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ABSTRACT

For the non-local denoising approach presented by Buades et

al., remarkable denoising results are obtained at high expense

of computational cost. In this paper, a new algorithm that re-

duces the computational cost for calculating the similarity of

neighborhood windows is proposed. We first introduce an ap-

proximate measure about the similarity of neighborhood win-

dows, then we use an efficient Summed Square Image (SSI)

scheme and Fast Fourier Transform (FFT) to accelerate the

calculation of this measure. Our algorithm is about fifty times

faster than the original non-local algorithm both theoretically

and experimentally, yet produces comparable results in terms

of mean-squared error (MSE) and perceptual image quality.

Index Terms: Image enhancement, Wavelet transforms, Dis-

crete Fourier transforms.

1. INTRODUCTION

Images are often corrupted by noise in acquisition and trans-

mission, which usually degrades the quality of images. How-

ever, various image-related applications, such as aerospace,

medical image analysis, object detection etc., generally re-

quire effective noise suppression to produce reliable results.

Furthermore, denoising is often necessary as a pre-processing

for other image/vision tasks, e.g. compression, segmenta-

tion and recognition. Therefore, denoising has been one of

the most important and widely studied problems in image

processing and computer vision.

The objective of denoising is to remove the noise effec-

tively while preserving the original image details as much

as possible. So far, many approaches have been proposed

to get rid of noise. Traditionally, linear models, for exam-

ple Gaussian filter [1], have been commonly used to reduce

noise. These methods perform well in the flat regions of im-

ages. But a main drawback of them is that they are not able

to preserve edges in a good manner. Edges, which are recog-

nized as discontinuities in the image, are often smeared out.

The work is supported by National 973 program (No.2002CB-

312101), NSFC grant (No.60403038) and CUHK Direct Research Grant
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Nonlinear models however can handle edges in a much better

way than those linear models. One popular model for nonlin-

ear image denoising is the Total Variation (TV)-filter, intro-

duced by Rudin et al. [2]. This filter is good at preserving

edges, but tends to produce mask effect for smoothly varying

regions in the input image. There are also a sort of denoising

method, known as neighborhood filtering, which restores a

pixel by taking an average of the values of its neighbors, e.g.,

bilateral filtering [3]. Employing the continuity of intensities

for the pixels in a local neighborhood, those methods consider

only the influence of the pixels in the neighborhood centered

around it when adjusting a certain pixel.

In fact, there exist lots of repeat patterns in natural im-

ages. We can not only consider the local region when mod-

ifying a certain pixel, but also take the whole image into ac-

count. Therefore, Buades developed a non-local image de-

noising algorithm by making use of the information encoded

in the whole image [4]. When modifying a pixel, the algo-

rithm first computes the similarity between a fixed window

centered around it and the windows centered around the other

pixels in the whole image, then it takes the similarity as a

weight to adjust this pixel. This method has shown remark-

able and convincing results, but the efficiency is low for its

pixel-wise window matching. The computational complexity

of the original algorithm is O(n4), and a simplified algorithm

present in their paper is about 49 ∗ 441 ∗ n2, in which n2 is

the number of pixels of the image. However, even with the

simplified algorithm, it still takes about 1 minute to denoise

a 640 ∗ 480 image on a common PC. In evidence, the high

computational complexity makes it unfeasible to tackle with

practical issues.

We present a denoising algorithm in the frame of non-

local method by developing a fast calculation method for the

comparison of windows’ similarity. Exploiting a Summed
Squares Image (SSI) scheme and Fast Fourier Transform (FFT),

the per-pixel neighborhood matching is converted into the SSI
pre-computing and efficient FFT. Computational complexity

analysis and experiments indicate that our fast non-local al-

gorithm is about 50 times faster than the original non-local

algorithm, and yet produces similar results. Using our algo-
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rithm, it normally takes less than 1 second to denoise a nor-

mal size image (e.g. 640 ∗ 480), and less than 10 seconds to

denoise a 500 Megabyte photograph, which enables the algo-

rithm widely applicable to practical situations.

The rest of this paper is organized as follows. In section

2, we introduce the fast non-local algorithm for image denois-

ing. Section 3 analyzes our computational complexity and

gives some experimental results. The last Section concludes

the whole paper.

2. FAST NON-LOCAL DENOISING ALGORITHM

We first briefly introduce the non-local algorithm developed

by Buades et al. [4]. Then we present our acceleration method

based on Summed Squared Image (SSI) and fast Fourier trans-

form (FFT), together with an approach for estimating the stan-

dard deviation of noise.

2.1. Non-local algorithm

In the non-local algorithm [4], given a noisy image,

I = {I(x, y)|(x, y) ∈ Ω}, (1)

the estimated value I ′(xi, yi) for a pixel (xi, yi) is computed

as a weighted average of all the pixels in the image,

I ′(xi, yi) =
∑

(xj ,yj)∈Ω

w(i, j)I(xj , yj), (2)

where the weight w(i, j) of two pixels (xi, yi) and (xj , yj)
depends on their similarity defined as,

w(i, j) =
1

Z(i)
e−

S(i,j)
h2 . (3)

Here Z(i) is the normalized constant, h is a constant pro-

portional to the noise deviation σ2. S(i, j) is estimated by

the weighted Euclidean distance of the two pixels’ neighbor-

hoods Ni and Nj with equal size (M, M) as:

S(i, j) = ‖Ni − Nj‖2
a, (4)

where a is the standard deviation of the Gaussian kernel.

If n2 is the number of pixels in the image, the complex-

ity of this algorithm is M2 · n4. By restricting the searching

of similar window within the size of 21 ∗ 21 pixels and the

neighborhood size 7 ∗ 7, the final complexity of the algorithm

is 49∗441∗n2. Obviously, high computational cost disallows

it to be widely used in application.

2.2. The acceleration of non-local algorithm

For the convenience of acceleration, we adopt the Euclidean

distance to compare two neighborhoods,

S(i, j) = ‖Ni − Nj‖2,

=
M−1∑

l=0

M−1∑

m=0

[Ii(l, m) − Ij(l, m)]2, (5)

Fig. 1. mirrored image.

where Ii(l, m) and Ij(l, m) represent the corresponding pix-

els in Ni and Nj respectively

In fact, Ij(l, m) in equ. (5) can be represented in the

global coordinates on the mirrored image as: Ij(l − x′
j ,m −

y′
j), with x′

j = 3M/2 + xj , y′
j = 3M/2 + yj (see Fig. 1). So

equation (4) is transformed into:

S(i, j) =
M−1∑

l=0

M−1∑

m=0

[Ii(l, m) − Ij(l − x′
j ,m − y′

j)]
2

= N2
i + N2

j − Ni ∗ Nj , (6)

where N2
i =

∑M−1
l=0

∑M−1
m=0 (Ii(l, m))2,

N2
j =

∑M−1
l=0

∑M−1
m=0 (Ij(l − x′

j ,m − y′
j))

2
,

and Ni∗Nj = 2
∑M−1

l=0

∑M−1
m=0 (Ii(l, m)·Ij(l − x′

j ,m − y′
j))

denotes the convolution between Ni and Nj .

In above formula, Ni ∗ Nj can be figured out quickly

with multiplifications under the fast Fourier transform, while

N2
i and N2

j can be fast calculated as well using the Summed
Squared Image (SSI) we propose in subsection 2.3. Note that

if the compare window size is M ∗ M , in (4), computing the

similarity of the two compare window requires M2 pixel op-

erations, while, in our algorithm, it is figured out once which

is achieved by means of FFT.

2.3. Summed Square Image (SSI)

The principle of SSI resembles Integral image which has been

used in face detection [5]. For each pixel in the image, inte-

gral image maintains the summed value of all the pixels in the

upper left part of the original image. Here we extend it to our

SSI. Similar to the definition of integral image, for each pixel

(x0, y0), SSI stores its sum for the squared values of the upper

left pixels,

SSI(x0, y0) =
∑

x≤x0,y≤y0

I2(x, y). (7)

SSI can be obtained in linear time proportional to the im-

age size, we take the following algorithm to calculate it effi-

ciently:

For x0 = 0, y0 = 0,

SSI(0, 0) = I2(0, 0); (8)
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for x0 > 0, y0 = 0,

SSI(x0, 0) = SSI(x0 − 1, 0) + I2(x0, 0); (9)

for x0 = 0, y0 > 0,

SSI(0, y0) = SSI(0, y0 − 1) + I2(0, y0); (10)

for x0 > 0, y0 > 0,

SSI(x0, y0) = SSI(x0 − 1, y0) + SSI(x0, y0 − 1) −
SSI(x0 − 1, y0 − 1) + I2(x0, y0). (11)

Obviously, with above algorithm, each pixel in the origi-

nal image is processed only once, so the computational com-

plexity for computing SSI is O(n2), in which n2 is the size of

the image.

By means of SSI, we can easily get the sum of squares

for each pixel in any rectangles of the image within constant

time. For example in Fig. 2, to calculate the sum of squares

in rectangle D, only 3 addition operations are required,

Fig. 2. Using SSI to compute the summed squared pixels in the
rectangle D.

SD = SA∪B∪C∪D + SA − SA∪C − SA∪B

= SSI(x1, y1) + SSI(x0, y0)
−SSI(x0, y1) − SSI(x1, y0) (12)

Therefore, N2
i and N2

j can be computed quickly with equ.

(11) once we get SSI of the noised image. Accurate analy-

sis in section 3 will show that our fast non-local algorithm is

much faster than the original one.

3. DISCUSSIONS AND EXPERIMENTATIONS

The most time-consuming part of the non-local algorithm [4]

is the calculation of the Euclidian distance between similar

windows in the image. For each pixel in the image, it takes

M2 · n2 square calculations, and the whole computational

complexity is M2 · n4 (M2 denotes the size of similar win-

dows and n2 represents the number of pixels in the noised

image).

In our fast non-local algorithm, this process has been trans-

formed to computing convolution and summation of squares.

It is well known that convolution becomes multiplication un-

der Fourier transform, thus only n2 multiplications need to be

taken for each pixel in the image in our algorithm. Further-

more, Fourier transform can be performed quickly by modern

hardware FFT accelerator within a neglectable time, convolu-

tion can therefore be fast carried out. As for the summations

of squares, only addition operations are needed in this process

which can also be neglected compared to the multiplications.

In (4), computing the similarity of the two compare window

requires M2 pixel operations, while, in our algorithm, it is

figured out once which is achieved by means of FFT. Thus

the total computational complexity is n4, which is M2 times

faster than the original algorithm.

In theory, the neighborhood size M should be congruent

to the size of the repeated patterns in the image. In order to

achieve convincing results, M should be set larger in higher

resolution images, which leads to a significant slowdown in

the original algorithm but no performance changing in ours.

As suggested in Buades’ paper [4], M is set to be 7, and a

21 ∗ 21 search window is used instead of the whole image. In

such simplification, instead of requiring 49 pixel operations

when computing the similarity of two windows in [4], we fig-

ure out the similarity once by FFT and Summed Squares Im-
age (SSI), thus the complexity of our algorithm is 441 ∗ n2.

Clearly, comparing to the original 49∗441∗n2, our algorithm

is about fifty times faster. This makes the performance of

our algorithm acceptable to common users as is demonstrated

in Table 1. Experiments on a PC with a Pentium IV 2.4G

CPU and 512M RAM demonstrate that it takes no more than

10 seconds to denoise a 500Megabyte photo using our algo-

rithm, while the original non-local algorithm requires nearly

10 minutes.

Our denoising results are comparable to that of the origi-

nal non-local algorithm in terms of mean squared error (MSE).

Table 2 compares the mean squared error (MSE) for differ-

ent standard deviation of the added noise between our ac-

celerated method and the original algorithm, note that the

slightly difference in MSE is due to the use of the Euclid-

ean distance when comparing two neighborhood instead of a

weighted Euclidean distance in original non-local algorithm

[4] ; Fig. 3 visualizes the comparison. Fig. 4 compares the

denoising results of our acceleration method with that of non-

local [4] for noisy Lena in which the standard deviation of

noise is 20; Fig. 5 gives our denoising result of Lena.

Table 1. Performance results
Image size Original NL Fast NL algorithm Ratio

512 ∗ 512 28.16 secs. 0.35 secs. 80.5

1024 ∗ 768 85.45 secs. 1.44 secs. 58.6

2592 ∗ 1944 551.1 secs. 9.55 secs. 57.7

Table 2. MSE comparison

Stand deviation σ 5 10 15 20 25

Our acceleration method 14.6 32 55 81 110

Original non-local 12 30 52 68 106
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Fig. 3. Comparison of the mean squared error (MSE) for different
stand deviation of the noise between our acceleration method and
original algorithm.

Fig. 4. Comparison between non-local effect and our acceleration
result. From left to right, original image, noised image, the result of
non-local [4] (MSE 68) and our result (MSE 81).

4. CONCLUSIONS

Exploiting Summed Square Image (SSI) and fast Fourier trans-

form (FFT), we proposed a fast non-local denoising algorithm

in this paper. Theoretically and experimentally, the efficiency

of our accelerated algorithm is about fifty times of the origi-

nal algorithm, and the denoising results are still comparable

to the results of the original algorithm both in MSE and per-

ception. Thus our accelerated algorithm is feasible to tackle

with practical problems.
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