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Abstract

We provide a tutorial overview of supervised learning with structured outputs. Taking the perspective
of linear classification, we describe several recently discussed approaches in a unified framework, in which
particular instantiations differ only in the choice of loss-function. We describe in detail the problems of
parameter estimation and inference in these models and discuss nonparametric variants that are based
on the use of kernels.

1 Introduction

Machine learning offers two complementary strategies for constructing intelligent systems: The first is to
construct them ’by example’ in order to overcome the need for tedious hand-coding; the second is to use a
’divide-and-conquer’ approach, that helps to deal with uncertainty and brittleness when building complex
systems from many smaller components.

The first strategy is usually associated with supervised, or discriminative, learning: Training data is
used to specify a desired input-output behavior, and learning is used to adapt parameters of the model,
so that it behaves ’similarly’ on unseen inputs in the future. Of crucial importance for this strategy is
the issue of generalization: Only if the system is likely to behave as desired on unseen test data, can this
strategy be useful. Generalization, and conditions that warrant it, are therefore the central issue in the
theory of supervised learning.

Discriminative methods are usually defined for problems such as classification and regression, that is
problems where the output is a class-label or a typically low-dimensional real vector. Most real world tasks
are more complex than these, and require systems that are composed of many subsystems. To understand
a spoken utterance in a speech recognition task, for example, we need to perform segmentation on the
signal level, recognize phonemes, morphemes and words, parse these constituents to obtain higher level
structures, and combine these with semantic and possibly also context information. One way of solving
such a complex task would be to construct a collection of models, one for each subtask, and to combine
these to obtain the complete system. However, since subtasks are usually intertwined and strongly
interdependent, combining and making sub-models work nicely together is an extremely difficult problem,
for which the standard methods in supervised learning usually do not provide a solution.

This problem of combining many ’local’ models into a single ’global’ model, is a problem for which
typically unsupervised methods provide a solution. A standard approach in this area is to define a joint
probability distribution over a collection of random variables that represent quantities involved in the
task. Formally, such a distribution can often be specified using a probabilistic graphical model. By being
probabilistic, such a model overcomes the problem of brittleness that complicates the construction of
complex systems, and since it defines a single joint model over all components, it allows each component
to constrain each other, and thereby forces them to work together nicely as desired.

A standard way of setting up a probabilistic system is by constructing a parametric model of the
statistical process that generated the input data. Formally, such a model is defined as a conditional
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distribution of the data, where the conditioning variables are the system variables. Training such a
generative model then amounts to maximizing with respect to the model parameters the probability
of generating the training data. Applying it amounts to performing inference in the model in order to
obtain the conditional distribution over the system variables given the input, and usually requires invoking
Bayes’ rule. The rationale behind this approach is that if the model is a good model of the data generating
process, then the system variables will provide a good internal representation of the input, and so they will
be useful in solving the complex task for which the model was designed. When the number of variables
in the model is large, the distributions can be difficult to compute or to represent, since the number of
joint instantiations over all variables is exponential in the number of variables. The standard approach
for dealing with this problem is to make conditional independence assumptions, that allow us to factorize
a given distribution into functions that are defined over subsets of variables. Many computations in the
model can then – despite the exponential explosion – be performed efficiently using dynamic programming
procedures. Alternatively, variational methods offer ways of approximating the intractable distribution
by tractable ones.

While unsupervised learning methods have been successfully applied in a huge number of tasks, the
unified treatment of input- and output-variables in a joint probabilistic framework has some disadvantages
in practice. One problem is, that tractability considerations can force the system designer to make
conditional independence assumptions that are undesirable. A related problem with generative models is,
that they always model the input, even though an accurate model of the input is not necessary, if we are
ultimately interested in modeling the response of the system to a given input. In that sense generative
models are often not well ’tuned’ to the problem at hand and can waste computational resources.

Recently, a general modeling framework has emerged, that combines ideas from both supervised and
unsupervised learning. The methods are rooted in the ’engineering-by-example’-philosophy of supervised
learning and can be described and analyzed in terms of generalization and regularization. At the same
time they define complex, possibly probabilistic, models and allow us to apply dynamic programming
and variational methods to perform inference. The basic idea underlying this framework is very simple:
Rather than trying to model the input as would be done in a generative model, we consider systems that
are functions of the input. In other words, we define the learning problem as the supervised problem
of estimating a function that maps input data to a, possibly complex and probabilistic, model. The
application of the model to test-data is then simply a problem in unsupervised inference.

Since the system response is modeled directly, many of the disadvantages of generative methods do not
apply. Since the output, on the other hand, is a complex and structured model, and not a homogeneous
object such as a single class label, more complex and structured problems can be addressed withing a
single unified model than usually in supervised learning. In this review we will use the term ’structured
response model’ (SRM) to refer to these models.

The rest of this review is structured as follows: In the next section we describe in some detail standard
approaches in supervised and unsupervised learning. One goal of this section, besides sketching the
standard concepts of these areas, is to introduce the, not quite standard, notation, which has turned out
to be useful for describing structured response models. We describe the models themselves in Section 3,
where we also discuss the problems of parameter estimation and inference and further issues. In Section
4 we discuss open research problems and, as part of these, potential applications of structured response
models. Section 5 is a short conclusion.

2 Learning and Inference in AI

2.1 Supervised Learning

In the following, we discuss supervised learning on the basis of (linear) classification and derive the two
standard approaches from the perspective of loss functions for parameter estimation. We deviate from
the standard notation used in the area in order to set the stage for the more complex models that we
discuss in Section 3.
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2.1.1 Linear classifiers

Formally, we can define the problem of supervised learning as follows: We are given a training set D of
input-output pairs {(xi, yi)}N

i=1, where xi denotes an input and yi a corresponding output, and our goal is
to infer a function f(x) that behaves ’similarly’ on test data as specified in the training set. Throughout
we will concentrate on discrete output spaces for clarity and point to possible continuous extensions at
the appropriate places in the text. In this section, we also restrict y to be scalar and assume that it takes
on one out of K class-labels. Models that deal with vector-valued outputs are the subject of section 3.

The standard approach to solving the problem is to define a class Hw of functions f(x;w) that are
parameterized with some parameter vector w. A particular instantiation can then be chosen from this
class by optimizing the performance on the training data-set wrt. w. A function class that will be of
foremost interest throughout the rest of this review is the class of linear classifiers. Using a joint1 feature
vector φ(x, y), we define the decision of a linear classifier as:

f(x;w) = arg max
y

wTφ(x, y). (1)

We can interpret the decision function as follows: The inner product c(x, y;w) := wTφ(x, y) computes a
score, that can be viewed as a measure of the compatibility between the input x and a potential class label
y. The ’arg-max’ then chooses that class which gives rise to the highest score. The class-dependent, joint
feature representation φ(x, y) can be used to capture properties on which the compatibility between input
and output might depend. Its definition is part of the design of the classifier. A convenient property of
this approach is that, since the input enters the classification decision only via the feature vector, we can
define a classifier on arbitrary input spaces, beyond, say, real vector spaces. All we need to do is encode
those properties of input-output pairs that we think might be useful for classification in the entries of the
feature vector φ(x, y).

One possible way of choosing an element from the function class Hw is by measuring the performance
on the training data. For this end we can consider the empirical risk, defined as

RD(w) =
1

N

∑

i

l(xi, yi, c(xi;w)), (2)

which depends on a suitably chosen loss-function l(xi, yi, c(xi,w)) that measures how undesirable the
vector of scores c(xi,w) :=

(

c(xi, y;w)
)

y
is for training pair (xi, yi). A standard choice for l is the 0/1-

loss which is zero for correctly classified examples (ie. examples for which cyi
(xi;w) > cy(xi;w) ∀y 6= yi)

and one for the others:
l0/1(xi, yi, c(xi;w)) = 1 − δyi,f(xi;w), (3)

where δy,y′ is the Kronecker-delta. Under this loss, the empirical risk simply counts the relative number of
wrongly classified examples. Many other loss-functions are possible, and we will discuss several alternatives
later on.

While minimizing the empirical risk (Eq. 2) allows us to optimize the performance on the training
data, in practice we are usually interested in good performance on potential test cases. That the empirical
risk is related in some way to the performance on unseen test cases is obvious. Under what circumstances
and to what degree a small empirical risk does indeed entail good performance on test data, is the subject
of statistical learning theory [69]. Assuming the training cases have been drawn independently from some
distribution p(x, y), the central results of this area concern how the expected error wrt. this distribution,

R∞(w) =
1

N

∑

y

∫

p(x, y)l(x, y, c(x;w))dx (4)

is related to the empirical risk. Bounds on the difference between the two quantities can be derived, that
depend on quantities that measure the size of the function class under consideration or its complexity.

1In the literature, instead of using joint feature vectors φ(x, y), usually only input features φ(x) are used. The multi-class
decision function is then defined by using a set of weight vectors w1, . . . ,wK , ie. one for each class. We use the joint feature
representation, because structured problems (Section 3) can be most conveniently described using these.
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One such quantity is the VC-dimension. For some classifiers, such as the linear ones we consider here, a
related quantity that is especially useful in practice is simply the squared 2-norm of the weight vector w:
The smaller ‖w‖2, the better the generalization. Since good generalization to unseen data will be useful
only if the system performs also well on the training data, the common strategy for training a classifier is
to minimize the weighted sum:

Rreg(w) =
λ

2
‖w‖2 +

1

N

∑

i

l(xi, yi, c(xi;w)), (5)

where λ trades off generalization performance for classification performance on the training data. The
practice of adding a penalty term such as ‖w‖2 is referred to as regularization and the term itself as
regularizer. A good value for λ is usually found by measuring performance on a hold-out set.

The optimization problem is defined up to the loss function l(xi, yi, c(xi;w)), so to use this approach
in practice, all we need to do is to plug in a suitable one. While the 0/1-loss is often a natural choice
theoretically, it does not lend itself to efficient optimization, because of its discontinuity. To obtain an
optimization problem that can be solved efficiently in practice, several continuous, or also differentiable,
substitutes for the 0/1-loss are frequently used. We will discuss two important choices in the following two
subsections. While they can both be viewed as ways of obtaining efficiently solvable versions of Problem
5, they also give rise to new perspectives on the learning problem itself. In particular, the first allows
for an interpretation of the output of the classifier in probabilistic terms; the second one leads to the
notion of margins, which provide a geometrical intuition onto the problem of regularization. A further
difference in which both loss-functions differ from the 0/1-loss is that they not only assess the correctness
of classification decisions, but also the confidence that the classifier has in these.

Another property of the 0/1-loss is that it treats all mis-classifications equally. Another reason to look
for alternative loss functions could therefore be, that in a particular task some mis-classifications might
be more problematic than others. A general way of dealing with this problem, is to define a risk matrix
∆(y, y′) that associates a cost with each classification decision i where the correct class is j. Training a
system that accommodates this definition of risk can be performed by extending the standard learning
problem (Eq. 5) in suitable ways. We will discuss this issue in more detail in Section 3.

2.1.2 Probabilistic modeling and logistic regression

One way to obtain a differentiable alternative to the 0/1-loss is to reconsider the classification problem
in a probabilistic setting ([31]), by defining the conditional probability distribution p(y|x;w). A canonical
way of defining this distribution based on a linear compatibility measure (Eq. 1) is by setting:

p(y|x;w) =
1

Z(x;w)
exp(wTφ(x, y)), with (6)

Z(x;w) =
∑

y

exp(wTφ(x, y)), (7)

where the exponential ensures positivity, and the (input-dependent) partition function Z(x;w) the nor-
malization of the distribution. The model is commonly referred to as logistic regression. A typical inference
problem under this model, based on a test input xtest, is to find f(xtest) = arg maxy p(y|x

test;w), which
by taking the ’log’ can be seen to be the problem in Eq. 1. However, having a distribution over y can
be advantageous, since it allows us to compare confidences across potential candidate values, for exam-
ple. Note also that we can view the minimizer of Eq. 5 under this loss as the maximum a posteriori
(MAP)-estimate under a Bayesian model with Gaussian prior on w.

A standard way of fitting the parameters of a probabilistic model is to maximize the conditional
log-likelihood averaged over the training data:

L(w) =
∑

i

log p(yi|xi;w). (8)

Note that maximizing a regularized version of this objective function is equivalent to minimizing Eq. 5,
with a per-example ’log-’loss defined as

llog(xi, yi, c(xi;w)) = − log p(yi|xi;w) = logZ(xi,w) − wTφ(xi, yi) (9)
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Since the log-loss is differentiable, we can optimize the model for example by using gradient-based methods.
The objective function is convex, and so we are guaranteed to obtain the global optimum. The gradient
of the log-likelihood can be easily shown to be

∂L(w)

∂w
=

∑

i

φ(xi, yi) − Ep(y|xi;w)φ(xi, y), (10)

where Ep(y|xi;w) denotes expectation wrt. p(y|xi;w). In standard classification problems, where the
number of classes is relatively small, this expectation can be computed efficiently. The structured models
that we discuss in Section 3.2 can be viewed as logistic regression models where the number of classes is
huge. In that case, specialized procedures for computing this expectation, or at least approximating it,
are required.

2.1.3 Direct optimization and support vector machines

Another continuous (but not differentiable) alternative to the 0/1-loss is the ’hinge-loss’, which can be
defined as

lhinge(xi, yi, c(xi, yi;w)) = max
y

(

wTφ(xi, y) + l0/1(xi, yi, c(xi;w))
)

− wTφ(xi, yi). (11)

The hinge loss measures the difference between the maximal confidence that the classifier has over all
classes and the confidence it has in the correct class. In computing this maximum, all wrong classes get a
’head start’ by adding 1 to the confidence. As a result, the hinge loss is 0, if the confidence in the correct
class is by at least 1 greater than the confidence in the closest follow-up. Otherwise the loss scales linearly
with the difference in these confidences.

Even though the hinge-loss is not differentiable, it can give rise to a tractable variant of the 0/1-
loss based learning problem, too. The reason is that the hinge-loss allows us to recast the optimization
problem (Eq. 5) as an equivalent constrained optimization problem ([17]; see [15],[18] for the binary
setting): Introducing slack variables ξi, and the vector ξ = (ξi)i, we can solve the problem implicitly by
solving the quadratic program:

min
w,ξ

1

2
‖w‖2 + C

∑

i

ξi (12)

s.t. wTφ(xi, yi) − max
y

(wTφ(xi, y) − δy,yi) = 1 − ξi, ∀i,

where for consistency with the standard notation in the literature we use C = 1
λN instead of λ (compare

to Eq. 5) as a trade-off parameter here. To simplify the problem, note that we can replace each nonlinear
equality constraint by N linear inequality constraints:

wTφ(xi, yi) − wTφ(xi, y) ≥ 1 − δy,yi − ξi, ∀i, ∀y

We can now solve the resulting program using standard numerical techniques. Alternatively, since the
program is convex, we can equivalently solve the dual [12]:

max
α

∑

i,y

αi(y)(1 − δy,yi) −
1

2
‖
∑

i,y

αi(y)(φ(xi, yi) − φ(xi, y)‖2 (13)

s.t.
∑

y

αi(y) = C ∀i, αi(y) ≥ 0 ∀i, ∀y,

where we use α := (αi(y))(i,y) ((i, y) is a multi-index that we use only here).
After solving the dual, we can express the weight vector as (which, as the dual itself, can be derived

by considering the KKT optimality conditions):

w =
∑

i,y

αi(y)
(

φ(xi, yi) − φ(xi, y)
)

. (14)
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An advantage of using the hinge loss is, that in contrast to the solutions of the logistic regression
objective, the solutions of this dual program are usually sparse wrt. α, ie. only a small number of αi(y)
are not equal to zero. This is an indirect result of using the non-smooth hinge-loss and the main motivation
for considering this loss function as an alternative to the log-loss. Data-points xi for which αi(y

i) 6= C
are called support vectors, and the overall model is called correspondingly support vector machine
(SVM). Note that the dual is a problem in NK variables and constraints. For a reasonably small number
of data-points and class labels the program can be solved efficiently. In Section 3.3.1, we will consider
the problem for a huge number of class labels. As in the corresponding extension of logistic regression,
specialized procedures will be required to solve the problem. If the number of points (and classes) is small,
Problem 13 can solved by using standard techniques for solving convex quadratic programs. However,
much more efficient methods have been suggested that make use of the special structure of the problem. A
common procedure, ’sequential minimal optimization’ (SMO) [53], solves the dual by successively solving
for pairs of variables αi(y), αj(y

′), which can be achieved in closed form.
The feature vectors appear in both, the dual program, and the application of the dual representation

(Eq. 14) to test data, in the form of inner products only. We can replace these by positive definite,
symmetric kernel functions and fit the model in a kernel induced feature space [60]. We discuss the use
of kernels in more detail in the next section.

Note that the hinge-loss (Eq. 11) penalizes not only wrong classification decisions, but also correct
decisions with low confidence. It is intuitively obvious, that minimizing it therefore gives rise to classifiers
that are in a way more robust than those that we would obtain from minimizing the 0/1-loss. In the
binary and linearly separable case this property is accompanied by the appealing intuition of margins [60]:
By minimizing the regularized hinge-loss for a linearly separable, binary training set, we maximize the
distance that the separating hyperplane has from the closest examples within each class. Note however,
that the log-loss (Eq. 9), even though it does not share this intuition, also penalizes low confidence and
leads to comparable generalization performance in practice. And similar to hinge-loss based classifiers,
logistic regression can also be ’kernelized’. The only practically relevant differences between these two loss
functions are therefore that the log-loss allows us to define a classifier probabilistically, while the hinge-loss
leads to sparse solutions, and that parameter estimation usually involves unconstrained, gradient based,
optimization for the first and the solution of a quadratic program for the latter.

Perceptron learning: An alternative algorithm for training a classifier of the form in Eq. 1 is the
perceptron learning rule [58]. It does not require the solution of a constrained program and in contrast
to logistic regression does not rely on a probabilistic model. A simple online algorithm that is based on
the perceptron learning rule works as follows: First, we initialize the parameter vector to w0 = 0. We
then sweep over the training data set T times (where T can be set beforehand), and in tth sweep over the
training data we compute ŷ = arg maxy wT

t φ(xi, yi) and update the weight vector according to:

wt+1 =

{

wt + φ(x, yi) − φ(x, ŷ), if ŷ 6= yi,
wt, otherwise.

(15)

The solution is then given by wT . Variations of this procedure are possible. One variation that can
greatly improve generalization [21] consists in accumulating the parameter vectors during the sweeps over
the training data and defining the final parameters as the average over these. For perceptron learning,
similar to logistic regression and SVMs, theoretical guarantees exist regarding both convergence and
generalization.

2.1.4 Kernels

An important property of linear classifiers is that they allow us to use the ’kernel trick’ [60] and to fit
the models in kernel induced feature spaces. A way of deriving a kernel based classifier is to replace the
parametric definition of the compatibility measure c(x, y;w) = wTφ(x, y), by a specific non-parametric
one: We define c(x, y) as an element of a Reproducing Kernel Hilbert Space [60] corresponding to a
positive definite and symmetric joint kernel function k((x, y), (x′, y′)). By the representer theorem [33]
(see [28] or [6] for an adaption to the more general multi-class setting we discuss here), the solution of
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Problem 5 under this definition admits a representation of the form:

c(x, y) =
∑

j

∑

y′

αj(y
′)k((x, y), (xj , y′)). (16)

(Note that the variables αi(y
′) are not the same as in the previous section.)

In contrast to binary settings, where we obtain a parameter for each data-point (see e.g. [60]), the
multi-class setting yields a parameter αi(y) for each data-point, class-label pair. The reason is that the
loss-functions in multi-class settings generally depend on all labellings for each data-point (see e.g. Eqs.
9 and 11). (The adaptation of the representer theorem from the corresponding binary case to this case
is straightforward.) We can now plug the dual representation of the compatibility measure (Eq. 16)
back into the optimization problem and decision function and express these solely in terms of kernels.
Optimization can then be performed with respect to the dual parameters αi(y).

Note that in the previous section the possibility of using kernels followed already from the fact that
in the dual program the feature vectors appeared only in the form of inner products. By invoking
the representer theorem, however, we can derive kernel based variants for methods that use other loss-
functions than the hinge-loss, and that do not rely on constrained optimization. By using the log-loss,
for example, we obtain kernel logistic regression, by using other loss-functions we obtain other kernel
based classifiers.

As mentioned previously, the parameters αi(y) in Eq. 16 differ from those used in Eq. 14. Their
relation can be derived straightforwardly, however: By using a simple calculation, we can rewrite Eq. 14
as:

w =
∑

j,y

[Cδy,yj − αj(y)]φ(xj , y). (17)

Plugging this representation into the compatibility wTφ(x, y) then shows that we can rewrite the rep-
resentation in Eq. 16 using the coefficients (Cδy,yj − αj(y)) where αj(y) are the dual variables in the
constrained program. We will discuss the use of kernels in more detail in the context of structured models
in Section 3.4.

2.2 Unsupervised Inference

In this section we describe methods for defining and performing inference in complex, structured mod-
els. We consider models that capture global interactions between all quantities involved, but that for
tractability express these in terms of only local interactions.

2.2.1 Graphical models and belief propagation

We can formalize the problem as follows. We define the vector z, whose components contain all variables
under consideration for a task at hand. The components can take on real values or discrete values, or
be mixed. At times, it can be useful to distinguish between input variables x and output variables y.
To define a model we consider a scalar-valued function on z. Such a global function could, for example,
measure the goodness, or the probability, of joint configurations of z. The inference task in such a model
can then be defined as performing a global operation on z based on this function. Such a global operation
could for example be a marginalization in the probabilistic case, or computing the best global configuration
z in the ’goodness’ case. Alluding to the probabilistic case, we will refer to any such global operation
as ’marginalization’. To learn a model from training data we can parameterize it using some parameter
vector w and maximize average ’goodness’ or probability of the training set wrt. to w. It can be useful
to include ’hidden’ variables in the model that are not instantiated in the training data. These can be
dealt with conveniently in this setting by marginalizing them out in training. We consider the problem
of parameter estimation in more detail in Section 2.2.3 and focus on inference in the following.

A general problem that we have to deal with when using a global function on z (such as a probability
distribution), is the combinatorial explosion that arises from the exponentially many possible configura-
tions of z. A common solution to this tractability issue is to express the single global function in terms
of several (also scalar valued) local functions that are defined only on subsets of the components of z.
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We will stack these components into sub-vectors zs in the following. Computations that involve the joint
assignment of values to z can then, under specific circumstances, be broken down into several tractable
local computations. A formalism that allows for a unified treatment of such decompositions is given by
graphical models [31]. A graphical representation that unifies several previous ones and that is useful for
our purposes is given by factor graphs [35].

z5

ψ(z2, z3)
z3

z4

ψ(z1, z3)

ψ(z3, z4, z5)

z1
z2

Figure 1: A factor graph.

A factor graph is an undirected graph, in which each variable (component of z) and each local function
is represented by a node. The only edges that are present are those that connect function nodes with
their arguments. (Consequently, a factor graph is a bi-partite graph). An example of a factor graph is
depicted in figure 1. The graph contains five variables and three local functions; the latter are denoted by
Ψ(·). To obtain a global model from the local structure defined by the factor graph we have to choose an
operation that combines the local functions into a single global function on z. In a probabilistic model, the
local functions can be local conditional distributions or ’potential functions’, and the combining operation
multiplication. Other operations can be used in other cases, and we provide examples below. The crucial
point now is the following: If the nodes are arranged in a tree and if the operation used for combining the
local functions, together with the operation used for marginalization, forms a semi-ring, then we can,
by invoking a generalized form of the distributive law, perform inference efficiently[2] [34]: The number
of required operations to perform marginalizations in the model scales polynomially with the number of
joint configurations of the variables in the largest clique. We illustrate this point by means of an example.

Example (Markov random field): The Markov random field (MRF), also known as undirected
graphical model [31], is an example of a probabilistic model that we can represent in the factor graph
formalism. The MRF formalism is quite general and many models can be expressed in it, including
Boltzmann machines [26] or products of experts [27]. An MRF is defined as the normalized product of
potential functions, each of which is a positive, but otherwise arbitrary, function on a subset of the nodes
of z:

p(z;w) =
1

Z(w)

S
∏

s=1

Ψ(zs;w), (18)

Z(w) =
∑

z

S
∏

s=1

Ψ(zs,w) (19)

(Note that we overload the symbol Ψ and let the argument determine which function is meant.) The
potential functions are used to measure the desirability of joint instantiations of the variables within
each clique, and the partition function Z(w) to ensure normalization. Equation 18 can then be thought
of as a way of designing a distribution that reflects these desirabilities by giving high probability to
configurations that achieve high overall scores. Defining the joint as the normalized product amounts
also to making conditional independence assumptions about the joint distribution. These independence
assumptions are commonly referred as ’Markov’ properties. Note that the operation to define the joint is
multiplication, while the standard operation to perform inference in a probabilistic model is summation
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(to compute marginals or Z(w), e.g.). The two operations form a semi-ring, and so inference can be
performed efficiently. To compute, for example, the marginal distribution for variable z1 under the model
we have to compute a sum over all variables except z1:

p(z1;w) =
1

Z(w)

∑

z2

. . .
∑

zI

S
∏

s=1

Ψ(zs;w). (20)

Now, by invoking the distributive law we can ’push’ some of the summations into the product and compute
the marginal by using a cascade of sums over products (ie. we evaluate Eq. 20 incrementally from ’right
to left’). The largest number of values that we need to sum over at any instance in time then corresponds
to the largest number of arguments that a single potential function references. Analogously, we can
efficiently compute other marginals under the model, Z(w), or expectations under the model. Notation
can be simplified at times for these kinds of procedure by defining the ’not-sum’

∑

∼zi
as a shorthand for

∑

z1,...,zi−1,zi+1,...,zI
, which is simply the sum over all component except for zi. We will make use of this

notation later on in this review.
A common alternative to the probabilistic ’sum-product’ semi-ring is the ’min-sum’ semi-ring. We

obtain this semi-ring by defining a global function on z as the sum of local constraints or ’costs’ associated
with subsets of the variables and treating inference as the problem of minimizing the overall cost. (These
two ways – ’sum-product’ vs. ’min-sum’ – of constructing a model are intimately related: While the first
corresponds to a probabilistic model, we can obtain the latter from the first by considering minimizations
in the model, and performing it in the (negative) log-domain.)

For models whose underlying factor graph is a tree, it is possible to generalize the efficient computation
of one single node marginal to obtain all single-node marginals in the graph ([35], [31]). The basic insight
is that we can interpret the resulting series of local summations and products as messages that are passed
between nodes of the graph, which allows us to reuse summations when computing marginals. Since a
factor graph contains two kinds of variable, there are two kinds of message we have to consider: Those
that are sent from variable- to function-nodes and those that are sent from function- to variable-nodes.
The first are usually denoted µz→Ψs

, where z is a variable node and Ψs a function node; the latter are
denoted µΨs→z. Formally, using the ’sum-product’ semi-ring as an example, we obtain messages of the
form [35]:

µz→Ψs
(z) =

∏

h∈n(z)\{Ψs}

µh→z(z), (21)

µΨs→z(z) =
∑

z′ 6=z



Ψs(zs)
∏

z′∈n(Ψs)\{z}

µz′→Ψs
(z′)



 , (22)

where n(z) denotes the set of nodes that are connected to z by an edge, ie. the ’neighbors’ of node z, and
zs the vector of variables connected to Ψs. Variables that are connected to only one function node send
the trivial message 1. In practice not necessarily all variables are marginalized over. In particular, some
variables can be observed, ie. they can be fixed to specific values. The messages for these variables are
computed as above for the observed values, and are set to 0 for all other values that the variable can take
on. Once messages have been passed along every direction on every edge of the graph, which is trivially
possible if the graph is a tree, marginals can be computed for each single node simply as the product of
incoming messages.

A special case of probabilistic models is given by models whose potential functions represent local
conditional probabilities. Similar to undirected models (Eq. 18) they define the global distribution as
the product of local functions, but they are in contrast to those models automatically normalized, and
therefore do not require the normalization constant. The models can be viewed as defining the global
distribution by means of local causal relationships. They are commonly referred to directed models,
because these causal relations can, alternatively to the factor graph representation, be represented using
directed (acyclic) graphs.

Example (Hidden Markov Model): Hidden Markov Models (HMMs) are a standard example for
directed models. They define the joint distribution over sequences z := (x,y) := (x1, . . . , xT , y1, . . . , yT )
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as:
p(x,y) =

∏

t

p(yt|yt−1)p(xt|yt). (23)

The standard inference problem for HMMs consists in computing single-node marginal probabilities p(yt|x)
given an observation sequence x. Applying the message updates (Eqs. 21 and 22) in this model recovers
the well-known α- and β-recursions normally used for this purpose [56]. A related problem is Viterbi
decoding, which consists in computing arg maxy p(y|x). It is usually solved in the log-domain by using
the operations from the corresponding ’max-sum’-semi-ring.

When the local distributions are modeled independently of the ’time’-index t, the HMM is called
stationary, and can for discrete y be thought of as a probabilistic finite state machine. We can think
of stationary models also in terms of parameter-tying. We will discuss this issue in more detail in the
context of structured response models in Section 3.1.2.

2.2.2 Approximate inference

If the graph is not a tree, we cannot apply belief propagation to perform inference efficiently. In prob-
abilistic models we can efficiently perform approximate inference instead. A common approach consists
in replacing the intractable distribution p(z) by a tractable surrogate distribution q(z) and performing
inference using this distribution. Besides allowing for tractable inference, the surrogate distribution needs
to be ’close’ to the true distribution. To meet both requirements, often a fully factorized or tree-structured
distribution is chosen, that has small Kullback-Leibler divergence KL(q(z), p(z)) to the true distribution
(see e.g. [22] for a tutorial overview).

An alternative approach to performing approximate inference consists in ignoring the fact that the
graph is not a tree and running belief propagation nevertheless, by repeating local message updates accord-
ing to some pre-defined schedule. In some cases the process will converge and yield consistent marginal
distributions. Another alternative approach consists in approximating the intractable distribution by a
representative sample drawn from it, which can then be used to approximate, for example, expectations
under the distribution (see [49]).

2.2.3 Parameter estimation

Usually, a model is defined up to a set of free parameters, that need to be estimated from training data.
The standard approach for training probabilistic models (we restrict our attention to these in the following)
consists in maximizing the log-likelihood of the training data:

L(w) =
∑

i

log p(zi;w) (24)

wrt. w. A (local) maximum of the log-likelihood could be found by using, for example, gradient based
optimization wrt. w. (Note that for discrete models we can often parameterize the potential functions
directly, instead of using the parameterization w. In that case, often closed-form solutions exist, that are
based on simple instance counting.)

As mentioned above, it is common to leave some variables uninstantiated during training, either
because not all values are available for each training case, or because we deliberately equip the model
with hidden variables that can pick up structure during training. In the latter case, these variables are
typically uninstantiated across all elements of the training set. The standard approach to estimating
parameters in the presence of hidden variables h is maximization of the marginal log-likelihood of the
observable data v (we assume z = (h,v)):

Lo(w) =
∑

i

log
∑

hi

p(hi,vi;w). (25)

The marginal likelihood could be maximized either directly, or by using the (generalized) EM-algorithm
[50], which can help subdivide the optimization problem into a sequence of more efficiently solvable sub-
problems. Using the EM-algorithm requires repeatedly performing inference in the model, for which any
of the methods discussed above can be deployed.
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Approximate parameter estimation: For a large class of models, computing the gradient requires
evaluating an expectation under the distribution defined by the model. For intractable models, we can
approximate the expectations using any of the approaches discussed in Section 2.2.2. We can also derive
approximation methods specifically for the purpose of parameter estimation. An efficient sampling ap-
proach for parameter estimation, for example, that has been applied also in the structured models that
we describe in the following section, is contrastive divergence [27].

Fully Bayesian models: An alternative way to perform parameter estimation is to treat the pa-
rameters as variables themselves. Parameter estimation then becomes the problem of determining the
posterior distribution p(w|y,x), which is just an inference problem in the resulting overall model. In
principle, a fully Bayesian model performs always either as well as, or better than, a model that is not
Bayesian wrt. the parameters (note, that we can view the latter as special case of a fully Bayesian model,
where we perform approximate inference using a delta-distribution as the approximating distribution).
However, in practice, including the parameters into the model usually leads to extra intractabilities and
can make learning difficult.

3 Structured response models

In this section we discuss the problem of constructing complex models by combining discriminative and
unsupervised approaches. The underlying modeling philosophy consists in using supervised methods to
perform parameter estimation for complex models, in which inference can then be performed by using the
standard techniques from unsupervised learning.

3.1 Cost functions and inference

We consider the problem of predicting structured outputs in a discriminative setting. Several methods
(see e.g. [37], [65], [13]) have been proposed for this purpose in the last few years. But many of them
turn out to share several core ideas, and so a general framework for the problem of predicting structured
outputs has emerged.

The central idea, which is common to the different methods, is to treat the issue as a linear classification
problem. We are then looking for a predictor of a form similar as in Section 2.1, with the difference that
the system output is no longer a scalar class label, but an arbitrary structured object. Formally, we can
represent the output using the discrete vector y := (y1, . . . , yT )T , and in analogy to Section 2.1.1 define a
joint feature vector φ(x,y). We can then consider classifiers based on the score c(x,y;w) = wTφ(x,y).
A joint feature representation is obviously useful in this setting, where not only the inputs, but also the
outputs can be structured objects.

The fact that the output y is a vector as opposed to a simple scalar class label distinguishes structured
response models from simple classification methods in three important ways. The first difference concerns
the definition of the decision and risk functions. A simple adaptation of the single output predictor
(compare to Eq. 1) to deal with vector-valued outputs:

f(x) = arg max
y

wTφ(x,y), (26)

is not the only reasonable, and not necessarily the best, choice for all situations. When the labels are
not single homogeneous objects, decision criteria other than those that maximize the overall score on
the whole structure to be predicted, are imaginable. One alternative criterion, for example, would be
to correctly predict as many single entries of y as possible. A related issue concerns the loss function
chosen for training. For estimating parameters of a structured response model the direct generalizations
(Eqs. 9 and 11) of the 0/1-loss are not necessarily the most suitable and it might be more natural to
replace these by loss functions that depend on the number of misclassified single labels (’Hamming loss’).
The way that these alternative loss functions can be incorporated differ greatly across different models.
Margin based approaches incorporate these implicitly by modifying the constraints of the constrained
optimization problem on which they are based. Probabilistic models provide more direct ways of using
non-standard loss functions by making it possible to optimize over marginal distributions. Details on how
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Figure 2: Factor graph representation of a structured response model.

to incorporate different kinds of loss function will be discussed in Sections 3.2.1 and 3.3.1 as part of the
general parameter estimation problem.

The second difference to standard classification problems is that, regardless of the chosen loss function,
inferring a structured response using Eq. 26 is often much harder than inferring a single class label using
Eq. 1. The reason is that y can take on one of a potentially huge number of values, and so we cannot
simply plug in each possible value to determe the maximum. Instead dynamic programming or other
inference approaches from Section 2.2 can be used. The adaptation of these to structured response
models is straightforward as will be described in the next section.

The third difference is that parameter estimation for structured response models is more difficult
than for standard classification and often requires special insights. In principle, all parameter estimation
techniques (such as gradient based or constrained optimization, or the perceptron learning rule) could be
transferred directly from the standard cases described in Section 2.1. However, for structured response
models, these methods pose extra challenges, that we will discuss, along with the issue of loss functions,
in Sections 3.2.1 and 3.3.1.

3.1.1 Inference and decomposable feature functions

Performing inference, using for example Eq. 26, is difficult for the same reasons as in generative mod-
els. However, similarly as in section 2.2, we can solve the problem here by making use of suitable
decompositions of the feature vector φ(x,y). In particular, we can decompose φ(x,y) into sub-vectors
φ(x,ys), s = 1, . . . , S, each of which depends only on the subset of the components of y – the components
that belong to a particular clique s of an underlying graph. Using a corresponding decomposition for
w = (ws)s=1,...,S we can write Eq. 26 as:

f(x) = arg max
y

∑

s

wT
s φ(x,ys). (27)

Now the ’max’ distributes over the sum and so belief propagation can be used to compute it efficiently.
We can represent the resulting model as a ’conditional factor graph’ as illustrated in figure 2. The

local functions are ψ(ys;w,x) = wT
s φ(x,ys). The dependencies of the feature functions on the inputs

are indicated with dashed arrows. Instead of incorporating the observations into the model, we use the
model only to define the response of the system to an input x. In order to make that response a function
of the input, we parameterize the function nodes using the inputs themselves as parameters. In Section
3.2 we will consider the probabilistic analog to Eq. 26, that involves computing expectations instead of
the ’arg-max’, and is based on the ’sum-product’ semi-ring. As in generative models, we can also use a
graph structure that is not a tree and then resort to variational methods to perform inference.
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Note that the dependency of φ(x,y) on the input x can be chosen in an arbitrary way. In particular,
a decomposition with respect to the input is not necessary, because the ’arg-max’ is over only y. This is
a direct consequence of the fact that the input is never itself modeled, and it is in contrast to generative
models, such as HMMs, that define a joint model over data and system variables.

Note that the actual reason for tractability is not linearity of the model (Eq. 26), but rather additivity.
We could therefore replace the local linear functions ws by arbitrary nonlinear functions, such as neural
networks. Currently, models based on linear scores are much more common than models based on non-
linear scores, but this might change, because the use of nonlinear scores could provide a great advantage
in terms of accuracy.

3.1.2 Chains, lattices and parameter tying

As in generative approaches, an important subclass of structured response models are chain structured
models. They can be defined by arranging the components of y in a chain and by using features that
reference only adjacent nodes. The most common choice is to define features φs(x,ys−1,ys) on pairs
of nodes. Such a choice may be viewed as the conditional analog to the first order Markov assumption
made in HMMs. Another important subclass, that is particularly common in image processing tasks, are
models whose nodes are arranged on a regular lattice. Features for these models can be naturally defined
by using pair-wise cliques, each of which is defined on a node and its neighbors. In image processing tasks
these models can be used to capture local consistency constraints on pixels, for example.

A common design principle for both, sequence and lattice structured, models is based on templates.
In analogy to the constant transition probabilities used in stationary HMMs, we can base a structured
response model on feature functions that are shared between cliques. Since the features are parameterized
by w, using the same feature function corresponds to tying the parameter vector across cliques, ie. to
setting ws = w for all s. By linearity, Eq. 27 then simplifies to

f(x) = arg max
y

wT (
∑

s

φ(x,ys)). (28)

In other words, we obtain a global feature vector by summing over the feature vectors evaluated at the
single cliques. To define a model, therefore all we need to do is define the template of a feature vector on a
single clique. Besides reducing the number of parameters, this approach provides a simple way of dealing
with models of variable sizes. However, it is valid only under the assumption that decisions on every
clique actually do depend on the same features, ie. that all cliques are equivalent in this strong sense.
Note that combinations of a fully-parameterized and a template-based modeling approach are possible in
principle.

[63] discuss a template based approach in the context of complex sequence structured models, in which
each ’time slice’ contains several nodes, that can be structured in complicated ways. Complex structures
can easily make tractable inference impossible, and so in general approximate inference needs to be used
in these models.

3.2 Probabilistic models

We now turn to the problem of defining an actual trainable model, that implements the cost function
and decomposable features described in the previous section. We focus on probabilistic approaches in
this section and discuss non-probabilistic ones in Section 3.3. Both kinds of approach can be viewed as
direct generalizations of the methods discussed in Section 2.1, ie. logistic regression on the one hand
and margin based methods on the other. However, the parameter estimation problems differ from the
corresponding problems for the standard methods. In particular, they pose extra challenges, such as an
exponential number of constraints for the non-probabilistic methods, and intractable model expectations
for the probabilistic ones.

We can obtain a probabilistic structured response model simply by generalizing the logistic regression
model (Section 2.1.2) to vector valued outputs. In direct analogy to Eqs. 6 and 7 we can define:

p(y|x;w) =
1

Z(x;w)
exp(wTφ(x,y)), with (29)
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Z(x;w) =
∑

y

exp(wTφ(x,y)). (30)

Now, if the feature functions decompose according to Eq. 27, we have:

p(y|x;w) =
1

Z(x;w)

∏

s

exp(wT
s φs(x,ys)). (31)

We obtain a Markov random field conditional on the input x. The (input dependent) potential functions
are given by Ψ(ys) := exp(wTφ(x,ys)). Training this model is equivalent to choosing a function that
maps an input vector x to an MRF over y. The inference problem is exactly the same as in a conventional
MRF: At ’test time’, an input xtest simply induces an MRF over y, and we can deploy any of the techniques
described in Section 2.2 to perform inference. Since the model is probabilistic, we can consider inference
problems other than Eq. 27, such as the computation of single-node marginals or drawing samples from
the resulting distribution, for example.

A simple early version of this idea has been described in [1] as an input-output version of a Boltzmann
machine. [40] discuss a general framework for combining dynamic-program type inference with gradient
based learning. They do not restrict their attention to probabilistic models and consider more general, non-
linear models. The special case of a linear model has been made popular only much later as a conditional
random field (CRF) by [37], who suggested using this kind of model for labelling sequences. CRFs have
since then been adapted and extended in several ways (see e.g. [63], [59]) and applied to several problems
in natural language (e.g. [61], [43]) and image processing (e.g. [55], [25]), among others.

While CRFs can be viewed as conditional undirected graphical models, conditional directed models
have also been suggested. One example is the Maximum Entropy Markov Model (MEMM) [44]. A MEMM
is a Markov model whose state transition probabilities are defined as (input dependent) maximum entropy
distributions. When used with parameter tying, the model can be viewed as a (conditional) finite state
machine. [37] point out a potential problem of such models, that they call ’label bias’ and whose discovery
they attribute to [11]. The flaw is due to the local normalization, which causes state transitions to compete
only against other transitions from the same state and not against all other transitions in the model. In
a model that is not fully connected, ie. in which some state transition probabilities are zero, decoding
will tend to favor states with a small number of outgoing transitions – independently of the input. One
motivation for the introduction of CRFs has been to overcome this problem through the use of global
normalization (ie. an undirected model). The effects of the label bias problem have been verified in some
experiments (e.g. [37]), and have somewhat reduced the interest in those models in the last few years.

Several earlier methods can also be viewed as directed conditional models. One example is the input-
output HMM (IOHMM), introduced by [9], who define the transition probabilities using neural networks.
We can also view the classical mixture of experts model [30] as a directed conditional model (with a degen-
erately simply ’structured’ response), since its optimization criterion is conditional likelihood. IOHMMs
and mixtures of experts differ from the other conditional models discussed so far, in that they also contain
hidden variables, that is variables that are not instantiated in the training data. The EM algorithm is
commonly used to train these models. We will discuss the use of hidden variables in structured response
models in more detail below.

Example (Linear chain CRF): Of foremost interest in practical applications have been sequence
structured CRFs ([37], [63]), and in particular those whose feature vectors are shared across cliques. For
models that are first order Markov, the features reference pairs of nodes and are of the form: φ(x, yt, yt−1).
The standard inference problem for these models is similar as in HMMs and can be derived from belief
propagation on the conditional distribution. Performing belief propagation results in recursive update
equations similar to the ’forward-backward’ equations. Defining special ’start’ and ’stop’ states for the
model, we can write single node marginals compactly [37] as (note that for consistency with the literature,
we use variables α here, even though we have used the same variable in a different context in Section 2.1.3
and will use them again in that context later in this review.):

p(yt = ŷ|x;w) =
αt(ŷ;x,w)βt(ŷ;x,w)

Z(x;w)
, (32)
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where we use the recursive definitions

α0(ŷ;x,w) = δŷ,start αt(x,w) = αt−1Mt(x,w) (33)

βT+1(ŷ;x,w) = δŷ,stop βt(x,w)T = Mt+1(x,w)βt+1(x,w), (34)

where αt is a vector with one component for each (single-node) state yt, and Mt(x,w) a matrix with
entries

Mt(yt, yt−1;x,w) = exp(wTφ(x, yt, yt−1)), (35)

and the partition function Z(x;w) can be computed as

Z(x;w) =

(

T+1
∏

t=1

Mt(x,w)

)

start,stop

(36)

Instead of using decompositions to obtain tractable models, we can alternatively use intractable models
and resort to variational methods or sampling to perform approximate inference. [63] for example, discuss
the use of loopy belief propagation on a natural language processing task. An example of an intractable
conditional model applied in an image processing task is given in [25]. The conditional model is a restricted
Boltzmann machine and contrastive divergence is used for parameter estimation.

3.2.1 Parameter estimation

The close connection of CRFs to logistic regression makes parameter estimation straightforward. We can
basically adopt the procedure described in Section 2.1.2. Two points that complicate the problem when
dealing with structured outputs have to be pointed out, however: The first is, that parameter estimation
usually involves computing expectations under the model distribution. We therefore have to make use of
either the feature decomposition (Eq. 27) or approximate inference (Section 2.2.2) to perform parameter
estimation efficiently. The second point is, that the choice of loss function deserves special attention in
this setting, since in the presence of multiple labels a simple distinction between wrong and correct labels
is not necessarily the most appropriate choice. We will discuss the choice of loss function in detail in the
following, and turn to actual procedures for parameter estimation below.

Loss functions: The most straightforward way to train a CRF is to proceed as in Section 2.1.2 and
maximize (a regularized version of) the log-likelihood

L(w) =
1

N

∑

i

log p(yi|xi,w) (37)

=
1

N

∑

i

[

wTφ(xi,yi) − logZ(xi,w)
]

. (38)

As before, we are implicitly using the log-loss (Eq. 9) as our loss function, when following this approach.
Recall that the log-loss compares the confidence of the model in the true label to the confidences in
all other labels. However, in contrast to simple multi-class classification, here a label is a structured
object, and such a comparison is therefore not necessarily the only reasonable choice on which to base a
loss function. Instead, we might consider loss functions that compare for example single components or
subsets of the components of y. A simple loss-function that realizes a single-component comparison has
been suggested by [32]. It is defined as the average single-node log-likelihood :

Lavg(w) =
1

SN

∑

i

∑

s

log p(yi
s|x

i,w). (39)

Note that training a model with this loss-function optimizes its accuracy on single labels. Therefore, to
apply such a model at test time, we have to classify single labels according to their marginal probabilities
instead of labelling a whole sequence based on its joint probability. [32] report on improvements using
this strategy on several standard datasets. Currently, Eq. 37 is still found most often in practice.
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As in Section 2.1.2, to regularize, a penalty term might be added to the loss function. A full Bayesian
approach is possible too, but usually requires variational approximations to be tractable. See [54] for
a Bayesian CRF based on expectation propagation. In the following we focus on regularized maximum
likelihood. Despite convexity of the objective function, parameter estimation is in general not easy and
involves iterative procedures. Several approaches have been suggested for maximizing the regularized
log-likelihood and we consider the most common ones in the following:

Iterative scaling: In their original paper, [37] suggest using a variant of improved iterative scaling
(IIS) [19] to find the maximizer of (37). Iterative scaling approaches have a longstanding history as
parameter estimation methods for maximum entropy or logistic regression type of models. They are
based on the iterative maximization of a lower bound of the objective function, which can be performed
efficiently in a coordinate-wise fashion. Currently a strong trend away from iterative scaling approaches
towards standard gradient based optimization methods is noticeable ([70], [61]), supported by, amongst
others, two empirical comparisons of several optimization methods for these kinds of models ([47], [42]).
We therefore do not discuss IIS in detail in the review and focus on the more common gradient based
methods instead.

Gradient based methods: The most common optimization methods for CRFs are gradient based
methods, because they have shown to be among the most efficient methods on several standard problems
[70], [61]. Since a CRF is a kind of logistic regression model, gradient based optimization can be performed
in a similar way as in Section 2.1.2. Similarly as before (Eq. 10), the gradient of the log-likelihood takes
the form:

∂L(w)

∂w
=
∑

i

φ(xi,yi) − Ep(y|xi;w)φ(xi,y), (40)

where in contrast to before computing expectations over the model distribution requires to sum over a
potentially huge number of terms. In general, we therefore need to make use of special procedures to
compute them efficiently. As in standard inference problems, the most common approach is to make use
of the decomposition (Eqs. 27, 31) and to use belief propagation to compute the sum. The alternative,
single-node objective (Eq. 39) can be dealt with analogously. For linear chain models, the detailed update
equations are given in [32]. The use of variational approximations, instead of tractable decompositions,
can be easily generalized from the corresponding unconditional models, too. See [25], for example, for an
application of contrastive divergence to training an intractable CRF.

Second order information can in general greatly increase the efficiency of gradient based optimization
methods [51]. For CRFs the use of second order information poses additional computational challenges,
that are due to the form and the size of the Hessian:

∇2L(w) =
∑

i

(

Ep(y|xi;w)φ(xi,y)φ(xi,y)T − Ep(y|xi;w)φ(xi,y)Ep(y|xi;w)φ(xi,y)T
)

. (41)

Since the size of the matrix is quadratic in the number of features, using a full Hessian is usually not
feasible. Furthermore, its computation involves computing the expectation of an outer product of feature
vectors. Correspondingly, each entry requires computing the expectation of a product of pair-wise features,
which in turn amounts to considering the joint instantiations of all pairs of cliques. A natural way of
dealing with both issues is to approximate the Hessian by discarding all off-diagonal terms.

However, additional special considerations are necessary, when using parameter-tying. In that case,
discarding off-diagonal terms will not prevent the coupling of cliques within each entry, since each feature
itself is the sum of clique-wise features (Eq. 28). A further approximation, that [61] suggest as part
of a pre-conditioning strategy for early iterations of a conjugate gradient (CG) method, is to simply
replace the square of the sum of clique-wise features by the sum of the squares of the features. While
this approximation led to reportedly good results when used in the early CG-iterations, it is probably too
crude to be useful in more general ways.

In general, the difficulties with computing the Hessian suggest that using quasi-Newton methods,
such as L-BFGS, might be more suitable optimization approaches for CRFs. These kinds of method
approximate the Hessian during optimization by accumulating information contained only in the gradient
and objective function values. A general assessment of which method is the best one in practice is difficult,
partly because the optimal method could be task-dependent. For a comparison of different optimization
methods on several natural language processing tasks using linear-chain models see [61] and [70].
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3.2.2 Hidden variables

As in generative models, we can consider hidden variables, ie. variables that are not instantiated during
training. In contrast to generative models, where hidden variables usually capture structure that is hidden
in the input data, in CRFs they could capture structure that is useful for the task at hand. Training in
the presence of hidden variables could be performed similarly as in generative models, by considering the
marginal likelihood of the observed output variables:

Lo(w) =
∑

i

log
∑

hi

p(hi,yi|xi,w), (42)

which for CRFs (Eq. 29) expands to:

Lo(w) =
∑

i



log
∑

hi

exp(wTφ(hi,yi|xi) − log
∑

hi,yi

exp(wTφ(hi,yi|xi)



 . (43)

The gradient is given by

∂Lo(w)

∂w
=
∑

i

[

Ep(hi|xi,yi)φ(xi,hi,yi) − Ep(hi,yi|xi)φ(xi,hi,yi)
]

. (44)

The marginal likelihood can be optimized either directly or by using a version of the EM-algorithm. Note
that as in generative models the marginal likelihood will in contrast to the fully observed likelihood not
be convex in general, and so we are only guaranteed a local maximum.

The use of hidden variables in structured response models has been suggested and rudimentarily
applied by [55], [9], [32], [25]. A general evaluation of the benefits as well as technical issues of using
hidden variables in these models has to the best of our knowledge not been conducted yet and will require
further research.

3.3 Direct models

As in standard classification models, we can consider other loss-functions than those derived from a
probabilistic model. In this section we discuss the use of the hinge-loss, which gives rise to structured
equivalents of margin based methods (Section 2.1.3). Similarly as before, the fact that the outputs are
structured leads to computational challenges. But the challenges for these models take a different form
than those for CRFs: As in Section 2.1.3 we will cast the parameter estimation problem as a constrained
optimization problem. For structured problems, the number of constraints is exponential in the number
of label sites and so the challenge consists in dealing with a quadratic program with a very large number
of constraints.

3.3.1 Parameter estimation

For parameter estimation we can consider a quadratic program as in Section 2.1.3:

min
w

1

2
‖w‖2 + C

∑

i

ξi (45)

s.t. wTφ(xi,yi) − wTφ(xi,y) ≥ 1 − δy,yi − ξi, ∀i, ∀y (46)

As in the discussion of CRF loss functions, here the direct adaptation of the optimization problem from
the standard classification setting treats all mis-classifications equally, which is not quite appropriate for
structured outputs. Two possible modifications of the quadratic program have been suggested to deal
with this issue. Both are based on modifications of the constraints in Problem 45. [65] suggest rescaling
the margin using the loss function as a scaling factor. This can be achieved by using the alternative
constraint:

wTφ(xi,yi) − wTφ(xi,y) ≥ ∆(yi,y) − ξi, ∀i, ∀y, (47)
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where ∆(yi,y) =
∑T

t=1 δyi
t,yt

counts the number of wrongly classified components yt of y. [68] suggest
alternatively rescaling the slack variables using the inverse loss as a scaling factor. The constraints then
take the form

wTφ(xi,yi) − wTφ(xi,y) ≥ 1 − δy,yi −
ξi

∆(yi,y)
, ∀i, ∀y. (48)

In a comparison on some standard task, [68] report similar performance across all three approaches.
However, further research could be useful for gaining deeper insights into how the approaches compare.

As in Section 2.1.3 it is useful in practice to consider the dual program. Depending on the strategy
chosen for incorporating the non-uniform loss (margin rescaling or slack rescaling), we obtain two slightly
different dual programs (see e.g. [68]). They can both be derived straightforwardly using Lagrangian
duality. For the latter case (slack rescaling) the dual takes the form:

max
α

∑

i,y

αi(y)(1 − δy,yi) −
1

2
‖
∑

i,y

αi(y)(φ(xi,yi) − φ(xi,y))‖2 (49)

s.t.
∑

y

αi(y)

∆(yi,y)
= C, ∀i, αi(y) ≥ 0, ∀i, ∀y.

Note the difference in the first constraint when comparing to the standard multi-class setting. For the
margin rescaling approach the constraint remains unchanged, but the linear part of the objective function
changes. We obtain the program:

max
α

∑

i,y

αi(y)∆(yi,y) −
1

2
‖
∑

i,y

αi(y)(φ(xi,yi) − φ(xi,y))‖2 (50)

s.t.
∑

y

αi(y) = C, ∀i, αi(y) ≥ 0, ∀i, ∀y.

The dual representation of the weight vector, similarly as in Section 2.1.3 (Eq. 14) is given by:

w =
∑

i,y

αi(y)
(

φ(xi,yi) − φ(xi,y)
)

. (51)

In both the primal and dual programs the numbers of constraints scale linearly with the number of
classes, which in turn scales exponentially with the number of labels. Specialized procedures are therefore
necessary to solve them. Below we discuss two approaches that directly deal with the dual and another
approach that uses perceptron learning to solve the problem indirectly. Note also that in the dual, the
feature vectors appear only in inner products. We can therefore replace these by kernels and fit the models
in corresponding kernel feature spaces. We will discuss the use of kernels in detail and more generality in
Section 3.4.

Marginal variables: In the dual programs both, the number of variables and the number of con-
straints, is exponential in the number of labels. However, [65] show that it is possible to replace Problem
50 by an equivalent quadratic program that is only polynomial in the number of labels. A condition under
which this is possible is that both the risk function ∆(yi,y) and the feature function φ(x,y) decompose
into the sum of clique-wise terms. The crucial observation is that αi(y) can for each i be interpreted
as a density over y, because of the constraints

∑

y αi(y) = C and αi(y) ≥ 0. Furthermore, the objec-
tive function (50) contains expectations of the loss- and the feature functions under this density. If the
loss-function decomposes as

∆(y,y′) =
∑

s

∆(ys,y
′
s), (52)

we can re-write these expectations as follows:

∑

y

αi(y)∆(yi,y) =
∑

y

αi(y)
∑

s

∆s(y
i
s,ys) (53)
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=
∑

s

∑

(y1,...,yS)

αi(y)∆s(y
i
s,ys) (54)

=
∑

s

∑

ys

∆s(y
i
s,ys)

∑

∼ys

αi(y) (55)

=
∑

s

∑

ys

µi(ys)∆s(y
i
s,ys) (56)

where we use the marginal density

µi(ys) :=
∑

∼ys

αi(y). (57)

The expectation of the feature function, which also appears in the objective of the dual, can be re-written
analogously, using appropriate marginals defined on subsets of the components of y, allowing us to express
the objective function in terms of the marginals µi(ys). The trick now is to regard these marginals as
new variables, and to re-express the dual program in terms of these. The number of these variables is
only polynomial in the size of the largest clique, and so is the resulting dual. For the new program to
be equivalent to the original one, the marginals have to be consistent, that is they have to be marginals
of legal corresponding densities αi(y). If the underlying graph is triangulated [16], then two conditions
that ensure that this is the case are that (i) the marginals are themselves legal densities, that is they are
positive and normalized:

∑

ys

µi(ys) = C, µi(ys) ≥ 0, ∀i, (58)

and (ii) the marginals agree on components they share: Consider any pair of marginals µi(ys), µi(yt)
whose arguments ys and yt have one or more variables in common, and let us stack these common
variables in a vector yu. For any such pair it then has to hold that:

∑

∼yu

µi(ys) =
∑

∼yu

µi(yt). (59)

If the underlying graph is not triangulated, then the local consistency enforced by constraints 58 and
59 is not sufficient to guarantee global consistency and it is not guaranteed that the marginals correspond
to a legal density on the graph. In analogy to variational methods, we might still use the marginals, and
solve a relaxed version of the problem – without guarantees, however, on the quality of the solution. To
obtain solutions efficiently, we can adapt SMO (see Section 2.1.3) to the ’marginalized’ program [65]. The
dual representation of the weight vector after having solved the program is given by

w =
∑

i

∑

s

∑

ys

µi(ys)
(

φs(x
i,yi

s) − φs(x
i,ys)

)

. (60)

Cutting plane approach: [68] describe an alternative approach to dealing with the exponential size
quadratic program (Eq. 49). Instead of solving the program directly, we can solve a sequence of programs
that contain only small subsets of the constraints of the original one. The exact algorithm works as
follows: For each data-point we maintain a working set Si of active constraints. In several sweeps over
the dataset, we then determine successively for each data-point the potentially most violated constraint
by finding ŷ = arg maxy H(y), where

H(y) :=
(

1 − wT
(

φ(xi,yi) − φ(xi,y)
))

∆(yi,y), for the margin rescaling approach, or (61)

H(y) := ∆(yi,y) − wT (φ(xi,yi) − φ(xi,y)), for the slack rescaling approach, (62)

and where w is given in the dual representation (Eq. 51). Note that the ’arg-max’ can be obtained
efficiently, if ∆ and φ decompose as above. We also set ξi = max{0,maxy∈Si

H(y)}. Then, if the
constraint violation is larger then a pre-set threshold ε, ie. if H(y) > ξi + ε, we add the corresponding
constraint to the working set for that point, and solve the quadratic program (Eq. 49 or 50) using
all constraints that currently reside in the working sets. We obtain a current solution vector α with
dimensionality equal to the number of constraints currently used. The procedure is repeated, until no
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working set Si changes in a whole sweep over the data. [68] show that the procedure terminates after a
number of iterations that is polynomial in the number of variables. The algorithm is a generalized version
of a similar algorithm, that has been originally proposed for sequence alignment and is discussed in more
detail in [29].

Perceptron learning: As in Section 2.1, we can use the perceptron learning rule as a simpler
alternative to solving a constraint optimization problem. We can directly adapt the algorithm described in
Section 2.1.3 to the multi-label case [13]. Since it requires to solve for ŷ = arg maxy wTφ(x,y), tractability
again hinges on the decomposition of φ(x,y) wrt. y. The perceptron learning rule for structured prediction
is simpler than the corresponding constraint optimization problems. Intractabilities can be dealt with
by solving standard inference problems in the model, instead of indirectly by using specialized constraint
optimization procedures. Another potential advantage is the possibility of performing online learning.
For the application of the perceptron learning rule in structured problems see [14] and [3].

Other methods: Efficient optimization for structured supervised models is an active area of research
and several approaches in addition to the ones mentioned have been suggested, among them boosting (see
[4], e.g.) and exponentiated gradient algorithms ([8]). A rigorous comparison of the different methods
with respect to efficiency or accuracy does not exist and could be a subject of future research.

3.4 Kernels

The direct connection of structured models to linear classification allows us to use kernels as in Section
2.1.4. The dual representation of the compatibility measure, due to the representer theorem, takes a form
similar as in Eq. 16:

c(x,y) =
∑

j

∑

y′

αj(y
′)k((x,y), (xj ,y′)). (63)

But the sum over y′ is in this case usually intractable. In analogy to the decomposition of the feature vec-
tors in Section 3.1.1, however, we can obtain a tractable representation by making use of a corresponding
kernel decomposition: Defining k((x,y), (x′,y′)) as a sum over kernels that reference only cliques of
y:

k((x,y), (x′,y′)) =
∑

s,t

kst((x,ys), (x
′,y′

t)), (64)

we can express Eq. 63 in terms of a polynomial number of marginal variables µi(ys) :=
∑

∼ys
αi(y). The

derivation is analogous to the derivation in Eqs. 53-57, but due to its fundamental importance we pursue
it again:

c(x,y) =
∑

j

∑

y′

αj(y
′)
∑

s,t

kst((x,ys), (x
j ,y′

s)) (65)

=
∑

j

∑

s,t

∑

y′

t

kst((x,ys), (x
j ,y′

t))
∑

∼y′

t

αj(y
′) (66)

=:
∑

j

∑

s,t

∑

y′

t

µj(y
′
t)kst((x,ys), (x

j ,y′
t)). (67)

For the regularizer ‖w‖2 we similarly obtain the marginalized expression:

‖w‖2 =
∑

i,j

∑

s,t

∑

ys,y′

t

µi(ys)µj(y
′
t)kst((x

i,ys), (x
j ,y′

t)). (68)

We can now plug these representations into any standard objective function and solve for the marginal
parameters µi(ys), thereby fitting the model in a Reproducing Kernel Hilbert Space. Using as loss-
function, for example, the log-loss, we obtain a kernel conditional random field, with objective
function:

L(α) =
∑

i,j

∑

s,t

∑

ys,y′

t

µi(ys)µj(y
′
t)ks,t((x

i,ys), (x
j ,y′

t)) + (69)
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∑

i

log
∑

y

exp





∑

j

∑

s,t

∑

y′

t

µj(y
′
t)kst((x

i,ys), (x
j ,y′

t))



− (70)

∑

j

∑

s,t

∑

y′

t

µj(y
′
t)kst((x

i,yi
s), (x

j ,y′
t)). (71)

We can now perform parameter estimation by using gradient based optimization. Since the objective
function, and its gradient, involve the sum over y, however, we need to exploit the kernel decomposition
a second time to be able to evaluate the functions in polynomial time. The derivation is a straightforward
application of belief propagation: The kernel decomposition, similar as in an MRF, allows us to express the
partition function as the sum of a product of potential functions. We can therefore use the ’sum-product’
version of belief propagation to compute it. For recent work on kernel CRFs, including approaches for
efficient parameter estimation, see [38], [6], [5]. The authors of [5] also point out that we can interpret
the model as a kind of Gaussian process classifier (which is true for kernel logistic regression models in
general).

For (differentiable) loss functions other than the log-loss we encounter analogous issues, that can be
dealt with in exactly the same way. Note that for margin-based losses, because of their non-differentiability,
it is more convenient to approach the parameter estimation problem via constrained optimization (see
Sections 2.1.3 and 3.3.1). However, the result is similar in both cases: We obtain a representation in
terms of dual variables, that we express using marginal variables for tractability. Note that for margin
based methods the feature functions enter the objective functions and constraints only in terms of inner
products. In Sections 2.1.3 and 3.3.1 we could therefore simply replace these by kernels to fit the models in
kernel feature spaces. For the log-loss and other losses that lead to unconstrained optimization problems
on the other hand we had to invoke the representer theorem instead.

Note that in general, when using a dual representation with decomposing kernels, we implicitly make a
stationarity assumption, ie. we consider models whose parameters are tied across cliques. This is a simple
result of the fact that we make use of decompositions in the original data domain, ie. before implicitly
(and nonlinearly) mapping the data and weight vector into the feature space.

Kernel design: To apply kernels in practice we have to define joint kernel functions that decompose
according to Eq. 64. The idea of using joint kernels in machine learning is extremely young, and as yet
hardly any work has been reported on the design of these. The kernels that have been suggested so far
are used for sequence-structured models ([5], [3], [65]) and take the form:

k((x,y), (x′,y′)) =
∑

s,t

δys,y′

t
kx

s (xs,x
′
t) + δys−1,y′

t−s
δys,y′

t
(72)

where kx
s (x,x′) is some kernel function (such as an RBF-kernel) defined on the input, and δys,y′

t
is used

to compare the pair-wise labellings of y. In most real-world problems that have been considered, the
inputs decompose along with the outputs. (Consider for example a handwriting recognition task where
several images of letters are classified jointly.) The input kernels in these problems are usually chosen
to decompose, too, that is, they are functions of only partial inputs xs. Note, however that an input-
decomposition is not actually required for tractability. It could therefore be useful to consider kernels
that can pick up global structure, beyond single inputs. In a handwriting recognition task those kernels
could be used, for example, to model writer-dependent style variations. Future research will be necessary
to evaluate the feasibility and usefulness of such an approach.

For a recent general discussion of joint kernels see [71]. Models that make use of joint kernel maps
to define mappings between arbitrarily structured objects have also been used in manifold learning (see
e.g. [72]). The idea of these methods is to embed input and output objects in (usually low-dimensional)
Euclidean spaces and to define mappings between the objects by means of mappings between these
Euclidean representations. After applying such a mapping, a pre-image for the embedded point in the
original output-space needs to be found, which is a non-trivial task in general. For continuous output
spaces the problem can usually be solved more easily than for discrete ones. Most embedding methods
have therefore been defined to operate only in these. We discuss these briefly in Section 3.6.
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3.5 Feature induction

The use of features φ(x,y) to define a model is convenient, because it allows us to deal with non-vectorial
data and to include arbitrary properties of input-output pairs into the compatibility measure. We can
incorporate any potentially relevant properties into the model, and parameter estimation automatically
determines the actual relevance by weighting the features accordingly. A potential problem with this
approach, however, is that, since we often do not know a priori how relevant each property will be, the
dimensionality of the feature vector can be exceedingly large.

An obvious way to solve this problem is to use only those features that are jointly most relevant.
However, in practice we usually cannot assess all joint combinations of features, because of the combi-
natorial explosion. A heuristic to use in practice is to define a large set of potentially relevant features,
and to greedily add elements from this set to the model ([7], [19]). A useful measure of the usefulness
of some feature g is the increase in log-likelihood that adding it to a given model can cause. Note, that
to determine this potential increase we need to compute for every candidate feature the optimal weight
vector (w, wg), where wg is the weight for the candidate. A more efficient heuristic is to find only the
optimal wg, while holding w fixed. Denoting the log-likelihood of the model that includes the new feature
by L(w, wg), the potential increase can then be written as

G(g) = max
wg

L(w, wg) − L(w) − λw2
g . (73)

The increase in log-likelihood is usually referred to as ’gain’ and it is the most common heuristic for
feature induction. A reason is that for non-conditional maximum entropy models with binary features a
closed form for the maximum exists [19]. For conditional models we need to resort to iterative (but only
one-dimensional) optimization. To determine the optimal feature, the optimization needs to be repeated
for each candidate, which can be expensive. [7] suggest some further approximations for performing it
more efficiently in conditional models.

3.6 Continuous valued and energy based models

The models we have discussed so far are based on discrete outputs. In principle, it is straightforward
to extend models to deal with real valued outputs: All we need to do is define corresponding features
φ(x,y) or kernels k((x,y), (x′,y′)) on real vectors y. Inference, however, in models with real valued
nodes, and therefore also learning, poses quite different challenges than for discrete-valued models, and
it is also less well explored. For non-Gaussian probabilistic models inference is often performed using
specialized sampling methods, such as particle filters or ’nonparametric belief propagation’ [62], or by
using variational techniques such as expectation propagation [48].

Note that problems with real-valued output nodes could be also be treated as high-dimensional re-
gression problems. While there are many classical approaches to solving these, such as neural networks
and partial least squares regression, it is difficult to make these methods Bayesian wrt. the outputs, while
at the same time treating parameter estimation in the standard, non-probabilistic, way. Bayesian models
such as Gaussian processes, on the other hand, are generally defined for only one dimensional output
spaces. Some recent work has tried to extend these to multi-dimensional output spaces (e.g. [66]). It
points to a direction for potential further research on continuous valued models.

Several non-Bayesian, non-parametric approaches to high-dimensional regression have also been sug-
gested from the perspective of manifold learning ([24], [45], [46]). As mentioned above, these methods are
related to the models discussed here, since they are based on joint kernel functions. Jointly embedding
the input and output in low-dimensional spaces makes it possible to capture possible correlations and that
way to overcome the ’curse of dimensionality’. However, as mentioned previously, neither probabilistic
modeling, nor decompositions of the output, have been considered in these kinds of models yet. A possible
incorporation of these into manifold based approaches could be another subject of future research.

[41] suggest a general approach to ’end-to-end’-training of complex models, called ’energy based learn-
ing’, that generalizes the probabilistic and margin-based approaches discussed in this review. They point
out that loss functions other than the structured ’log’-loss or ’hinge’-loss can be brought to bear for con-
structing these models. Systems with continuous outputs are just special cases within this framework.
An application to a face-detection problem is described in [52].
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4 Applications and open research problems

In the following we discuss problems in the area of structured response models that require further
investigation and therefore provide pointers to possible research topics. An important area of possible
future research concerns applications. We discuss these in a separate section in the following and describe
more general research problems in Section 4.2.

4.1 Applications

The applicability of SRMs is rather general and includes many problems that require complex models,
and for which training data is available. Because the research area is very young, the number of existing
applications is still relatively small and leaves much scope for future work, even though the number of
reported applications has begun to explode in the last two years.

Until now, most applications of SRMs have been reported in natural language and some in image
processing tasks. In natural language processing they have been used for, among others, shallow parsing
[61], named entity recognition [43], pitch accent prediction [23]. In image processing they have been applied
mainly for the tasks of object detection and recognition (see e.g. [67], [36], [25], [55]). In practically all
reported applications conditional models have shown to (at times greatly) improve the state of the art in
the respective areas.

Many applications of these models can be classified as methods for machine perception. These methods
have shown in general to profit greatly from generative models, because the latter make it possible to
deal with contextual information in a principled way. We believe that conditional models can be powerful
competitors for constructing perceptual systems, since they allow us to specify by example, what we
would like a percept in a particular situation to be, while at the same time being able to deal with context
effects as gracefully as generative models do. While a generative face recognition system, for example,
would define how the pixels of an image are determined by variables such as gender, pose and lighting
effects, a conditional model could define instead how the image is to be decomposed into these meaningful
components.

4.2 Open problems

In the following we provide some pointers to potential future research topics other than applications. See
also [64] for a similar list and some additional pointers.

Optimization: Efficient parameter estimation methods are crucial for the applicability of SRMs to
many real world problems. Although several optimization methods have been suggested for this purpose,
further research will be necessary to develop faster algorithms and to evaluate which kind of method is
most useful for which task. Another open question in this context is, how the use of variational methods
in the inference sub-problems in parameter estimation interferes with parameter estimation and in what
way they can affect convergence.

Hidden variables: As mentioned before, the use of latent variables in SRMs has been largely un-
explored until now, even though it is promising as a means of combining discriminative learning with
unsupervised structure discovery. To what degree hidden variables can be used in SRMs in order to
perform a kind of task dependent pre-processing as suggested above is largely an unsolved question and
requires further research.

Kernel learning and feature induction: Recently, a lot of research has been conducted on auto-
matically learning a kernel for classification problems (see e.g. [39]). The problem of learning a kernel
is in some sense ’dual’ to the problem of inducing features for random fields. An adaptation of kernel
learning approaches to SRMs could be useful in many applications and might help clarify this connection.
An important difference for structured models, that makes such an adaptation a non-trivial task, is that
for these the kernel is defined on the joint input-output space.

Semi-supervised learning: One of the main difficulties in applying an SRM in a real world task is
the necessity of collecting training data. In supervised learning a lot of research has recently focused on
making use of unlabeled data for training. SRMs can profit from semi-supervised approaches, because
they are supervised methods themselves. The adaptation of existing approaches or the invention of new
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methods for semi-supervised learning of SRMs therefore provides a possible area of future research. Several
recent approaches in semi-supervised learning are closely related to the problem of learning a kernel (see
[73] and references therein), which points to an interesting connection between these two problems.

Structure learning: A general research problem in the area of graphical models regards the au-
tomatic inference of model structure as opposed to just the model parameters. Structure learning is of
similar interest in SRMs and might provide an interesting way of completely automatically constructing
a model from training data alone. Tree-based methods could be of particular interest for conditional
models, because for fully observed trees the structure learning problem can be solved in closed form [31].

Continuous valued models: Until now, research on SRMs has focused on discrete models. In
principle, most approaches discussed in this review could be directly adapted to continuous settings, as
mentioned in Section 3.6. By using Gaussian potentials in a probabilistic model, for example, we could
obtain a kind of ’conditional Kalman filter’; by using non-Gaussian potentials more general dynamical
systems, that are trained ’by example’. Since both, continuous valued models themselves and their
potential usefulness in practice, have been hardly explored yet, much further research is required in this
area.

5 Conclusions

A classical way of building complex intelligent systems is by using generative models and invoking Bayes’
rule for inference. The models we discussed in this review achieve a similar goal, but instead of using
Bayes’ rule, they directly model the response of the system to given inputs. Because the response can be
structured and probabilistic, these models do not have to give up on useful properties of generative models
and are, in fact, still Bayesian, if they are defined probabilistically. Since SRMs are trained supervised,
they come with theoretical guarantees regarding generalization, and training is rather straightforward. In
some sense, they relocate the difficulties in the design of complex system more towards the collection of
training data and away from model construction itself, because they abandon the task of modeling the
data.

So far, most applications have focused on sequence structured models, that are used to solve problems
for which HMMs have been used traditionally. Only a few models have been suggested yet that extend the
applicability to more general problems, such as those that arise in image processing tasks and computer
vision. We believe that the applicability of these models can be further extended and be brought to use
in additional problems in artificial intelligence.

As this review has tried to make clear, there is really only one structured response model, and it
is based on the definition of a compatibility measure that decomposes according to a graph defined
on the system variables. We have shown that several variations of the basic idea are possible, leading
to certain desirable properties such as probabilistic semantics or sparsity. We do not believe that any
particular of these variations will generally turn out to be superior over any other in practice, but rather
that enhancements of this modeling framework in general, such as by the use of novel optimization- and
feature induction approaches, or the incorporation of new approaches for semi-supervised learning, will
be most useful for future applications.
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