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ABSTRACT

In this paper we present the techniques used for the Uni-
versity of Montréal’s team submissions to the 2013 Emotion
Recognition in the Wild Challenge. The challenge is to clas-
sify the emotions expressed by the primary human subject in
short video clips extracted from feature length movies. This
involves the analysis of video clips of acted scenes lasting
approximately one-two seconds, including the audio track
which may contain human voices as well as background mu-
sic. Our approach combines multiple deep neural networks
for different data modalities, including: (1) a deep convolu-
tional neural network for the analysis of facial expressions
within video frames; (2) a deep belief net to capture audio
information; (3) a deep autoencoder to model the spatio-
temporal information produced by the human actions de-
picted within the entire scene; and (4) a shallow network
architecture focused on extracted features of the mouth of
the primary human subject in the scene. We discuss each
of these techniques, their performance characteristics and
different strategies to aggregate their predictions. Our best
single model was a convolutional neural network trained to
predict emotions from static frames using two large data
sets, the Toronto Face Database and our own set of faces
images harvested from Google image search, followed by a
per frame aggregation strategy that used the challenge train-
ing data. This yielded a test set accuracy of 35.58%. Using
our best strategy for aggregating our top performing models
into a single predictor we were able to produce an accuracy
of 41.03% on the challenge test set. These compare favor-
ably to the challenge baseline test set accuracy of 27.56%.

1. INTRODUCTION

Deep neural network techniques have recently yielded im-
pressive performance gains across a wide variety of compet-
itive tasks and challenges. For example, a number of the
world’s leading industrial speech recognition groups have
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reported significant recognition performance gains through
deep network techniques [11]. The high profile ImageNet
large scale image recognition challenge [15] has also recently
been won (by a wide margin) through the use of deep neural
networks.

The Emotion Recognition in the Wild (EmotiW) chal-
lenge [6] is based on an extended form of the Acted Facial
Expressions in the Wild (AFEW) database of Dhall et al.
[7] in which short video clips extracted from feature length
movies have been annotated for different emotions. Thus,
unlike many of the other recent high profile results with deep
learning, here we must deal with not just static images and
human speech, but the rich and complex nature of movie
scenes with potentially multiple human actors interacting
with one another, an audio track that may contain multiple
voices as well as background music from the film soundtrack.

In this paper we describe our entry into the EmotiW chal-
lenge. Our approach combines multiple emotion classifiers
each based on a different data source. (1) We use a deep
convolutional neural network based on the model of [15] for
frame-based classification of facial expressions from aligned
images of faces. To use this model to classify whole video
clips, we have implemented a novel video frame aggrega-
tion strategy based on the use of support vector machines
(SVMs). (2) We have developed a deep belief net (DBN)-
based emotion classifier from the audio signal available with
the video clips. This audio signal contains both speech and
background music. (3) We also used deep autoencoder-based
classifier that takes an activity recognition-type approach by
modeling the spatio-temporal information produced by the
human actions depicted within the entire scene. (4) We have
employed a shallow network architecture similar to that of
[4] that focuses on extracted features of the mouth of the
primary human subject in the scene and uses these features
as input to an SVM emotion classifier. Finally, we present
a novel technique to aggregate models based on random hy-
perparameter search using low complexity aggregation tech-
niques consisting of simple weighted averages. We compare
the performance of these various models and their combina-
tion.

Through this work we make a number of contributions and
observations from which we are able to draw a number of
conclusions that we believe will be of more general interest.
A core aspect of our approach is the use of a deep convolu-
tional neural network for frame-based facial expression clas-
sification. To train this model, we made use of additional
data composed of images of faces with expressions labeled



as one of seven basic emotions (angry, disgust, fear, happy,
sad, surprise and neutral). The use of this additional data
seems to have made a big difference in our performance by
allowing us to train high capacity models without overfit-
ting to the relatively small EmotiW challenge training data.
Importantly, a direct measure of per frame errors on the
challenge data does not yield performance that is superior
to the challenge baseline; however, our strategy of using the
challenge training data to learn how to aggregate the per
frame predictions was able to boost performance substan-
tially. Our audio model emerged as the second most impor-
tant element of our approach as it captured complementary
information to our top performing image based technique.
Finally, while simple averaging of all models did not yield
performance superior to a combined video-audio model, we
developed a novel technique to aggregate models based on
random search which was able to exploit the complementary
information within the predictions of all models and which
yielded our highest performing technique on the challenge
test set. We outline all these models in further detail in
section 2, discuss techniques for their aggregation in section
3, then make more detailed observations and conclusions in
section 4.

2. MODELS

We begin here with a discussion of two different convolu-
tional neural network techniques that we explored for facial
expression recognition. We present the first model in sec-
tion 2.1 in greater detail as it yielded higher performance
on the challenge validation set. However, we also outline an
alternative deep network architecture in less detail in sec-
tion 2.2. We then present our deep restricted Boltzmann
machine based audio model in section 2.3, our deep autoen-
coder based technique inspired by activity recognition tech-
niques in section 2.4 and a shallow neural network model
based on bag of mouth features, in section 2.5. We discuss
the combination of these models in section 3.

2.1 Faces & Convolutional Network #1

As discussed above, a key aspect to our approach here
is that we did not use the challenge data directly to per-
form learning with this deep neural network. The network
is shown in figure 1 and we discuss both architecture and
data preprocessing in further detail below. We trained this
network with two large static image databases of facial ex-
pressions for the seven emotion categories: the Toronto Face
Dataset (TFD)[18] and a large facial expression database
harvested from Google image search then cleaned and la-
beled by hand [2]. The TFD contains 4,178 images labeled
with basic emotions and composed of a number of other stan-
dard expression datasets, essentially with only fully frontal
facing poses. All these images were preprocessed based on
registering the eyes and then resized to 48x48. The Google
dataset consists of 35,887 images with the seven expression
classes: angry, disgust, fear, happy, sad, surprise and neu-
tral. The dataset was built by harvesting imagery returned
from Google’s image search using keywords related to ex-
pressions. Images are in grayscale of the size 48x48. We then
aggregated the results of this model applied to all frames of
the AFEW2 challenge using an SVM. For each video, the
seven per frame emotion predictions of the network are com-
bined so as to produce a fixed length vector with ten blocks
of seven predictions over the duration of the video. We dis-

cuss the network architecture and the complete processing
and training procedure in more detail below, including our
procedure for expanding and contracting the results of the
per frame predictions across the variable number of frames
that constitute each video.

Before continuing with our more detailed discussion, we
note at this point that we evaluated a number of training
strategies for the static frame deep network and aggrega-
tion strategy before selecting the exact configuration used
for our first submission to the challenge. Most importantly,
one of these strategies included a procedure in which every
frame containing a face extracted from the video clips of the
challenge data training set (using the complete processing
pipeline, deep network architecture and training presented
below) was also used to train the deep network. This is in
sharp contrast with the alternative that we ended up using
in which the challenge training data was not used to train
the deep network and was only used to train an SVM based
aggregator on the predictions from the deep network. While
the strategy of including the challenge data in the deep net-
work training yielded an accuracy of 96.73% on the challenge
training data - which is dramatically better than our sub-
mitted models training set accuracy of 46.87%; however, the
validation set accuracy fell to 35.32% which is considerably
lower than the 38.96% validation set accuracy of our first
submitted model in which the challenge training data was
not used to learn the deep network and was only used to
train the aggregator SVM. A learning curve for the deep
network trained using this strategy is shown in figure 2.

Our best network of this type was therefore trained on the
two combined ‘extra’ datasets, using early stopping based on
the challenge train and validation sets. To simplify the re-
mainder of our discussion here, we shall refer to the challenge
train, validation and test data sets as the AFEW2 train, val-
idation and test sets as they derive from the original AFEW
database discussed in our introduction.
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Figure 2: ConvNet 1 classification error on training

and validation sets (before aggregation)

2.1.1 Our AFEW?2 Facetube Extraction Procedure

Video frames were extracted from the AFEW2 challenge
clips in a way that ensured the aspect ratio of the original
movie was preserved. The Google Picasa face detector [§]
was then used to detect and crop all faces detected in each
frame. In order to get the bounding boxes from the output
of Picasa, which consisted of cropped images we used Haar-
like feature-based matching method as direct pixel to pixel
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Figure 1: The convolutional neural network architecture used for our ConvNet 1 experiments.

matching did not yield satisfactory performance. Since Pi-
casa was not able to detect faces in all the frames, in those
frames without any detected bounding box we looked in the
spatial neighbourhood of the temporally closest bounding
box and compared the histogram of color intensities to de-
cide if a face was present or not. We also used a couple of
basic heuristics such as the relative positions of bounding
boxes, their sizes and overlap in consecutive frames to ex-
tract the final facetubes for each identity in each clip based
on the bounding boxes from the previous steps.

In the AFEW2 test clips the Picasa face detector was
not able to detect any face for 7 clips. We thus used the
combined landmark placement and face detection technique
of [22] to find faces in these clips. The facial key points
returned by the model were then used to build the bounding
boxes. The facetubes were then assembled with the same
procedure described previously.

2.1.2  Other Pre-processing of Datasets

AFEW2 facetubes smoothing: In order to get images where
faces sizes vary gradually in the images sequence, a smooth-
ing procedure was applied on the AFEW?2 facetube bound-
ing boxes from section 2.1.1 For all images in a facetube,
we first smooth the coordinates of the opposite corners of
the bounding box with a 2-sided moving average (11 frame
window size). The largest centered square is then drawn in-
side these smoothed bounding boxes, creating new, square
bounding boxes which more tightly frame the faces. Next, a
second smoothing is applied on the center of the bounding
boxes with the same kind of moving average. By applying
this second smoothing, the bounding boxes move gradually
in the sequence of images.

Finally, in order to handle large changes of bounding box
lengths that result from dramatic changes of camera posi-
tion and magnification (e.g. changing from a medium shot to
a close-up shot), we applied a further polynomial smooth-
ing directly on the 2 bounding box size dimensions. We
fit 2 low-order polynomials of 0 (constant) and 1 (linear)
degree through the lengths of the bounding boxes sides.
For a given facetube, if the 1-degree-polynomially-smoothed
lengths change by a scale threshold (i.e. the slope x face-
tube length of the linear fit is above the threshold), then
we use the values returned by the 1-degree polynomial as
the lengths of the bounding box. Otherwise, the 0-degree-
polynomial-smoothed bounding box lengths are used. Em-
pirically we found a threshold of 1.5 to give reasonable re-
sults.

For each facetube, the faces are then cropped based on
the smoothed bounding boxes and resized to 48x48.
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Figure 3: Raw images at the top and their IS-
preprocessed corresponding images below

Registration: The AFEW2 and TFD images are registered
to the Google dataset using 51 facial points. These land-
marks are detected by a landmark detection model which
is based on mixture of trees [22] which capture pose varia-
tions. The model returns 68 points but we ignored the face
contour for registration process. Images in Google dataset
and AFEW2 have different poses but most of the time faces
are frontal. To reduce the noise, we computed the mean
shape with no-pose along each dataset and then computed
the transformation between the two shapes. For transforma-
tion the Google data considered to be the base shape and
the similarity transformation is used to compute the map-
ping. Once we have this mapping we map all other data to
Google data. TFD only includes faces where Google data
cropped with a small border around the face. To solve this
issue we added a random noisy border to all TFD images.

Tllumination normalization using isotropic smoothing : To
compensate for illumination variation in all datasets, we
used a diffusion-based approach [10]. We used isotropic
smoothing (IS) function from INface toolbox [20, 17]. The
smoothness parameter is set to default with no normaliza-
tion as post-processing step. See figure 3 for an example.

2.1.3 Convolutional Network #1

This convolutional neural network (ConvNet) is based on
the C++ and Cuda implementation of Krizhevsky et al.
[14]. The architecture of our particular instantiation of this
type of network is shown in Figure 1. The ConvNet input
consists of images of size 40x40 that are cropped randomly
from the original 48x48 images. These images are flipped
horizontally with a probability of 0.5. At each epoch, the
cropping and flipping are repeated and the cropped images
are different. The ConvNet has 3 stages with different layers,
the first 2 stages include a convolution layer followed by a
max or average pooling layer, then a local response normal-
ization layer (with the same mapping) and the third stage
has a convolution layer followed by an average-pooling layer.
This stage has 128000 units. The first stage has a max-
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Figure 4: Frame aggregation via averaging

pooling layer whereas the second is using average-pooling.
The last stage (classification) is a fully-connected layer with
7 units (classes) with a softmax layer as classifier. The test
error is computed on patches cropped from center only. The
early-stopping method is based on AFEW2 validation and
train sets, and it was stopped at 453 epochs. The training is
done on our extra data and the AFEW2 train is only used
to train the SVM.

2.1.4  Per Frame Prediction Aggregation with an SVM

Using ConvNet 1, we classified all frames extracted from
AFEW?2 train, validation and test. For each frame the out-
put is a 7-class probability vector. These probabilities are
then aggregated to build a fixed-length representation for
each video-clip. Given a video-clip, all frames extracted from
the video are ordered based on time. Since, AFEW2 video-
clips do not have the same number of frames and for some
of the frames facetube extraction method failed to find any
face, we transformed the probabilities into 10 bins by aver-
aging the 7-class probabilities within 10 independent groups
of frames. For video-clips with less than 10 frames, we ex-
panded the frame sequence by simply repeating them uni-
formly. Finally, each video is represented by concatenating
the averaged probabilities for each bin, which is a vector of
70 features. The processes of frame aggregation by averag-
ing and expansion are shown in figures 4 and 5 respectively.
Our aggregation method generates feature vectors for train,
validation and test sets. For solving the final video classi-
fication problem, we used a support vector machine (SVM)
and the implementation in [3] with a radial basis function
kernel (RBF). The hyperparameters, v and ¢ were tuned on
the AFEW?2 validation set. The SVM type used in all exper-
iments was a C-support vector classifier and the outputs are
probability estimates so that we could more easily combine
results with other models.

2.2 Faces & Convolutional Network #2

In this model, we used a simpler convolutional neural net-
work that had been trained prior to the challenge on 48 x 48
grayscale images from the Toronto Face Dataset, prepro-
cessed with local contrast normalization. The network has
a single convolutional layer with 15 9 x 9 convolutional fil-
ters and 3 x 3 max pooling, followed by a hidden layer of
256 units, and a 7 classes softmax output that produces pre-
dicted probabilities corresponding to the 7 emotion classes
of interest. Since it had been trained on TFD, whose faces
are roughly aligned based on eye positions, we tried to sim-
ilarly align the faces detected in the challenge video frames.
We used the average of eye-related landmarks output by [22]
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Figure 5: Frame aggregation via expansion

to compute the center of the eyes, and computed the affine
transformation to map the eyes to their usual position in
the 48 x 48 TFD faces, using only rotation and equal axis
scaling. This yielded 48 x 48 “TFD-like” grayscale faces, to
which we applied local contrast normalization, and fed to
the convolutional network.

For each challenge sequence, we thus collected the vector
of emotion probabilities (of length 7) output by the network
for the biggest face detected in each frame. Each sequence
was then summarized using a few simple statistics on these
emotion probabilities vectors obtained over the sequence:
average, max, average of square, average of winner-take-all
(one-hot vectors), average of maximum suppression vectors
(keeping only the probability of the winning class, setting
the others to 0). This yielded a fixed length “feature vector”
for each sequence of the challenge.

In contrast to our previous convolutional network where
we used an SVM for aggregation across frames, here we gen-
erated predictions to classify the clips using a multilayer per-
ceptron (MLP) trained on sequence-level features we have
produced. This MLP was composed of one rectified linear
layer of 400 hidden units followed by a linear output of 7
units. The cost function used was a multiclass margin, de-
fined as follow:

Let o be the output vector and t the target index.

L = rectifier(1 + max(o—¢) — o)

where max(o—¢) is the maximum of all values of o except
z ifzx>0
0 else
idation set was found with a learning rate of 0.0001. L2
weight decay proved to be important to avoid strong over-
fitting on the training set with a coefficient of 0.001 for the
hidden layer and 1.0 for the linear output layer. We also
used early stopping based on the validation set to further
avoid overfitting.

2.3 Audio & Deep RBMs

As we have noted earlier, deep learning based techniques
have lead to a number of recent successes in speech recog-
nition [11]. We followed a deep learning approach for per-
forming emotion recognition on AFEW2 movie clips based
on the audio using deep Restricted Boltzmann Machines
(RBMs). In order to tune the hyperparameters of our model,
we performed crossvalidation using the AFEW?2 validation
dataset, we used both random hyperparameter search with
some manual finetuning of the hyperparameters afterwards.

Choosing the right features is a crucial aspect of the audio
classification. Mel-frequency cepstral coefficients (MFCCs)

o¢ and rectifier(x) = Best accuracy on val-



are widely used for speech recognition; however, in this task
we are mainly interested in detecting emotions. Moreover
emotion recognition on film audio is quite different from
other audio tasks. For example, even when speech is present
in the audio of a movie, background noise and the sound-
track of the movie can be significant indicators of emotion
in the clip. For the EmotiW challenge, we extracted sev-
eral features from the mp3 files extracted from the movie
clips using the yafee library! with a sampling rate of 48
kHz. We extracted 29 different features from those mp3
files. We used all 27 features provided by yafee library ex-
cept "Frames”. Additionally 3 types of MFCC features are
used, the first used 22 cepstral coefficients, the second used a
feature transformation with the temporal first order deriva-
tive and the last one using second order temporal derivatives.
Online PCA was applied on the extracted features, and 909
features per timescale were used [9].

2.3.1 DBN Pretraining

We used unsupervised pretraining with deep belief net-
works (DBN) on the extracted audio features. The DBN
has two layers of RBMs, first layer RBM was a Gaussian
RBM with noisy rectified linear unit (ReLU) nonlinearity [5],
the second layer RBM was a Gaussian-Bernoulli RBM. We
trained the RBM’s using stochastic maximum likelihood and
contrastive divergence with one Gibbs step (CD-1). Each
RBM layer had 310 hidden units. The first and second layer
RBM’s were trained with learning rates of 0.0006 and 0.0005
respectively. An L2 penalty with 2 x 1072 and 2 x 10™* was
used for the first and second layer respectively. Both the
first and second layer RBM’s were trained for 15 epochs on
the AFEW2 training dataset. We bounded the noisy ReLLU
activations of the first layer Gaussian RBM, such that the
activation function min(a, maz(0,x + 1)) were used where
1 ~ N(0,0(x)) with @ = 6. Otherwise large activations
of the first layer RBM was causing problems training the
second layer Gaussian Bernoulli RBM. We used a Gaussian
model of the form N(0,0(x)), with 0 mean and standard
deviation of o(x) = m. At the end of unsupervised
pretrainining, we initialized the MLP with ReLLU nonlinear-
ity for the first layer and sigmoid nonlinearity for the second
layer using the weights and biases of the DBN.

2.3.2  Temporal Pooling for Audio Classification

We used a multi-time-scale learning model [9] for the MLP
where we pooled the last hidden representation layer of an
MLP so as to aggregates information across frames before
a final softmax layer. We experimented with several dif-
ferent pooling methods including max pooling and mean
pooling, but we obtained the best results with a specifically
designed type of pooling for the MLP features discussed be-
low. Assume that we have a matrix A for the activations of
the MLP’s last layer features that includes activations of all
timescales in the clip where A € R**% and dy is the vari-
able number of timescales, ds is the number of features at
each timescale. We sort the columns of A in decreasing order
and get the top N rows using the map, f : R**4f — RN*ds,
The most active N features are summarized with a weighted

"Yaafe: audio features extraction toolbox: http://yaafe.
sourceforge.net/

average of the top-N features:
1 X
— (@) (7.
F = v ZE:O wi f*(A; N) (1)

where f(V(A; N) is the i*" highest active features over time
and weights should be: Zf\;o w; = N. During the super-
vised finetuning, we feed the reduced features to the top level
softmax, we backpropagate through this pooling function to
the lower layers. We only used the top 2 (N = 2) most ac-
tive features in the weighted average. Weights of the features
were not learned and they were chosen as w1 = 1.4, w2 = 0.6
for the training and w; = 1.3, w2 = 0.7 for the test time.
This kind of feature pooling technique worked best, if the
features are extracted from a bounded nonlinearity such as
sigmoid(.) or tanh(.).

2.3.3  Supervised Finetuning

Only the AFEW2 training dataset was used for supervised
finetuning and we did early stopping by measuring the er-
ror on the AFEW2 validation dataset. The features were
centered prior to the training. Before initiating the super-
vised training, we shuffled the order of clips. During the
supervised finetuning phase, at each iteration on training
dataset, we randomly shuffled the order of the features in
the clip as well. At each training iteration, we randomly
dropped out 98 clips from the training dataset and we ran-
domly dropped out 40% of the features in the clip. 0.121
% of the hidden units are dropped out and we used a norm
constraint on the weights such that the L2 norm of the in-
coming weights to a hidden unit do not exceed 1.2875 [12].
In addition to drop-out and maximum norm constraint on
the weights, a L2 penalty with coefficient of 10™° was used
on the weights as well. The Rmsprop adaptive learning rate
algorithm was used to tune the learning rate with a variation
of Nesterov’s Momentum [19]. But as opposed to the tradi-
tional rmsprop implementations, we used different learning
rate per coordinate and, we divided the learning rate by the
running average of root mean square of gradients after tak-
ing the momentum and gradient step. At each iteration we
keep track of mean square of the gradients by:

RMS(Avs1) = pRMS(A) + (1 — p)A7 (2)

and compute the momentum, then do the stochastic gradi-
ent descent (SGD) update:

200,

U1 — EOW
Ory1 = 0:+ -
RMS(A¢41)

(3)
After performing crossvalidation, we decided to use an €y =
0.0005 , p = 0.46 and p = 0.92. We used early stopping
based on the validation set performance, yielding an accu-
racy of 29.29%. Once supervised finetuning had completed
50 iterations, if the validation error continued increasing, the
learning rate was decreased by a factor of 0.99.

Af(x;04)
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2.4 Activity Recognition & Deep Autoencoders

Given a video sequence with a human emotion in it, most
of the visual approaches that we have discussed so far do
not use features derived from the temporal structure of video
frames. In our approach here we considered spatio-temporal
motion patterns in the video to predict an emotion label.
For this task we used a recognition pipeline described in
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[13, 16, 21] with a spatio-temporal autoencoder presented
in [13] for feature learning. The model was trained on PCA-
whitened input patches of size 10 x 16 x 16 cropped randomly
from training videos. The number of training samples is
200, 000. The number of hidden units in the spatio-temporal
autoencoder is 300.

For inference, we cropped sub blocks of the same size as
the patch size from 14 x 20 x 20 pixel “super-blocks”, using
a stride of 4 [13, 16]. This yields 8 sub blocks per super
block. We obtained a super block descriptor by performing
PCA on the concatenation of sub block filter responses. We
used K-means clustering on the super block descriptors to
learn a vocabulary of 3000 spatio-temporal words. We rep-
resented each video as the histogram over spatio-temporal
words, which we classified using a x*-kernel SVM.

2.5 Bag of Mouth Features & Shallow Networks

This model uses the aligned faces provided by the organiz-
ers, which were obtained from Zhu and Ramanan’s detector
[22]. The images, after being downsized by a factor of ap-
proximately 2 in each direction (71 x 90 pixels), are cropped
in order to only keep a small region around the mouth. The
purpose of this step, especially given the fairly small size of
the training dataset, is to avoid learning irrelevant coinci-
dences in regions less expressive than the mouth.

The rest of the pipeline mostly follows a procedure de-
scribed by Coates [4], with a few modifications. The mouth
images are subdivided into 16 regions using a 4 x 4 grid. For
each of these zones, many 8 x 8 RGB patches are extracted
from the training images. These patches are individually
standardized by DC-centering and contrast normalization
(subtracting the mean and dividing by the standard devi-
ation of the elements). To avoid division by zero, a small
value is added to the standard deviation prior to the divi-
sion. Then, for each of the 192 elements, the mean across
all patches from a given region is computed and subtracted
from the patches. As [4] showed that whitening is often help-
ful in image classification tasks, the patches are whitened,
keeping 90% of variance. After this preprocessing, a dictio-
nary of size 400 is learned for each of the 16 regions by using
the K-means algorithm.

For all images of the training, validation and test sets, 8
x 8 patches are extracted densely within each region and
processed as in the preceding paragraph. Each patch is
then assigned a 400-dimensional feature vector by compar-
ing it to the appropriate centroids. More specifically, the
so-called triangle activation [4] is used. For each centroid &
(k=1,...,400), the Euclidian distance zp between it and
the whitened patch is computed, and then so is the average
1(z) of these 400 distances. The activation of a given feature
k is finally taken as max (0, u(z) — zk).

Within each of the 16 regions, the vectors are pooled by
averaging the responses of all patches. The 16 resulting
vectors are subsequently concatenated. Using these 6400-
dimensional feature vectors, a frame-by frame-classifier is
trained using logistic regression with regularization. The
probabilities for each clip are finally computed by simply av-
eraging the probability vectors of the corresponding frames.

3. RESULTS & COMBINING MODELS

In figure 6 (a-e) we show the validation set confusion ma-
trices from the models yielding the highest validation set
accuracy for each of the techniques discussed in section 2.
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Figure 6: Confusion matrices on the validation set.
Accuracy for each method is also given for the
(training, validation & test sets, if applicable).

From this analysis one can see that ConvNet 1 yielded the
highest validation set accuracy and we therefore selected this
model as our first submission, yielding a test set accuracy
of 35.58%. This also indicated in table 1 which contains a
summary of all our submissions. ConvNet2 was our second
highest performer, followed closely by the bag of mouth and
audio models at 30.81%, 30.05% and 29.29% respectively.
We used the following strategies to combine predictions.



Sub. | Train | Valid Test | Method

45.79 | 38.13 | 35.58

Google data & TFD used to train ConvNet 1, frame scores aggregated with SVM

71.84 | 42.17 | 38.46

ConvNet 1 (from submission 1) combined with Audio model using another SVM

97.11 | 40.15 | 37.17

Mean prediction from: Activity, Audio, Bag of mouth, ConvNet 1, ConvNet 2

98.68 | 43.69 | 32.69

SVM with detailed hyperparam. search: Activity, Audio, Bag of mouth, ConvNet 1

94.74 | 47.98 | 39.42

Short uniform random search : Activity, Audio, Bag of mouth, CN1, CN1 + Audio

94.74 | 48.48 | 40.06

Short local random search : Activity, Audio, Bag of mouth, CN1, CN1 + Audio

| | Y x| W N

92.37 | 49.49 | 41.03 | Moderate local random search : Activity, Audio, Bag of mouth, CN1, CN1 + Audio

Table 1: Our 7 submissions with training, validation and test accuracies.

3.1 Averaged Predictions

A simple way to make a final prediction using several mod-
els is to take the average of their predictions. We had 5 mod-

n
els in total, which gives Z 7; = 31 possible combinations
i=1

(order has no importance). In this context it is possible to
test every possible combinations on the validation set to find
those which are the most promising. Through this analysis
we found that the average of all models yielded the high-
est validation set performance of 40.15%. The validation
set confusion matrix for this model is shown in figure 6 (g).
For our third submission we therefore submitted the results
of the averaged predictions of all models, yielding 37.17%
on the test. From this analysis we also found that the ex-
act same validation set performance was also obtained with
an average not including our second convolutional network,
leading us to make the intuitive conclusion that both con-
volutional networks were providing similar information.

The next highest performing simple average was 39.90%
and consisted of simply combining ConvNet 1 and our audio
model. Given this observation and the fact that the con-
ference baselines included both video, audio and combined
audio-video models we decided to submit a model in which
we use just these two models. However, we first explored a
more sophisticated way to perform this combination.

3.2 SVM and MLP Aggregation Techniques

To further boost the performance of our combined audio-
video model we simply concatenated the results of our Con-
vNet 1 and audio model using vectors and learned a SVM
with an RBF kernel using the challenge training set. The hy-
perparameters of the SVM were set via a two stage coarse,
then fine grid search over integer powers of 10, then non-
integer powers of 2 within the reduced region of space. The
hyperparameters correspond to a kernel width term, v and
the usual ¢ parameter of SVMs. This process yielded a
model with 42.17% accuracy on the validation set, which
became our second submission and produced an accuracy of
38.46% on the challenge test set. The validation set confu-
sion matrix for this model is shown in figure 6 (f).

Given the succes of our SVM combination strategy, we
tried the same technique using the predictions of all models.
However, this process quickly overfit the data and we were
not able to produce any models that were able to improve
upon our best validation set accuracy obtained via the Con-
vNet 1 and audio model. We observed a similar effect using
a strategy based upon an MLP to combine the results of all
model predictions.

We therefore tried a more sophisticated SVM hyperpa-
rameter search to re-weight different models and their pre-
dictions for different emotions. We implemented this via a
search over discretized [0, 1,2, 3] per dimension scaling fac-

tors. While this resulted in 28 additional hyperparameters
this discretization strategy allowed us to explore all combi-
nations. This more detailed hyperparameter tuning did al-
low us to increase the validation set performance to 43.69%.
This became our fourth submission; however, the strategy
yielded a decreased test set performance at 32.69%.

3.3 Random Search for Weighting Models

Recent work [1] has shown that random search for hyper-
parameter optimization can be an effective strategy, even
when the dimensionality of hyperparameters can be mod-
erate (ex. 35 dimensions). Analysis of our validation set
confusion matrices shows that different models have very dif-
ferent performance characteristics across the different emo-
tion types. We therefore formulated the re-weighting of
per-model and per-emotion predictions as a hyperparame-
ter search over simplexes, weighting the model predictions
for each emotion type.

To perform the random search, we first generated uniform
random weights and then normalized them to produce seven
simplexes. This process is slightly biased towards weights
that are less extreme compared to other well known pro-
cedures that are capable of generating uniform values on
simplexes. After running this sampling procedure for a num-
ber of hours we used the weighting that yielded the highest
validation set performance (47.98%) as our 5th submission.
This yielded a test set accuracy of 39.42%. We used the
results of this initial random search to initiate a second, lo-
cal search procedure which is analogous in a sense to the
typical two level coarse, then fine level grid search used for
SVMs. In this procedure we generated random weights us-
ing a Gaussian distribution around the best weights found
so far. The weights were tested by calculating the accuracy
of the so-weighted average predictions on the validation set.
We also rounded these random weights to 2 decimals to help
to avoid overfitting on validation set. This strategy yielded
40.06% test set accuracy with a short duration search and
41.03% with a longer search - our best performing submis-
sion on the test. The validation set confusion matrix for
this model is shown in figure 6 (h) and the weights obtained
through this process are shown in figure 7.

>
&8 & N \@"é

.01 27 .05

X <
) N4 . & ©
@ & °

.26 .07 =B .10

27 .18 =8 .00

.36 .18 .20

.10 .30 .06 .00

Figure 7: Final weights used for model averaging



4. FINAL CONCLUSIONS & DISCUSSION

Our efforts here have lead to a number of contributions
and a number of insights which we believe may be more
broadly applicable. First, we believe that our approach of
using the large scale mining of imagery from Google image
search to train deep neural networks has helped us avoid
overfitting in our facial expression model. Perhaps counter-
intuitively, we have found that our convolutional network
models learned using only our additional static frame train-
ing data sets were able to yield higher validation set perfor-
mance if the labeled video data from the challenge was only
used to learn the aggregation model and the static frames of
the challenge training set were not used to train the under-
lying convolutional network. We believe this effect is also
explained in part by the fact that many of the video frames
in isolation are not representative of the emotional tag and
their inclusion in the training set for the static frame deep
neural network classifier further exacerbates the problem of
overfitting, adding noise to the training set.

The problem of overfitting had both direct consequences
on per-model performance on the validation set as well as in-
direct consequences on our ability to combine model predic-
tions. Our analysis of simple model averaging showed that
no combination of models could yield superior performance
to an SVM applied to the outputs of our audio-video mod-
els. Our efforts to create both SVM and MLP aggregator
models lead to similar observations in that models quickly
overfit the training data and no settings of hyperparameters
could be found which would yield increased validation set
performance. We believe this is due to the fact that the ac-
tivity recognition and bag of mouth models severely overfit
the challenge training set and the SVM and MLP aggrega-
tion techniques - being quite flexible - also overfit the data
and in such a way that no traditional hyperparameter tuning
could yield validation set performance gains.

These observation led us to develop the novel technique
of aggregating the per model and per class predictions via
random search over simple weighted averages. The resulting
aggregation technique is therefore of extremely low complex-
ity and the underlying prediction was therefore highly con-
strained - using simple weighted combinations of complex
deep network models, each of which did reasonably well at
this task. We were therefore able to explore many configu-
rations in a space of moderate dimensionality quite rapidly
as we did not need to re-evaluate the predictions from the
neural networks and we did not adapt their parameters. As
this yielded a marked increase in performance on both the
challenge validation and test sets it leads us to the inter-
pretation that given the presence of models that overfit the
training data, it may be better practice to search a moderate
space of simple combination models compared to more tra-
ditional approaches such as searching over the smaller space
of SVM hyperparameters or even a moderately sized space
of traditional MLP hyperparameters including the number
of hidden layers and the number of units per layer.
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