of the energy.

A simple condition for a vector field to be a gradient
field is given by Poincare‘s integrability criterion: For
some open, simple connected set U , a continuously
differentiable function F : U → Rn defines a gradient
field if and only if

∂Fj(x)

∂xi
=
∂Fi(x)

∂xj
, ∀i, j = 1..n (5)

In other words, integrability follows from symmetry of
the partial derivatives.

Consider an autoencoder with shared weight matrix
W and biases bh and br, which has some activation
function h(.) (e.g. sigmoid, hyperbolic tangent, lin-
ear). We have:

∂(rm(x)− xm)

∂xn
=

∑
j

Wmj
∂h(Wx+ bh)

∂(Wx+ bh)
Wnj − 1

=
∂(rn(x)− xn)

∂xm
(6)

so the integrability criterion is satisfied.

2.2. Computing the energy surface

One way to find the potential energy whose derivative
is r(x)−x, is to integrate the vector field (compute its
antiderivative).2 This turns out to be fairly straight-
forward for autoencoders with a single hidden layer,
linear output activations, and symmetric weights, in
other words

r(x) = WTh
(
Wx+ bh

)
+ br (7)

2After computing the energy function, it is easy to
check, in hindsight, whether the vector field defined by
the autoencoder is really the gradient field of that energy
function: Compute the derivative of the energy, and check
if it is equal to r(x) − x. For example, to check the cor-
rectness of Eqs. 11 and 13 differentiate the equations wrt.
x.

On autoencoder scoring

Figure 1. Some hidden unit activation functions and their integrals.

where h(·) is an elementwise activation function, such
as the sigmoid. We can now write

F (x) =

∫
(r(x)− x) dx

=

∫ (
WTh

(
Wx+ bh

)
+ br − x

)
dx

= WT

∫
h
(
Wx+ bh

)
dx+

∫
(br − x) dx

(8)

By defining the auxiliary variables u = Wx+ bh and
using

du

dx
= WT ⇔ dx = W−Tdu (9)

we get

F (x) = WTW−T

∫
h(u) du+ br

Tx− 1

2
x2 + const

=

∫
h(u) du+ br

Tx− 1

2
x2 + const

=

∫
h(u) du− 1

2

(
x− br

)2
+

1

2
br

Tbr + const

=

∫
h(u) du− 1

2

(
x− br

)2
+ const (10)

where the last equation uses the fact that br does not
depend on x.

If h(u) is an elementwise activation function, then the
final integral is simply the sum over the antiderivatives
of the hidden unit activation functions applied to x.
In other words, we can compute the integral using the
following recipe:

1. compute the net inputs to the hidden units:

Wx+ bh

2. compute hidden unit activations using the an-
tiderivative of h(u) as the activation function

3. sum up the activations and subtract 1
2

(
x− br

)2
Example: sigmoid hiddens. In the case of sigmoid
activation functions h(u) = (1 + exp(−u))−1, we get

Fsigmoid(x)

=

∫
(1 + exp(−u))−1 du− 1

2

(
x− br

)2
+ const

=
∑
k

log(1 + exp(WT
·kx+ bhk))− 1

2

(
x− br

)2
+ const

(11)

which is identical to the free energy in a binary-
Gaussian RBM (eg., (Welling et al., 2005)). It is inter-
esting to note that in the case of contractive or denois-
ing training (Alain & Bengio, 2013), the energy can in
fact be shown to approximate the log-probability of
the data (cf., Eq. 4):

F (x) :=

∫
(r(x)− x) dx ∝ logP (x) (12)

But Eq. 11 is more general as it holds independently
of the training procedure.

Example: linear hiddens. The antiderivative of the
linear activation, h(u) = u, is u2, so for PCA and a
linear autoencoder, it is simply the norm of the latent
representation. More precisely, we have

Flinear(x) =

∫
u du− 1

2

(
x− br

)2
+ const

=
1

2
uTu− 1

2

(
x− br

)2
+ const

=
1

2
(Wx+ bh)T(Wx+ bh)− 1

2

(
x− br

)2
+ const

(13)

It is interesting to note that, if we disregard biases and
assumeWWT = I (the PCA solution), then Flinear(x)
turns into the negative squared reconstruction error.

On autoencoder scoring

This is how one would typically assign confidences to
PCA models, for example, in a PCA based classfier.

It is straightforward to calculate the energies for other
hidden unit activations, including those for which the
energy cannot be normalized, in which case there is no
corresponding RBM. Two commonly deployed activa-
tion functions are, for example: the rectifier, whose

antiderivative is the “half-square” (sign(x)+1)
2 x2, and

the softplus activation whose antiderivative is the so-
called polylogarithm. A variety of activation functions
and their antiderivatives are shown in Fig. 1.

2.3. Binary data

When dealing with binary data it is common to use
sigmoid activations on the outputs:

r(x) = σ
(
WTh

(
Wx+ bh

)
+ br

)
(14)

and training the model using cross-entropy (but like in
the case of real outputs, the criterion used for training
will not be relevant to compute scores). In the case of
sigmoid outputs activations, the integrability criterion
(Eq. 6) does not hold, because of the lack of symmetry
of the derivatives. However, we can obtain confidence
scores by monotonically transforming the vector space
as follows: We apply the inverse of the logistic sigmoid
(the “log-odds” transformation)

ξ(x) = log
(x

1− x
)

(15)

in the input domain. Now we can define the new vector
field

v(x) = ξ(r(x))− ξ(x)

= ξ
(
σ
(
WTh

(
Wx+ bh

)
+ br

))
− log

(x

1− x
)

= WTh
(
Wx+ bh

)
+ br − log

(x

1− x
)

(16)

The vector field v(x) has the same fixed points as
r(x)− x, because invertibility of ξ(x) implies

r(x) = x ⇔ ξ(r(x)) = ξ(x) (17)

So the original and transformed autoencoder converge
to the same representations of x. By integrating v(x),
we get

F (x) =

∫
h(u) du+ br

Tx

− log
(
1− x

)
− x log

(x

1− x
)

+ const

(18)

Due to the convention 0 · log 0 = 0, the second term,

− log
(
1 − x

)
− x log

(
x

1−x

)
, vanishes for binary data

(Cover & Thomas, 1991). In that case, the energy
takes exactly the same form as the free energy of a
binary output RBM with binary hidden units (Hin-
ton, 2002). However, hidden unit activation functions
can be chosen arbitrarily and enter the score using the
recipe described above. Also, training data may not
always be binary. When it takes on values between 0
and 1, the log-terms do not equal 0 and have to be
included in the energy computation.

3. Combining autoencoders for
classification

Being able to assign unnormalized scores to data can
be useful in a variety of tasks, including visualization
or classification based on ranking of data examples.
Like for the RBM, the lack of normalization causes
scores to be relative not absolute. This means that we
can compare the scores that an autoencoder assigns
to multiple data-points but we cannot compare the
scores that multiple autoencoders assign to the same
data-point. We shall now discuss how we can turn
these into a classification decision.

Fig. 2 shows exemplary energies that various types
of contractive autoencoder (cAE, (Rifai et al., 2011)),
trained on MNISTsmall digits 6 and 9, assign to test
cases from those classes. It shows that all models yield
fairly well separated confidence scores, when the apro-
priate anti-derivatives are used. Squared error on the
sigmoid networks separates these examples fairly well
too (rightmost plot). However, in a multi-class task,
using reconstruction error typically does not work well
(Susskind et al., 2011), and it is not a good confi-
dence measure as we discussed in Section 2. As we
shall show, one can achieve competitive classification
performance on MNIST and other data-sets by using
properly “calibrated” energies, however.

3.1. Supervised finetuning

Since the energy scores are unnormalized, we cannot
use Bayes’ rule for classification unlike with directed
graphical models. Here, we adopt the approach pro-
posed by (Memisevic et al., 2011) for Restricted Boltz-
mann Machines and adopt it to autoencoders.

In particular, denoting the energy scores that the
autoencoders for different classes assign to data as
Ei(x), i = 1, . . . ,K, we can define the conditional dis-
tribution over classes yi as the softmax response

P (yi|x) =
exp(Ei(x) + Ci)∑
j exp(Ej(x) + Cj)

(19)

where Ci is the bias term for class yi. Each Ci may be

On autoencoder scoring

0.45 0.50 0.55 0.60 0.65 0.70 0.75

E6(x)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

E
9
(x

)

sigmoid activation

class 6
class 9

0.719 0.720 0.721 0.722 0.723 0.724 0.725

E6(x)

0.711

0.712

0.713

0.714

0.715

0.716

0.717

0.718

0.719

E
9
(x

)

tanh activation

class 6
class 9

0.0 0.2 0.4 0.6 0.8 1.0

E6(x)

0.0

0.2

0.4

0.6

0.8

1.0

E
9
(x

)

linear activation (real input)

class 6
class 9

0.60 0.65 0.70 0.75 0.80 0.85 0.90

E6(x)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

E
9
(x

)

linear activation (binary input)

class 6
class 9

−0.05 0.00 0.05 0.10 0.15 0.20

R6(x)

0.00

0.02

0.04

0.06

0.08

R
9
(x

)

sigmoid activation (squared errors)

class 6
class 9

Figure 2. Confidence scores assigned by class-specific contractive autoencoders to digits 6 and 9 from the MNISTsmall
data set.

viewed also as the normalizing constant of the ith au-
toencoder, which, since it cannot be determined from
the input data, needs to be trained from the labeled
data.

Eq. 19 may be viewed as a “contrastive” objective
function that compares class yi against all other classes
in order to determine the missing normalizing con-
stants of the individual autoencoders. It is remi-
niscent of noise-contrastive estimation (Gutmann &
Hyvärinen, 2012), with the difference that the con-
trastive signal is provided by other classes not noise.
Optimizing the log-probabilities (log of Eq. 19) is sim-
ply a form of logistic regression. We shall refer to the
model as autoencoder scoring (AES) in the following.
Like the gated softmax model (Memisevic et al., 2011),
we may optimize Eq. 19 wrt. the autoencoder param-
eters by back-propagating the logistic regression cost
to the autoencoder parameters.

3.2. Parameter factorization

We showed in Section 2 that scores can be com-
puted for autoencoders with a single hidden layer
only. However, if we train multi-layer autoencoders
whose bottom layer weights are tied across models,
we may view the bottom layers as a way to perform
class-independent pre-processing. In many classifica-
tion tasks this kind of pre-processing makes sense, be-
cause similar features may appear in several classes,
so there is no need to learn them separately for each
class. Class-specific autoencoders with shared bottom-
layer weights can also be interpreted as standard au-
toencoders with factorized weight matrices (Memisevic
et al., 2011).

Fig. 3 shows an illustration of a factored autoencoder.
The model parameters are filter matricesW x andW h

which are shared among the classes, as well as matri-
ces W f ,Bh and Br which consist of stacked class-
dependent feature-weights and bias vectors. Using

one-hot encoded labels, we can write the hidden unit
activations as

hk =
∑
f

(
∑
i

Wx
ifxi)(

∑
j

tjW
f
jf)Wh

fk +
∑
j

tjB
h
jk (20)

This model combines m class-dependent AEs with tied
weight matrices and biases {W j , bjh, b

j
r | j = 1..m},

where each weight matrixW j is a product of two class-
independent (shared) matrices W x and W h and one

class-dependent vector W f
j .:

W j
ik =

∑
f

Wx
ifW

f
jfW

h
fk (21)

The first encoder-layer (W x) learns the class-
independent features, the second layer (wf) learns,
how important these features are for a class and
weights them accordingly. Finally, the third layer
(W h) learns how to overlay the weighted features to
get the hidden representation. All these layers have
linear activations except for the last one. Reconstruc-
tions takes the form

rji (x) =
∑
k

W j
kjσ(hjk) + bjr (22)

To learn the model, we pre-train all m autoen-
coders together on data across all classes, and we use
the labels to determine for each observation which
intermediate-level weights to train.

3.3. Performance evaluation

We tested the model (factored and plain) on the “deep
learning benchmark” (Larochelle et al., 2007). Details
on the data sets are listed in Table 1.

To learn the initial representations, we trained the
class-specific autoencoders with contraction penalty
(Rifai et al., 2011), and the factored models as de-
noising models (Vincent et al., 2008) (contraction

On autoencoder scoring

Figure 3. Factored autoencoders with weight-sharing.
Top: a single factored autoencoder; bottom: encoder-
part of multiple factored autoencoders that share weights.
Dashed lines represent class-specific weights, solid lines
represent weights that are shared across classes.

Figure 4. Error rates with and without pre-training, using
ordinary and factored class-specific autoencoders.

penalties are not feasible in multilayer networks (Ri-
fai et al., 2011)). For comparability with (Memisevic
et al., 2011), we used logistic sigmoid hiddens as de-
scribed in Section 3.2 unless otherwise noted. To train
class-dependent autoencoders, we used labeled sam-
ples (x, t), where labels t are in one-hot encoding.

For pre-training, we fixed both the contraction penalty
and corruption level to 0.5. In some cases we normal-
ized filters after each gradient-step during pretraining.
The model type (factored vs. non-factored) and pa-
rameters for classification (number of hidden units,
number of factors, weight decay and learning rate)
were chosen based on a validation set. In most cases we
tested 100, 300 and 500 hiddens and factors. The mod-
els were trained by gradient descent for 100 epochs.

We compared our approach from Section 3 to a variety
of baselines and variations:

Figure 5. Example images and filters learned by class-
specific autoencoders. Top-to-bottom: RECTimg (class
0 left, class 1 right); MNISTrotImg (factored model);
RECTANGLES (factored model).

1. Train an autoencoder for each class. Then
compute for each input x a vector of energies
(E1(x), · · · , Em(x)) (setting the unknown inte-
gration constants to zero) and train a linear clas-
sifier on labeled energy vectors instead of using
the original data (Hinton, 2002).

2. Train an autoencoder for each class. Then learn
only the normalizing constants by maximizing
the conditional log likelihood

∑
i logPC(yi|xi)

on the training samples as a function of C =
(C1, · · · , Cm)

3. Optimize Eq. 19 wrt. the autoencoder parame-
ters using back-prop, but without class-dependent
pretraining.

On autoencoder scoring

Data set train valid. test cl.

RECT 1100 100 50000 2
RECTimg 11000 1000 12000 2
CONVEX 7000 1000 50000 2
MNISTsmall 10000 2000 50000 10
MNISTrot 11000 1000 50000 10
MNISTImg 11000 1000 50000 10
MNISTrand 11000 1000 50000 10
MNISTrotIm 11000 1000 50000 10

Table 1. Datasets details (Larochelle et al., 2007).

Data SVM RBM deep GSM AES

rbf SAA3

RECT 2.15 4.71 2.14 0.56 0.84
RECTimg 24.04 23.69 24.05 22.51 21.45
CONVEX 19.13 19.92 18.41 17.08 21.52
MNISTsmall 3.03 3.94 3.46 3.70 2.61
MNISTrot 11.11 14.69 10.30 11.75 11.25
MNISTImg 22.61 16.15 23.00 22.07 22.77
MNISTrand 14.58 9.80 11.28 10.48 9.70
MNISTrotIm 55.18 52.21 51.93 55.16 47.14

Table 2. Classification error rates on the deep learning
benchmark dataset. SVM and RBM results are taken
from (Vincent et al., 2010), deep net and GSM results
from (Memisevic et al., 2011).

4. Assign data samples to the AEs with the smallest
reconstruction error.

Method 4 seems straightforward, but it did not lead to
any reasonable results. Methods 1 and 2 run very fast
due to the small amount of trainable parameters, but
they do not show good performance either. Method
3 lead to consistently better results, but as illustrated
in Fig. 4 it performs worse than the procedure from
Section 3. Two lessons to learn from this are that
(i) generative training of each autoencoder on its own
class is crucial to achieve good performance, (ii) it is
not sufficient to tweak normalizing constants, since
backpropagating to the autoencoder parameters sig-
nificantly improves performance.

Table 2 shows the classification error rates of the
method from Section 3 in comparison to various com-
parable models from the literature. It shows that
class-specific autoencoders can yield highly competi-
tive classification results. For the GSM (Memisevic
et al., 2011), we report the best performance of fac-
tored vs. non- factored on the test data, which may

DRBM SVM NNet sigm. lin. modulus

1.81 1.40 1.93 1.27 1.99 1.76

Table 3. Error rates on the standard MNIST dataset us-
ing sigmoid, linear and modulus activation functions, com-
pared with other models without spatial knowledge.

introduce a bias in favor of that model. In Tab. 3 we
furthermore compare the AES performance for differ-
ent activation functions on MNIST using contractive
AEs with 100 hidden units. The corresponding AE en-
ergies are shown in Fig. 2. Some example images with
corresponding filters learned by the ordinary and fac-
tored AES model are displayed in Fig. 5. We used the
Python Theano library (Bergstra et al., 2010) for most
of our experiments. An implementation of the model
is available at: www.iro.umontreal.ca/~memisevr/

aescoring

4. Conclusion

We showed how we may assign unnormalized confi-
dence scores to autoencoder networks by interpret-
ing them as dynamical systems. Unlike previous ap-
proaches to computing scores, the dynamical systems
perspective allows us to compute scores for various
transfer functions and independently of the training
criterion. We also show how multiple class-specific au-
toencoders can be turned into a generative classifier
that yields competitive performance in difficult bench-
mark tasks.

While a class-independent processing hierarchy is
likely to be a good model for early processing in
many tasks, class-specific dynamical systems may of-
fer an appealing view of higher level processing. Un-
der this view, a class is represented by a dynamic
sub-network not just a classifier weight. Such a sub-
network makes it particularly easy to model complex
invariances, since it uses a lot of resources to encode
the within-class variability.

Acknowledgements

We thank the members of the LISA Lab at Montreal,
in particular Yoshua Bengio, for helpful discussions.
This work was supported in part by the German Fed-
eral Ministry of Education and Research (BMBF) in
the project 01GQ0841 (BFNT Frankfurt).

www.iro.umontreal.ca/~memisevr/aescoring
www.iro.umontreal.ca/~memisevr/aescoring

On autoencoder scoring

References

Alain, G. and Bengio, Y. What regularized auto-
encoders learn from the data generating distribu-
tion. In International Conference on Learning Rep-
resentations (ICLR), 2013.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P.,
Pascanu, R., Desjardins, G., Turian, J., Warde-
Farley, D., and Bengio., Y. Theano: a CPU and
GPU math expression compiler. In Python for Sci-
entic Computing Conference (SciPy), 2010.

Cover, TM and Thomas, J. Elements of Information
Theory. New York: John Wiley & Sons, Inc, 1991.

Duda, H. and Hart, P. Pattern Classification. John
Wiley & Sons, 2001.

Gutmann, M. U. and Hyvärinen, A. Noise-contrastive
estimation of unnormalized statistical models, with
applications to natural image statistics. Journal
of Machine Learning Research, 13:307–361, March
2012.

Hinton, G. E. Training products of experts by mini-
mizing contrastive divergence. Neural Computation,
14(8):1771–1800, 2002.

Hyvärinen, A. Estimation of non-normalized statisti-
cal models by score matching. Journal of Machine
Learning Research, 6:695–709, December 2005.

Krizhevsky, A., Sutskever, I., and Hinton, G. Ima-
genet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems (NIPS). 2012.

Larochelle, H., Erhan, D., Courville, A., Bergstra,
J., and Bengio, Y. An empirical evaluation of
deep architectures on problems with many factors of
variation. In International Conference on Machine
Learning (ICML), 2007.

Le, Q., Ranzato, M.A., Monga, R., Devin, M., Chen,
K., Corrado, G., Dean, J., and Ng, A. Building high-
level features using large scale unsupervised learn-
ing. In International Conference on Machine Learn-
ing (ICML), 2012.

Memisevic, R. Gradient-based learning of higher-order
image features. In the International Conference on
Computer Vision (ICCV), 2011.

Memisevic, R., Zach, C., Hinton, G., and Pollefeys,
M. Gated softmax classification. Advances in Neural
Information Processing Systems (NIPS), 23, 2011.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and
Bengio, Y. Contractive auto-encoders: Explicit in-
variance during feature extraction. In International
Conference on Machine Learning (ICML), 2011.

Rolfe, J. T. and LeCun, Y. Discriminative recurrent
sparse auto-encoders. In International Conference
on Learning Representations (ICLR), 2013.

Seung, H.S. Learning continuous attractors in recur-
rent networks. Advances in neural information pro-
cessing systems (NIPS), 10:654–660, 1998.

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y.,
and Manning, C. D. Semi-Supervised Recursive Au-
toencoders for Predicting Sentiment Distributions.
In Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2011.

Susskind, J., Memisevic, R., Hinton, G., and Pollefeys,
M. Modeling the joint density of two images under a
variety of transformations. In International Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), 2011.

Swersky, K., Buchman, D., Marlin, B.M., and de Fre-
itas, N. On autoencoders and score matching for
energy based models. In International Conference
on Machine Learning (ICML), 2011.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol,
P. A. Extracting and composing robust features
with denoising autoencoders. In International Con-
ference on Machine Learning (ICML), 2008.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and
Manzagol, P.A. Stacked denoising autoencoders:
Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine
Learning Research, 11:3371–3408, 2010.

Vincent, Pascal. A connection between score matching
and denoising autoencoders. Neural Computation,
23(7):1661–1674, July 2011.

Welling, M., Rosen-Zvi, M., and Hinton, G. Expo-
nential family harmoniums with an application to
information retrieval. Advances in neural informa-
tion processing systems (NIPS), 17, 2005.

Zou, W.Y., Zhu, S., Ng, A., and Yu, K. Deep learning
of invariant features via simulated fixations in video.
In Advances in Neural Information Processing Sys-
tems (NIPS), 2012.

