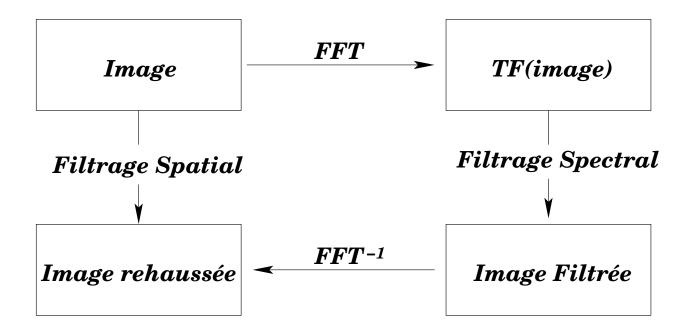


TRAITEMENT D'IMAGES FILTRAGE SPATIAL

Max Mignotte

Département d'Informatique et de Recherche Opérationnelle.

Http://www.iro.umontreal.ca/~mignotte/ift6150


E-mail: mignotte@iro.umontreal.ca

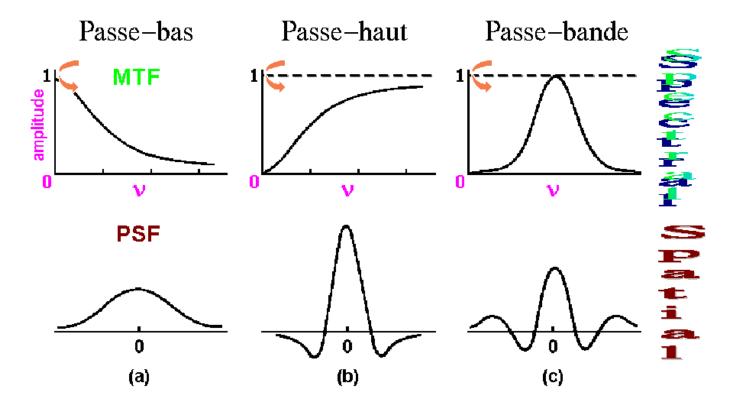
FILTRAGE SPATIALE SOMMAIRE

Introduction	2
Convolution Discrète 2D -Rappel	4
Filtre de Moyenne (Passe-bas)	6
Filtre Gaussien (Passe-bas)	7
Autres Filtres Passe-bas	8
Filtre Médian	9
Filtre Adaptatif	11
Filtre Directionnel	12
Filtre Passe-haut -Op. Mathématique	14
Filtre Passe-haut -Masque de Détection	16
Filtre Passe-haut -Gradient	17
Décision Contour	22
Filtre Passe-haut -Laplacien	23
Filtre de Marr-Hildreth	25
Rehaussement des Contours	26
Exercices	27

FILTRAGE SPATIALE INTRODUCTION

Rehaussement d'Images par Filtrage Spatial/Fréquentiel

Théorème de Convolution -Rappel-

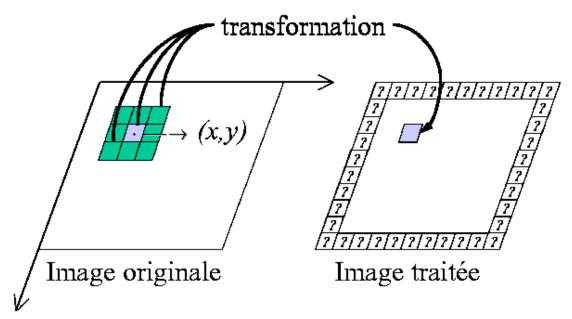

donc, si f(x,y) est l'image à filtrer (ou à rehausser) et g(x,y), le filtre spatial (ou PSF ou masque)

$$f(x,y) * g(x,y) = \mathcal{F}^{-1} \left\{ \mathcal{F} \{ f(x,y) \} \cdot \underbrace{\mathcal{F} \{ g(x,y) \}}_{G(u,\nu)} \right\}$$

2

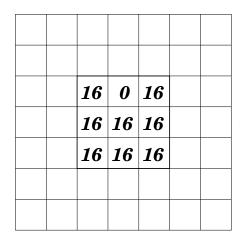
FILTRAGE SPATIALE INTRODUCTION

Trois Types de Filtrage



- **PSF**: Point Spread Function (ou Fonction d'Étalement Spectrale)
- MTF: Modulation Transfer Function (ou Fonction de Transfert)
- ► Filtre Passe-bas : diminue le bruit mais atténue les détails de l'image
- ► Filtre Passe-haut : accentue les contours et les détails de l'image mais amplifie le bruit
- ► Filtre Passe-bande : élimine certaines fréquences indésirables présentes dans l'image

FILTRAGE SPATIALE CONVOLUTION DISCRÈTE 2D -RAPPEL-


Convolution Discrète 2D -Rappel-

Transformation basée sur le voisinage d'un point (x, y)

?: effet de bord => périodicité, miroir, extérieur=0 ou on ne filtre pas les bords...

Exemple

1	2	2	2	1	
3	7	8	7	3	
4	<i>11</i>	<i>14</i>	<i>11</i>	4	
3	9	<i>12</i>	9	3	
1	3	4	3	1	

FILTRAGE SPATIALE CONVOLUTION DISCRÈTE 2D -RAPPEL-

$$g(x,y) = (f * filtre)(x,y) = \sum_{i} \sum_{j} f(x-i,y-j) filtre(i,j)$$

Remarque

ullet Généralement le masque est de dimension (DF) impair et symétrique. Dans ce cas

$$(f * filtre)(x,y) = \sum_{i=-(DF-1)/2}^{(DF-1)/2} \sum_{j=-(DF-1)/2}^{(DF-1)/2} f(x+i,y+j) \text{ filtre}(i,j)$$

Filtre(i, j)

w1	w2	w3	
w4	w5	w6	DF=3
w7	w8	w9	

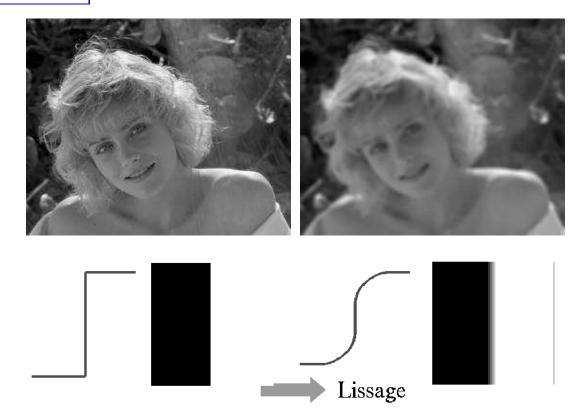
Filtre(0,0)=w5

$$g(x,y) = w_1 f(x-1,y-1) + w_2 f(x,y-1) + w_3 f(x+1,y-1) + w_4 f(x-1,y) + w_5 f(x,y) + w_6 f(x+1,y) + w_7 f(x-1,y+1) + w_8 f(x,y+1) + w_9 f(x+1,y+1)$$

• Afin de conserver la moyenne de l'image f(x,y), la somme des éléments du filtre est normalisée à 1 (i.e., $\sum_i w_i = 1$)

5

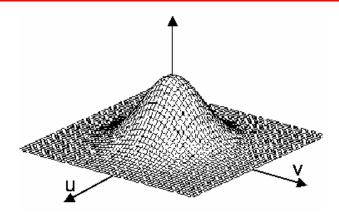
FILTRAGE SPATIALE FILTRE DE MOYENNE (PASSE-BAS)


	1	1	1
<i>1/9</i> *	1	1	1
	1	1	1

1/25 *

Filtre 3x3

Filtre 5x5


Exemple

► Filtre Passe-bas : diminue le bruit mais atténue les détails de l'image (flou)

FILTRE GAUSSIEN (PASSE-BAS)

Gaussienne(x,y) = $\exp(-\pi(x^2 + y^2)/\sigma^2)$

$$(1/16) egin{array}{c|cccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ \hline 1 & 2 & 1 \\ \end{array}$$

Remarque

Idéalement on devrait prévoir un filtre (ou masque) de taille $(6\sigma+1)\times(6\sigma+1)$

FILTRAGE SPATIALE AUTRES FILTRES PASSE-BAS

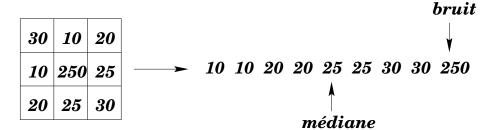
Filtre Binomial

Les coefficients de ce filtre sont obtenus par le binome de Newton. Un filtre 1D Binomial du quatrième ordre donne le vecteur $(1/16)(1 \ 4 \ 6 \ 4 \ 1)$. Le filtre 2D est

	1	4	6	4	1
1 256	4	16	24	<i>16</i>	4
	6	24	36	24	6
	4	16	24	<i>16</i>	4
	1	4	6	4	1

Filtre Pyramidal

	1	2	3	2	1
<u>1</u> 81	2	4	6	4	2
	3	6	9	6	3
	2	4	6	4	2
	1	2	3	2	1

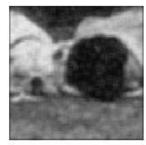

Filtre Conique

	0	0	1	0	0
	0	2	2	2	0
$\frac{1}{25}$	1	2	5	2	1
20	0	2	2	2	0
	0	0	1	0	0

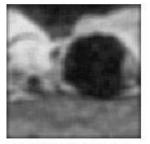
FILTRE MÉDIAN (1)

$$g(x,y) = \text{m\'edian } \{f(n,m)\}\$$

(S voisinage de (x,y))



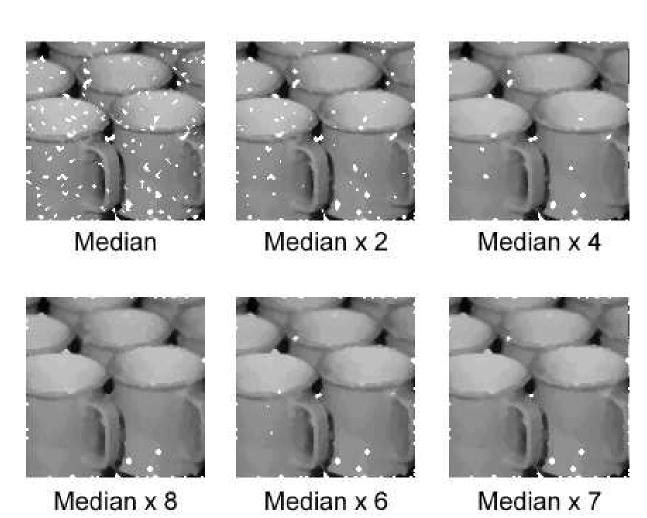
Utile pour contrer l'effet d'un bruit Poivre & Sel (faux "0" et "255" dans l'image)



3 X 3 Average

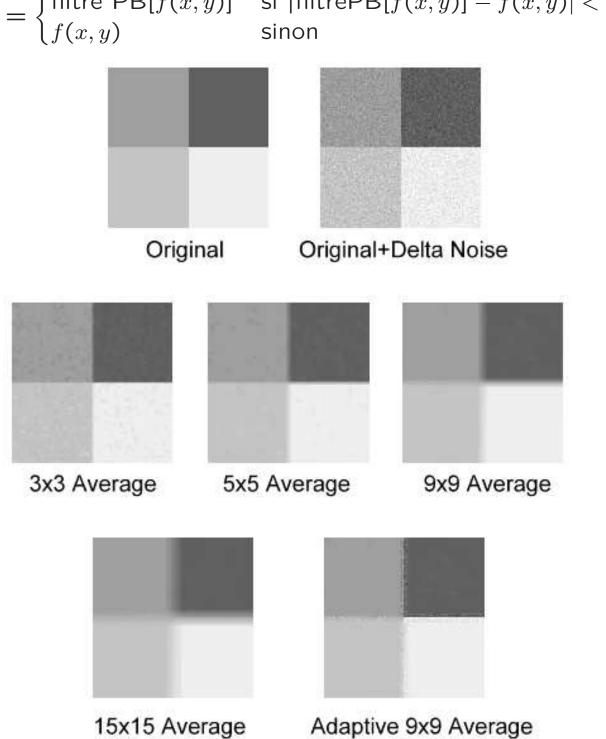
5 X 5 Average

7 X 7 Average

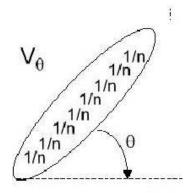

Median

FILTRE MÉDIAN (2)

- Exemple de bruit P & S avec gros agrégats -


Large Noise

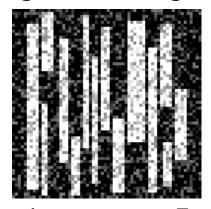
Si le bruit P & S est supérieur à la moitié de la dimension du filtre ▶ filtrage inefficace.

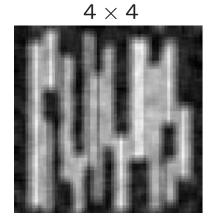

FILTRE ADAPTATIF

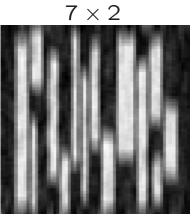
$$g(x,y) = \begin{cases} \text{filtre PB}[f(x,y)] & \text{si |filtrePB}[f(x,y)] - f(x,y)| < \text{seuil} \\ f(x,y) & \text{sinon} \end{cases}$$

T=25

FILTRAGE SPATIALE FILTRE DIRECTIONNEL

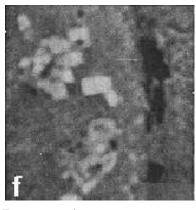

• Trouver le voisinage orienté tq

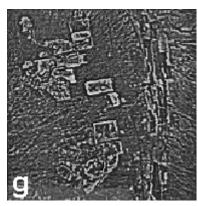

$$\theta_0 = \arg\min_{\theta} |f(x,y) - f * V_{\theta}(x,y)|$$


ullet Calculer la moyenne (ou autre) suivant $V_{ heta}$

$$g(x,y) = f * V_{\theta_0}(x,y)$$

Image bruitée originale





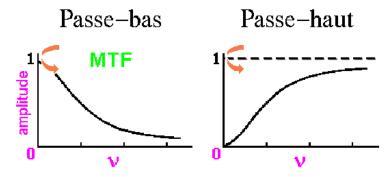
FILTRE PASSE-HAUT -OP. MATHÉMATIQUE- (1)

Filtre "High-boost"

Passe-bas

Passe-haut (K = 1)

High boost = K(original) - Passe-bas(original)


$$g(x,y) = Kf(x,y) - f(x,y) * h(x,y)$$

$$= (K-1)f(x,y) + (f(x,y) * \delta(x,y)) - f(x,y) * h(x,y)$$

$$= (K-1)f(x,y) + f(x,y) * (\delta(x,y) - h(x,y))$$

$$\updownarrow \mathcal{F}$$

$$G(u,v) = (K-1)F(u,v) + F(u,v) \underbrace{\left[1 - H(u,v)\right]}_{\text{Passe-haut}}$$

- K = 1 Passe-haut
- K > 1 Rehaussement de Contour

FILTRE PASSE-HAUT -OP. MATHÉMATIQUE- (2)

- Filtre 3×3 -

$$\delta(x,y) - h(x,y) = \frac{1}{9} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

- Filtre 5×5 -

	-1	-1	-1	-1	-1
	-1	- 1	-1	-1	-1
1 25	-1	- 1	24	-1	-1
20	-1	- 1	-1	-1	-1
	-1	- 1	-1	-1	-1

Opérations sur les filtres de voisinage

Passe-bas

Passe-haut

	-1	-1	-1	-1	-1		1	1	1	1	1]	
_	-1	-1	-1	-1	-1	. (1	1	1	1	1])	1
1 25	-1	-1	24	-1	-1	$=\frac{1}{25}\langle - $	1	1	1	1	1	+ 25	>
23	-1	-1	-1	-1	-1	25	1	1	1	1	1] — J	
	-1	-1	-1	-1	-1		1	1	1	1	1]	

FILTRAGE SPATIALE FILTRE PASSE-HAUT -OP. MATHÉMATIQUE- (3)

Détection de Point

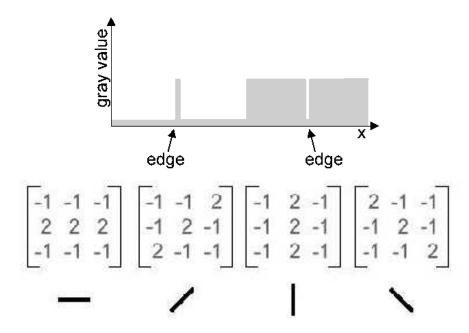
Convolution avec

-1	-1	-1
-1	8	-1
-1	- 1	-1

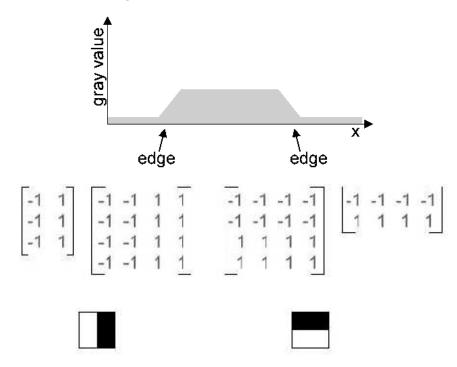
- Grande valeur positive ▶ point blanc sur fond noir
- Grande valeur négative ▶ point noir sur fond blanc

- Exemple -

5	5	5	5	5	
5	5	5	100	5	
5	5	5	5	5	1


	-1	-1	-1
:	-1	8	-1
	-1	- 1	-1

	0	0	-95	-95	-95
=	0	0	-95	760	-95
	0	0	-95	-95	-95


FILTRE PASSE-HAUT -MASQUE DE DÉTECTION-

Détection des contours

- Contour d'une ligne -

- Contour d'un objet -

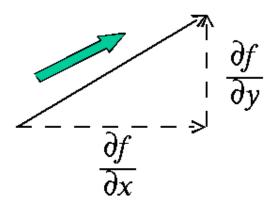
FILTRAGE SPATIALE FILTRE PASSE-HAUT - GRADIENT- (1)

Le Gradient

• Soit f(x,y), alors

$$\nabla f = \begin{pmatrix} G_x \\ G_y \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

• Magnitude du Gradient


$$\operatorname{mag}(\nabla f) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

• Approximation de la Magnitude

$$\operatorname{mag}(\nabla f) \approx |\frac{\partial f}{\partial x}| + |\frac{\partial f}{\partial y}|$$

• Direction du Gradient

$$\theta = \arctan\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

FILTRAGE SPATIALE FILTRE PASSE-HAUT - GRADIENT- (2)

Approximation du Gradient (en x)

$$\bullet \frac{\partial f}{\partial x} = \lim_{\Delta_x \to 0} \frac{f(x + \Delta_x, y) - f(x, y)}{\Delta_x} = \lim_{\Delta_x \to 0} \frac{f(x, y) - f(x - \Delta_x, y)}{\Delta_x}$$

 $\Delta_x = 1$ \blacktriangleright Masque de convolution \blacktriangleright $\boxed{1}$ $\boxed{-1}$ ou $\boxed{-1}$ $\boxed{1}$

$$\bullet \frac{\partial f}{\partial x} = \lim_{\Delta_x \to 0} \frac{f(x + \Delta_x, y) - f(x - \Delta_x, y)}{2\Delta_x}$$

 $\Delta_x = 1$ \blacktriangleright Masque de convolution \blacktriangleright $\boxed{1 \mid 0 \mid -1}$

Approximation du Gradient (en y)

Masque de convolution \blacktriangleright $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ ou $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ ou $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ ou $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

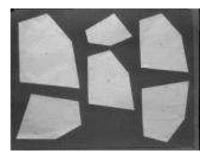
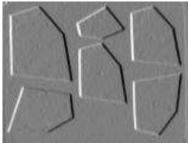
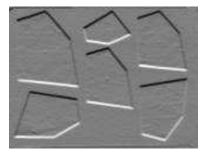




Image original

Gradient en x

Gradient en y

FILTRE PASSE-HAUT -GRADIENT- (3)

Filtre de Robert

$$\frac{\partial f}{\partial x} \approx f(x,y) - f(x-1,y-1)$$
 $\frac{\partial f}{\partial y} \approx f(x-1,y) - f(x,y-1)$

$$\frac{\partial f}{\partial y} \approx f(x-1,y) - f(x,y-1)$$

On obtient respectivement, les masques suivants,

et

▶ Sensible au bruit

Filtre de Prewitt

Filtre Moyenneur + Gradient

-1	0	1
-1	0	1
-1	0	1

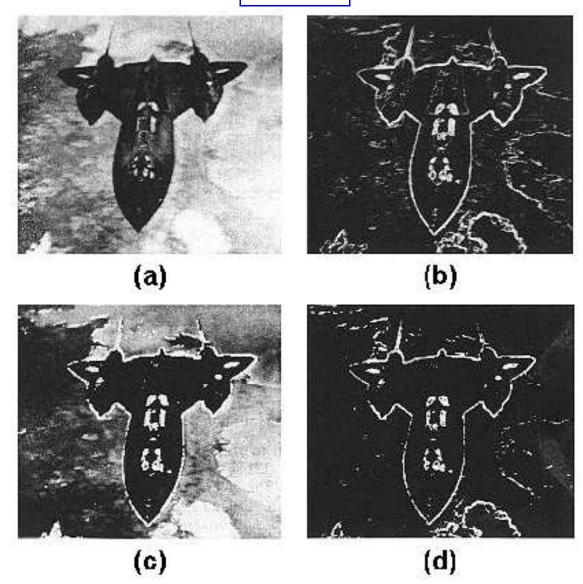
et

	-1	-1	-1
ſ	0	0	0
	1	1	1

et

-1			
0	1	1	1
1			

Filtre Gaussien + Gradient = Filtre de Sobel


-1	0	1
-2	0	2
-1	0	1

et

	-1	-2	-1
	0	0	0
Γ	1	2	1

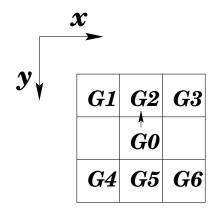
FILTRE PASSE-HAUT -GRADIENT- (4)

Exemple

- (a) Image originale
- (b) Image obtenue à partir des valeurs de magnitude du gradient (masque de Prewitt)
- (c) Image originale dont les pixels ayant un gradient $> 10\%I_{max} (= 25)$ ont été mis à 255
- (d) Idem que (c) mais les pixels dont les gradient $< 25\%I_{max}$ ont été mis à 0 (image binaire)

FILTRAGE SPATIALE FILTRE PASSE-HAUT - GRADIENT - (5)

Filtres compas


Le gradient est défini par

$$g(x,y) = \max_{k} |g_k(x,y)|$$

 \blacktriangleright k donne l'orientation du gradient

FILTRE PASSE-HAUT -GRADIENT- (6)

Décision Contour

• G_0 contour si $|G_0| >$ seuil

• G_0 contour si $\begin{cases} G_2 < G_0 \\ G_5 < G_0 \end{cases}$ ou G_0 contour si $\begin{cases} G_2 < G_0 > G_5 \\ G_1 < G_0 > G_6 \\ G_3 < G_0 > G_4 \end{cases}$

• Seuillage par hystéresis

On définit deux seuils S_b (seuil bas) et S_h (seuil haut) et la classification en pts de contour ou non est donnée

$$\begin{cases} G_0 > S_h & \text{Pts de contour (PC)} \\ G_0 > S_b & \text{Pts de contour possible (PCP)} \\ G_0 < S_b & \text{Pas de contour (PNC)} \end{cases}$$

Un point de contour possible (PCP) est ensuite classé comme un PC lorsque il a un voisin PC, ou PNC dans le cas contraire

FILTRAGE SPATIALE FILTRE PASSE-HAUT -LAPLACIEN- (1)

Dérivée seconde

- Formule des différences finis -

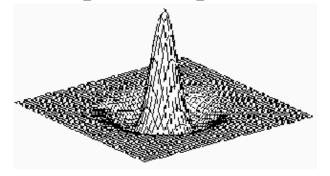
$$\frac{\partial^2 f(x,y)}{\partial x^2} = f''(x,y) = f'(x+1,y) - f'(x,y)$$

$$= [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-1,y)]$$

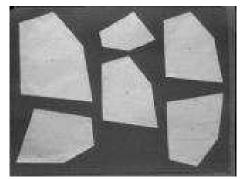
$$= f(x+1,y) - 2f(x,y) + f(x-1,y)$$

Convolution avec le masque ▶ 1 -2 1

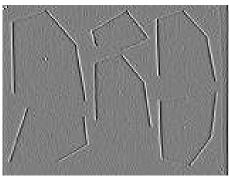
- Par convolution répétée -


$$-1 \mid 1 \mid * \mid -1 \mid 1 \mid = \mid 1 \mid -2 \mid 1 \mid$$

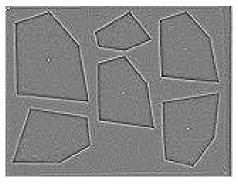
Opérateur Laplacien


$$\nabla^2 = \left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2}\right) \quad \blacktriangleright \quad \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$


Autres formes


$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad \text{ou} \quad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$


FILTRE PASSE-HAUT -LAPLACIEN- (2)

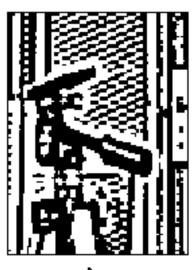


Dérivée 2nd en x

Dérivée 2nd en y

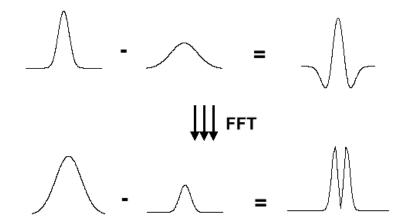
Laplacien

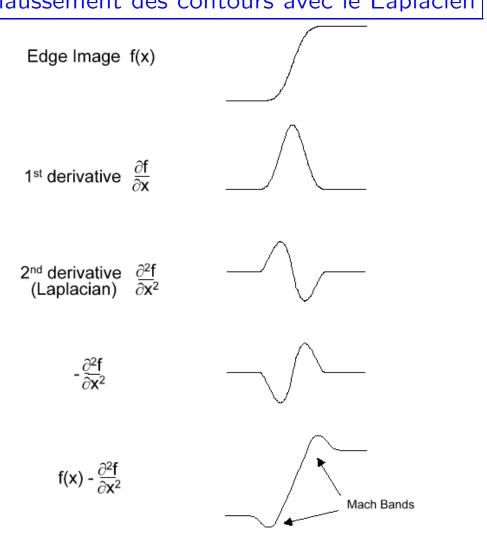
Filtre Moyenneur + Dérivée 2nd


Filtre Gaussien + Dérivée 2nd

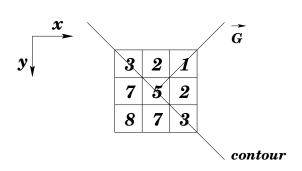
FILTRAGE SPATIALE FILTRE DE MARR-HILDRETH (1)

- 1. On filtre l'image avec un filtre Gaussien
- 2. On prend le laplacien de l'image filtrée




FILTRE DE MARR-HILDRETH (2)

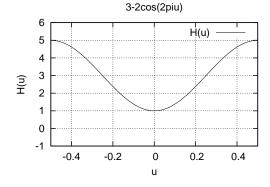
Filtre de Marr-Hildreth ≈ Différence de deux Gaussienne


▶ Filtre Passe-bande

Rehaussement des contours avec le Laplacien

FILTRAGE SPATIALE EXERCICE

Exercice 1


convoluée par l'op. gradient en $x \blacktriangleright \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ et $y \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

on trouve, pour le pixel du milieu $G_y = -5$ et $G_x = 5$. Donc, $|\overrightarrow{G}| = 10$ et $\theta = \arctan(-1) = -\frac{\pi}{4}$.

Exercice 2

Trouver l'allure de la réponse fréquentielle de l'opérateur de convolution $\begin{bmatrix} 1 & -3 & 1 \\ -3 & 9 & -3 \end{bmatrix}$.

$$H(u) = \sum_{x=-\infty}^{+\infty} h(x) \exp(-2\pi j u x) = \sum_{x=-1}^{+1} h(x) \exp(-2\pi j u x)$$
$$= -\exp(2\pi j u) + 3 - \exp(-2\pi j u) = 3 - 2\cos(2\pi u)$$

