
[dsp TIPS&TRICKS]
Greg Berchin

Precise Filter Design

Y
ou have just been assigned
to a new project at work,
in which the objective is
to replace an existing ana-
log system with a func-

tionally equivalent digital system. Your
job is to design a digital filter that
matches the magnitude and phase
response of the existing system’s analog
filter over a broad frequency range. You
are running out of ideas. The bilinear
transform and impulse invariance
methods provide poor matches to the
analog filter response, particularly at
high frequencies. Fast convolution
requires more computational resources
than you have and creates more
input/output latency than you can toler-
ate. What will you do?

In this article, we describe an obscure
but simple and powerful method for
designing a digital filter that approxi-
mates an arbitrary magnitude and phase
response. If applied to the problem
above, it can create a filter roughly com-
parable in computational burden and
latency to that created by the bilinear
transform method, with fidelity
approaching that of fast convolution. In
addition, the method described here can
also be applied to a wide variety of other
system identification tasks.

The filter design method we present
is called frequency-domain least-squares
(FDLS) [1]–[3]. The FDLS algorithm
produces a transfer function that approx-
imates an arbitrary frequency response.
The input to the algorithm is a set of
magnitude and phase values at a large
number (typically thousands) of arbitrary
frequencies between 0 Hz and half the
sampling rate. The algorithm’s output is
a set of transfer function coefficients.
The FDLS algorithm is quite flexible in
that it can create transfer functions con-

taining poles and zeros (infinite response
filters), only zeros (finite response fil-
ters), or only poles (autoregressive net-
works). The algorithm uses nothing
more esoteric than basic linear algebra.
Before we can see how the technique
works, we need to review some basic lin-
ear algebra and matrix concepts.

BACKGROUND
First let us recall that, in order to
uniquely solve a system of equations, we
need as many equations as unknowns.
For example, the single equation with
one unknown 5x = 7 has the unique
solution x = 7/5. But the single equa-
tion with two unknowns 5x + 2y = 7
has multiple solutions x = (7 − 2y)/5
that depend on the unspecified y-value. If
another equation, −6x + 4y = 9, is
added to the equation above, there are
unique solutions for both x and y that
can be found algebraically or by matrix
inversion (denoted in the following by a
“−1” superscript):

[
5 2

−6 4

] [
x
y

]
=

[
7
9

]
[

x
y

]
=

[
5 2

−6 4

]−1 [
7
9

]

=
[1

8 − 1
16

3
16

5
32

] [
7
9

]

=
[(

7
8 − 9

16

)
(

21
16 + 45

32

)]
.

Let us consider what happens if we
add another equation, x + y = 5, to the
pair that we already have above (we will
see later why we might want to do this).
There are no values of x and y that satis-
fy all three equations simultaneously. To
address this case, matrix algebra provides
the “pseudoinverse,” which determines
the values of x and y that come, in the

least-squares sense, as close as possible
to satisfying all three equations. The
solution is then given by

 5 2
−6 4
1 1


[

x
y

]
=


 7

9
5


 or

[
x
y

]
≈





 5 2

−6 4
1 1




T 
 5 2

−6 4
1 1







−1

×

 5 2

−6 4
1 1




T 
 7

9
5




≈
[

0.3716
2.8491

]
,

where T denotes the matrix transpose. Of
course, the mathematical derivation of
the matrix inverse and pseudoinverse,
and the definition of least-squares, can
be found in any basic linear algebra text
[1]. And while our more mathematically
inclined readers will point out that there
are better ways than this to compute the
pseudoinverse, this method is adequate
for our example.

You may also remember that filter
specifications are commonly expressed in
terms of passband width and flatness,
transition band width, and stopband
attenuation. There may also be some gen-
eral specifications about phase response

“DSP Tips and Tricks” introduces prac-
tical design and implementation sig-
nal processing algorithms that you
may wish to incorporate into your
designs. We encourage readers to
submit their contributions to
Associate Editors Rick Lyons
(r.lyons@ieee.org) or Britt Rorabaugh
(dspboss@aol.com).

IEEE SIGNAL PROCESSING MAGAZINE [137] JANUARY 2007 1053-5888/07/$25.00©2007IEEE

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:32:49 UTC from IEEE Xplore. Restrictions apply.

or time-domain performance, but the
exact magnitude and phase responses are
usually left to the designer’s discretion.
However, an important exception occurs
when a digital filter is to be used to emu-
late an analog filter. This is traditionally a
very difficult problem, because analog
systems are described by Laplace trans-
forms using integration and differentia-
tion, whereas digital systems are
described by z-transforms using delay.
Since the conversion between them is
nonlinear, the response of an analog sys-
tem can only be approximated by a digital
system and vice-versa.

Let us assume that the transfer func-
tion of our digital filter (i.e., the mathe-
matical description of the relationship
between the filter’s input and output) is
in a standard textbook form [2] given by

Y(z)

U(z)
= b0 + b1 z−1 + · · · + bN z−N

1 + a1 z−1 + · · · + aDz−D ,

where U(z) is the z-transform of the input
signal, Y(z) is the z-transform of the out-
put signal, and the a and b factors are real-
valued coefficients. Furthermore, we
assume that the filter is causal, meaning
that its response to an input does not begin
until after the input is applied. Under these
assumptions, the time-domain difference
equation that implements our filter is

y(k) = − a1 y(k − 1) − · · · − aDy(k − D)

+ b0u(k) + · · · + bN u(k − N),

where the a and b coefficients are exactly
the same as in the transfer function
above, k is the time index, u(k) and y(k)
are the current values of the input and
output (respectively), u(k − N) was the
input value N samples in the past, and
y(k − D) was the output value D samples
in the past. We can write the equation
above in matrix form as

y(k) = [−y(k − 1) . . . − y(k − D)

u(k) . . . u(k − N)]




a1
...

aD

b0
...

bN




.

Let us conclude our background sec-
tion with a comment on what a frequen-
cy response value means. In a simple
example, if the frequency response of a
system at a frequency ω1 is given in
magnitude/phase form as A1 � φ1 , the
output amplitude will be A1 times the
input amplitude and the output phase
will be shifted an angle φ1 relative to the
input phase when a steady-state sine
wave of frequency ω1 is applied to the
system. For instance, if the input to the
system described above at time k is
u1(k) = cos(kω1 ts), where ts is the sam-
pling period (equal to one over the sam-
pling frequency), then the output will be
y1(k) = A1 cos(kω1 ts + φ1) . The input
and output values at any sample time
can be determined in a similar manner.
For example, the input sample value N
samples in the past was
u1(k − N) = cos ((k − N)ω1 ts) and the
output sample value D samples in the
past was y1(k − D) = A1 cos ((k − D)

ω1 ts + φ1). For our purposes, since k
represents the current sample time, its
value can conveniently be set to zero.

FDLS FILTER APPROXIMATION
Based on our review of the pseudoin-
verse, transfer function, and frequency
response, we know that the output is a
combination of present and past input
and output values, each scaled by a set of
b or a coefficients (respectively), the val-

ues of which are not yet known. We also
know that the relationship between
input u and output y at any sample time
can be inferred from the frequency
response value A� φ at frequency ω .
Combining these two ideas, we obtain
one equation in D + N + 1 unknowns

y1(0) = [−y1(−1) . . . − y1(−D)

u1(0) . . . u1(−N)]




a1
...

aD

b0
...

bN




.

(Note that the current-sample index k
has been set to zero.) If we repeat using
A2 � φ2 at a different frequency ω2, we
obtain a second equation in D + N + 1
unknowns as shown in (a) at the bottom
of the page. And if we repeat at many
more different frequencies M than we
have unknowns D + N + 1, we know
from our review of linear algebra that the
pseudoinverse will compute values for
the set of coefficients a1 . . . aD and
b0 . . . bN that come as close as possible
to solving all of the equations, which is
exactly what we need to design our filter.
So now we can write (b), shown at the
bottom of the page. We can denote the
y1(0) . . . yM(0) column vector above as
Y, the matrix as X, and the a1 . . . bN col-

[dsp TIPS&TRICKS] continued

IEEE SIGNAL PROCESSING MAGAZINE [138] JANUARY 2007

[
y1(0)

y2(0)

]
=

[−y1(−1) . . . −y1(−D) u1(0) . . . u1(−N)

−y2(−1) . . . −y2(−D) u2(0) . . . u2(−N)

]



a1
...

aD

b0
...

bN




. (a)




y1(0)

y2(0)
...

yM(0)


 =




−y1(−1) . . . −y1(−D) u1(0) . . . u1(−N)

−y2(−1) . . . −y2(−D) u2(0) . . . u2(−N)
...

...
...

...

−yM(−1) . . . −yM(−D) uM(0) . . . uM(−N)







a1
...

aD

b0
...

bN




.

(b)

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:32:49 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [139] JANUARY 2007

umn vector as �. With these notations,
Y = X�, and the pseudoinverse solves
for the vector � that contains the
desired filter coefficients

(X TX)−1 X TY ≈ �.

We can now summarize our filter
design trick as follows:

1) Select the numerator order N and
the denominator order D, where N
and D do not have to be equal and
either one (but not both) may be zero.
(We have found no “rule of thumb”
for defining N and D; they are best
determined experimentally.)
2) Define the M separate input um

cosine sequences, each of length
(N + 1).
3) Compute the M separate output ym

cosine sequences, each of length D
(based on Am � φm).
4) Fill the X matrix with the input um

and output ym cosine sequences.
5) Fill the Y vector with the M output
cosine values, ym(0) = Am cos(φm).
6) Compute the pseudoinverse; the
resulting vector � contains the filter
coefficients.
A numerical example is shown in

Figures 1 and 2, which illustrate the
magnitude and phase, respectively, of a
real-world example analog system (black)
and of the associated bilinear transform
(blue), impulse invariance (green), and
FDLS (red) approximations. The sam-
pling rate is equal to 240 Hz and
D = N = 12. The red FDLS graphs are
almost completely obscured by the black
analog system graphs. In this example,
the FDLS errors are often three to four
orders of magnitude smaller than those
of the other methods. (In Figure 2, the
bilinear transform curve is obscured by
the FDLS and analog curves at low fre-
quencies and by the impulse invariance
curve at high frequencies.)

In terms of the computational com-
plexity of an FDIS-designed filter, the
number of feedback and feed-forward
coefficients is determined by the vari-
ables D and N, respectively. As such, an
FDIS-designed filter requires
(N + D + 1) multiplies and (N + D)
additions per filter output sample.

CONCLUSION
FDLS is a powerful method for design-
ing digital filters. As is the case with all
approximation techniques, there are
circumstances in which the FDLS
method works well and others in which
it does not. The FDLS method does not
replace other filter design methods; it
provides one more method from which
to choose. FDLS is most useful in cases
where a specified frequency response
must be duplicated to within tight tol-
erances over a wide frequency range or
when the frequency response of an
existing system is known but the coef-
ficients of the system’s transfer func-
tion are unknown. It is up to the
designer to determine whether to use
it in any given situation. Detailed
examples and a MATLAB code imple-
mentation of the FDLS algorithm are
available at http://apollo.ee.columbia.
edu/spm/?i=external/tipsandtricks.

ACKNOWLEDGMENTS
My thanks to Jaime Andrés Aranguren
Cardona for providing the example
shown in Figures 1 and 2, originally
posted on the comp.dsp Newsgroup on
9 January 2005, which ultimately led to
this article.

AUTHOR
Greg Berchin (berchin@ieee.org) is a sig-
nal processing algorithm engineer who
provides contract engineering services
from Naperville, Illinois.

REFERENCES
[1] G. Strang, Linear Algebra and Its Applications,
2nd ed., Orlando, FL: Academic, pp. 103–152, 1980.

[2] R. Lyons, Understanding Digital Signal
Processing, 2nd ed., Upper Saddle River, NJ:
Prentice-Hall, pp. 232–240, 2004.

[3] G. Berchin, “A new algorithm for system identifi-
cation from frequency response information,” mas-
ter’s thesis, University of California-Davis, 1988 .

[4] G. Berchin and M.A. Soderstrand, “A transform-
domain least-squares beamforming technique,” in
Proc. IEEE Oceans ‘90 Conf., Arlington, VA, Sept.
1990.

[FIG1] Magnitude responses of the filter designed using the bilinear transform, impulse
invariance, and FDLS methods.

Black: Analog (Desired)
Blue: Bilinear Transform
Green: Impulse Invariance
Red: FDLS

0

−10

−20

−30

−40

−50

10−2 10−1 100 101 102

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

[FIG2] Phase responses of the filter designed using the bilinear transform, impulse
invariance, and FDLS methods.

Black: Analog (Desired)
Blue: Bilinear Transform
Green: Impulse Invariance
Red: FDLS

150

100

50

0
−50

−100

−150

P
ha

se
 (

de
gr

ee
s)

10−2 10−1 100 101 102

Frequency (Hz)

[SP]

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:32:49 UTC from IEEE Xplore. Restrictions apply.

