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cÉcole de technologie supérieure, Montréal, Canada
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Abstract

We propose a new 3D/2D registration method for vertebrae of the scoliotic spine, using two conventional radiographic views (postero-

anterior and lateral), and a priori global knowledge of the geometric structure of each vertebra. This geometric knowledge is efficiently

captured by a statistical deformable template integrating a set of admissible deformations, expressed by the first modes of variation in

Karhunen–Loeve expansion, of the pathological deformations observed on a representative scoliotic vertebra population. The proposed

registration method consists of fitting the projections of this deformable template with the preliminary segmented contours of the

corresponding vertebra on the two radiographic views. The 3D/2D registration problem is stated as the minimization of a cost function for

each vertebra and solved with a gradient descent technique. Registration of the spine is then done vertebra by vertebra. The proposed method

efficiently provides accurate 3D reconstruction of each scoliotic vertebra and, consequently, it also provides accurate knowledge of the 3D

structure of the whole scoliotic spine. This registration method has been successfully tested on several biplanar radiographic images and

validated on 57 scoliotic vertebrae. The validation results reported in this paper demonstrate that the proposed statistical scheme performs

better than other conventional 3D reconstruction methods.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Registration, an important problem in computer vision, is

still incompletely solved. It primarily consists of establish-

ing a geometric relation between the objects represented by

two images. Many methods of image registration have been

proposed in the literature (see, for example, a good survey of

image registration methods proposed by Brown in Ref. [1],

and the excellent review of existing registration techniques

proposed by Van den elsen et al. in Ref. [2], Lavallée in

Ref. [3], or Maintz and Viergever in Ref. [4], specific to

the medical image registration problem). A comparison

between several registration approaches has been also

undertaken by West in Ref. [5].

Registration is a problem common to many tasks in

medical imagery. Among these tasks, we can cite the 3D

reconstruction of anatomical structures, the fusion of

information coming from several methods, the construction

of anatomical and functional atlases in medical imaging

(allowing the detection of local and/or anatomical or

functional abnormalities), the voluminal and dynamic

visualization of images, etc.

In our application, we use a 3D/2D statistical regis-

tration model from biplanar radiographic images for the 3D
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reconstruction of scoliotic vertebrae of a spine. Scoliosis is

a 3D deformation of the natural curve of the spinal column,

including rotations and vertebral deformations. To analyze

the 3D characteristics of these deformations, which can be

useful for the design, evaluation and improvement of

orthopedic or surgical correction, several 3D reconstruction

methods have been developed. The 3D reconstruction

methods of tomodensitometric imagery modalities (e.g.

X-rays, magnetic resonance) provide accurate 3D infor-

mation of the human anatomy. However, the high level of

radiation received by the patient, the large quantity

of information to be acquired and processed, and the cost

of these methods make them less functional [6]. 3D

reconstruction methods using a limited number of projec-

tions and some simple a priori knowledge of the geometry

of the object to be reconstructed are interesting but are

widely supervised; for example they may require manual

identification (by an operator) of a set of 19 different points

of interest (landmarks) on two different radiographic

images (postero-anterior (IPA) and lateral (ILAT)) of 17

lumbar and thoracic vertebrae [6–8]. Besides, these afore-

mentioned methods may not be very accurate, especially

because they do not exploit all the information contained in

the two radiographic images (e.g. the contours of each

vertebra or a priori global geometrical knowledge of the

object to be reconstructed), and because they are highly

operator-dependent. To this end, Bayesian inference or

statistical modeling is a convenient way of taking a priori

information into consideration. The statistical approach is

quite popular and has been successfully applied in medical

imagery [9–11], in image analysis for extracting 2D

objects in an image [12] or in an image sequence [13], for

the 3D representation of vertebra [14], non-rigid 3D/2D

registration of the knee [15,16], segmentation of 2D

anatomical structures [17–20], localization and classifi-

cation [21], etc.

In this way, we propose a new 3D/2D registration

modeling approach for scoliotic vertebrae from biplanar

radiographic images which can be viewed as a new

statistical 3D reconstruction method. Our approach relies

on the description of each vertebra by a deformable 3D

template which incorporates (statistical) knowledge about

its geometrical structure and its pathological variability. The

deformations of this template are expressed by the first

modes of variation in Karhunen–Loeve (KL) expansion of

the pathological deformations observed on a representative

scoliotic vertebra population. This prototype template,

along with the set of admissible deformations, constitutes

our global a priori model that will be used to rightly

constraint the ill-posed nature of our 3D/2D registration

problem [22]. In our application, the proposed method

consists of fitting this template with the segmented contours

of the corresponding vertebra on two calibrated radio-

graphic views. This matching problem leads to an

optimization problem of a cost function, efficiently solved

in our application by a gradient descent algorithm initialized

by a rough and rigid 3D/2D registration method estimated in

the least square sense.

This paper is organized as follows. Section 2 presents

the statistical deformable model. Section 3 describes

the proposed 3D/2D registration method. Section 4

discusses the validation protocol of our method. The

experimental results of our 3D/2D registration or 3D

reconstruction method are presented in Section 5. Finally,

we conclude the paper in Section 6 with a discussion and

perspectives.

2. Statistical deformable model

The shape s of each vertebra is defined by a set of n

control points or ‘landmarks’, which approximate the

geometric shape of each vertebra in IR3 [12]. Each vertebra,

in the training set, is thus represented by the following 3n

dimensional vector

s ¼ ðp1p2…pi…pnÞ
T
;

where Pi ¼ ðxiyiziÞ
T are the Cartesian coordinates of each

surface point. In the following, we will assume that s is the

realization of a random vector that follows a normal law of

mean vector �s and covariance matrix C; as suggested in [12].

After alignment of the N training shapes [12], mean shape

and the covariance matrix are defined as,

�s ¼
1

N

XN
i¼1

si; C ¼
1

N

XN
i¼1

ðsi 2 �sÞðsi 2 �sÞT:

The variabilities within the training set are characterized by

the displacement vector ~s ¼ s 2 �s of the different surface

points with respect to the mean model. Statistical analysis

of this random vector makes it possible to deduce the

deformation modes relative to the mean shape. The

eigenvectors of the covariance matrix C of this random

vector describe the variation modes in the deformation

parameter space or information on the variability of

scoliotic deformations in the vertebra database. The

associated eigenvalues li are the amplitudes of these

variation modes. An accurate description of the main

variation modes may be obtained by retaining only the t

eigenvectors associated with the t largest eigenvalues1

[12]. The model allows the generation of new instance of

the shape by adding linear combinations of the t most

significant variation vectors to the mean shape,

s ¼ �s þ fb; ð1Þ

where f represents an orthogonal base of variation modes

of scoliotic vertebrae contained in the training base, and b

is the global deformation parameter vector setting the

1 As C is symmetric ðCT ¼ CÞ; its eigenvalues are real and the associated

eigenvectors are orthogonal. As C is positive definite, its eigenvalues are

positive or null.
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amplitudes of each deformation mode bi: By ensuring,

23
ffiffiffi
li

p
# bi # þ3

ffiffiffi
li

p
; ð2Þ

where li is the eigenvalue associated with the deformation

mode bi; only the important deformations are extracted,

discarding training data noise [12]. This low parametric

representation of a vertebra constitutes our global a priori

model that will be used in our 3D reconstruction method

(Figs. 1–2).

In theory, the ratio of an eigenvalue to the total sum of the

other eigenvalues expresses the percentage of error intro-

duced if the eigenvector associated with the corresponding

eigenvalue is not selected [12]. One must thus specify a

threshold fvðfv [ ½0; 1�Þ for the eigenvalues above which the

error is considered to be sufficiently small to generate a good

approximation of the initial vector. Hence, if VT is the sum of

the eigenvalues, then the number t of eigenvalues to be

selected is such that,

Xt

i¼1

li $ fvVT :

By doing so, we ensure that the selected deformation modes

allow us to represent 100fv% of the existing scoliotic

deformations in the training base.2

Fig. 1. Visualization of mean shape (middle row) from the sagittal (top row) and coronal views (bottom row), and two deformed shapes obtained by applying

^3 standard deviations of the first and second deformation modes to the mean shape for the L3 vertebra.

2 Each vector can also be characterized by the Mahalanobis distance

ðs 2 �sÞTC21ðs 2 �sÞ directly related to a normal distribution. From relation

(2), we deduce that [12],

Xt

i¼1

b2
i

li

# 9t: ð3Þ

A random vector s which does not check this condition could be considered

to be not representative with respect to statistical training. In practice, the

criterion expressed by Eq. (3) could be used to validate certain

configurations of shapes [17].
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3. 3D/2D registration method

Besides the above-mentioned global deformation par-

ameters, we also consider 3D global transformations from

the similarity group which finally lead to the following

model for global deformations,

s ¼ Mðk;aÞ½�s þ fb� þ T ;

with kðk $ 0Þ and a being, respectively, the scale and

the rotation vector, and T is a global translation vector.

The rotation matrix R can be represented by a product of

three separate rotation matrixes Ra1;Ra2; and Ra3 which

correspond to rotations around the x; y; and z axes,

respectively ða1;a2;a3 [ ½0; 2p�Þ: The rotation matrix R

and the global translation vector T are regrouped in

Fig. 2. Visualization of mean shape (middle row) from the sagittal (top row) and coronal views (bottom row), and two deformed shapes obtained by applying

^3 standard deviations of the first and second deformation modes to the mean shape for the T6 vertebra.
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the 3n £ 3n dimensional transformation matrix Mðk;aÞ as

follows,

Mðk;aÞ ¼

M1ðk;aÞ 0 … 0

0 M2ðk;aÞ … 0

..

. ..
. . .

. ..
.

0 0 … Mnðk;aÞ

0
BBBBBBB@

1
CCCCCCCA
;

where Miðk;aÞ ¼ kRa3
Ra2

Ra1
;

T ¼

Tx

Ty

Tz

0
BB@

1
CCA;

and,

Ra1 ¼

1 0 0

0 cosða1Þ 2sinða1Þ

0 sinða1Þ cosða1Þ

0
BB@

1
CCA;

Ra2 ¼

cosða2Þ 0 sinða2Þ

0 1 0

2sinða2Þ 0 cosða2Þ

0
BB@

1
CCA;

Ra3 ¼

cosða3Þ 2sinða3Þ 0

sinða3Þ cosða3Þ 0

0 0 1

0
BB@

1
CCA:

3.1. Crude and rigid initial registration

To ensure a first crude and rigid reconstruction of each

vertebra, we use the technique proposed in [23]. This

technique identifies, in a preliminary step, a sequence of

eight points along the centerline of the spine from the C1

cervical vertebra to the L5 lumbar vertebra on the two

radiographic views of the spine. These points are then

exploited to determine the position of six anatomical points

(namely, the center of the superior and inferior end-plates,

the upper and lower extremities of both pedicles) for each

vertebra of the spine (Fig. 4). The corresponding points on

the shape of the mean vertebra being known, we can obtain,

in the least square sense [24], an initial estimate of the

parameter vector ða;TÞ: This leads us to crude and rigid

registration for each vertebra that will then be refined by our

3D reconstruction model.

3.2. 3D/2D model registration

Our reconstruction model from two radiographic views is

stated as the minimization of the following cost function,

Eðs; uÞ ¼ Elðs; IPA; ILATÞ þ bEpðsÞ; ð4Þ

where Elðs; IPA; ILATÞ is the likelihood energy term, and

EpðsÞ is the prior energy term (or the regularization term),

used to constrain the ill-posed nature of this optimization

problem. b is a factor that provides relative weighting

between the two penalty terms and allows us to control the

rigidity of the statistical template [25]. u ¼ ðMðk;aÞ;T ; bÞ is

the deformation parameter vector of the model to be

estimated. It should be noted that this optimization problem

can also be formulated as the search for the maximum a

posteriori (MAP) of u; the deformation parameters of the

deformed template s;

sp ¼ arg max
s

PðIPA; ILATlsÞPðsÞ; ð5Þ

Fig. 3. Visualization of the shape model: sagittal, coronal and axial views.

Fig. 4. Anatomical stereo-corresponding landmarks.
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where

PðIPA; ILATlsÞ ¼
1

Zl

expð2Elðs; IPA; ILATÞÞ

is the likelihood of the observations (i.e. the segmented

contours on the two radiographic views) given by a

deformed template, and

PðsÞ ¼
1

Zp

expð2EpðsÞÞ

is the prior probability of the deformed template (or the

prior probability of a scoliotic deformation for a given

vertebra). Zl and Zp are two constants of normalization.

3.3. Likelihood energy term

In our application, our likelihood model is expressed by a

measure of similarity between the external contour of the

lateral and the postero-anterior perspective projections of

the deformed template and an edge potential field estimated

on the two radiographic views. First, this edge potential field

requires the preliminary detection of edges in the two

radiographic images. To do so, we use a simple Canny edge

detector [26]. Second, this field is determined by the

positions of the detected edges in the radiographic images.

For a pixel ðx; yÞ in the postero-anterior or lateral image, we

define its edge potential by,

cðx; yÞ ¼ exp 2

ffiffiffiffiffiffiffiffiffi
j2

x þ j2
y

q
t

0
B@

1
CA;

where ðjx; jyÞ is the displacement to the nearest edge point in

the image, and t is a smoothing factor which controls the

degree of smoothness of this potential field.3 This edge

potential induces an energy function that relates a deformed

template s to the edges in the two radiographic images IPA

and ILAT (Fig. 11)

Elðs; IPA; ILATÞ ¼2
1

nPA

X
GPA

cPAðx;yÞ2
1

nLAT

X
GLAT

ðx;yÞ; ð6Þ

where the summation of the first and second term of

Elðs; IPA; ILATÞ is overall the nPA and nLAT of the external

contour of the, respectively, lateral and postero-anterior

perspective projections of the deformed template on the two

pre-computed edge potential fields of each radiographic

image. This energy function attains its minimum value

when there is an exact correspondence between the

projected contours (of the deformed template) and

the preliminary segmented contours of the two radiographic

views.

3.4. Prior energy term

Due to KL transformation, the random variables bi are

independent and follow a normal law of a null mean and

variance li [12]. Thus, the law of probability of s; the

deformed template, can be written as [13],

PðsÞ ¼
Yt

i¼1

1ffiffiffiffiffiffi
2lip

p exp 2
b2

i

2li

 !
:

This probability expresses the fact that the shape to be

reconstructed is likely close to the mean shape. By

considering that

PðsÞ ¼
1

Zp

expð2EpðsÞÞ;

the prior energy term can be written as,

EpðsÞ ¼
1

2

Xt

i¼1

b2
i

li

: ð7Þ

This energy term penalizes the deviation of the deformed

template from the mean shape. This term does not penalize

affine transformations. Eq. (7) closely resembles the

Mahalanobis distance. It defines an ellipsoid centered in

IRt whose principal axes are identified by
ffiffiffi
li

p
when EpðsÞ is

a constant.

3.5. Silhouette extraction of the 3D model

The 3D model of vertebrae is represented in the form of a

triangulated mesh (Fig. 5) Silhouette detection is based on

estimation of the normal at each vertex of the mesh. The

normal in each vertex is computed by the average of the

normal of all facets to which the vertex belongs (Fig. 6). For

two neighbours V1 and V2 of facet Fi whose product of the

weights is negative, we interpolate linearly along the

edge ðV1V2Þ (Table 2). The line joining two interpolated

vertices of Fi is called the external edge (Fig. 7). On a

surface G; the external edges of the vertebra shape are lines

where the direction of projection is tangent on the surface

[27,28]. The external edges are saved in a list. As in the case

of a not-convex object, the external edges can be hidden by

other parts of the surface. We keep all the external edges,

including those that are occulted (i.e. those that are hidden

by another part of the vertebra). Let us recall that we use

semi-transparent radiographic images (i.e. superposition of

the various structures on a the same plan). In our

application, occulted edges are also exploited in our 3D/

2D registration method. Let us put all the external edges

having a joint vertex in a list. Each one of these lists

constitutes an external contour of the vertebra. The set of

these external contours constitutes the silhouette of

3 We can easily complete this edge potential field cðx; yÞ by adding to it a

directional component to obtain a directional edge potential field,

c0ðx; yÞ ¼ cðx; yÞlcosðgðx; yÞÞl;

where gðx; yÞ is the angle between the tangent of the nearest edge and the

tangent direction of the contour at ðx; yÞ: This potential field is similar to the

one proposed in Ref. [25] for a template-based localization approach.
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the vertebra (Fig. 8). We summarize the whole procedure in

Table 2.

3.6. Optimization of the energy function

The energy function to be minimized, namely,

Eðs; uÞ ¼ 2
1

nPA

X
GPA

cPAðx; yÞ2
1

nLAT

X
GLAT

cLATðx; yÞ

þ b
1

2

Xt

i¼1

b2
i

li

; ð8Þ

is a complex function with several local minima over the

deformation parameter space. A global search is impossible

due to the size of the configuration space. In our application,

experiments have shown that the initial crude and rigid

reconstruction technique described in Section 3.1 (i.e. the

estimation of rigid deformation parameters) can be

efficiently exploited to initialize a gradient descent

technique.

Various types of gradient descent have been used for

rigid registration [29–32]. For our application, we

combine the gradient descent technique with the strategy

described in [25], which consists of sampling, out of u;

function Eðs; uÞ and using various samples obtained to

initialize a local gradient descent technique. In our case,

Fig. 5. Model of vertebra: triangulated mesh (187 points and 378 triangles).

Fig. 6. Normal at the triangles, normal at the points.

Table 1

Algorithm used for fitting two 3D meshes

Fitting algorithm of two 3D mesh points

Vscan_vert : set of vertex of scanned vertebra

Vreco_vert : set of vertex of reconstructed vertebra

V
corresp
scan_vert : set of corresponding vertex of scanned vertebra

V
corresp
reco_vert : set of corresponding vertex of reconstructed vertebra

Vnearest
scan_vert : empty set

e : threshold

R : rotation

T : translation

Quaternions: quaternions algorithm

Initialization

½R; T� ¼ quaternions ðV
corresp
reco_vert;V

corresp
scan_vertÞ

To apply the rigid transformation (rotation R and translation T) to Vvert_reco

Optimization

j ¼ 0;
P

0 ¼ 0;

While
�� P

jþ1 2
P

j

�� . e

For each vertex Vi of Vreco_vert

Compute the nearest point Ni of Vi in Vscan_vert and add Ni to Vnearest
scan_vert

½R;T� ¼ quaternions ðV
corresp
reco_vert;V

nearest
scan_vertÞ

Apply the rigid transformation (rotation R and translation T) to Vvert_reco

Compute
P2

j ¼
Pn

i¼1

��Vnearest
scan_verti

2 Vreco_verti

��2������
End

Retain the rigid transformation (rotation R and translation T) corresponding

at the last step
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we sample out function Eðs; uÞ around estimations given

by the crude and rigid reconstruction technique presented

in Section 3.1. The final adopted solution is the one

associated with the lowest energy. However, the sampling

of these template positions and transformation parameters

must be chosen judiciously. It should be fine enough not

to miss the significant local minima of the energy

function, and large enough to avoid high computational

requirements. In our application, we also use a simplified

version of the traditional gradient descent technique,

which does not require an analytical expression of the

gradient of Eðs; uÞ (clearly unavailable in our case), and

similar to the one proposed in [33]. We have summarized

the whole procedure in Table 3. This gradient descent

technique, combined with the above-mentioned sampling

strategy, is deployed to simultaneously refine the esti-

mation of rigid parameters and to estimate nonrigid

parameters.

Fig. 7. Example of an external edge, the þ and 2 signs on the vertices indicate the signs of its weights.

Fig. 8. Example of lateral and postero-anterior silhouettes of a vertebra given by the silhouette extraction algorithm.

Table 2

Algorithm used for silhouette extraction

Silhouette extraction algorithm

M ¼ ðV ;FÞ : mesh such that

V : V ¼ {V1;V2;…;Vi;…Vn} , IR3 set of vertices

F : F ¼ {F1;F2;…Fi;…Fm} set of facets

L: Empty list

~ni : normal in vertex Vi of facet Fi

~vi : unit vector line joining the projection source and vertex Vi

For each facet Fi of F

Compute the normal at facet Fi

For each vertex Vi of V

Compute the normal at vertex Vi and its weight ~ni·~vi

For each facet Fi of F

For each pair of vertex ðViVjÞ of Fi

If ð~ni·~viÞ £ ð~nj·~vjÞ , 0 then

Interpolate linearly along the edge ðViVjÞ

Add the edge joining two interpolate points to L

Gather all the edges of L having a joint vertex in list Li ðL ¼ {Li=i $ 0}Þ

S. Benameur et al. / Computerized Medical Imaging and Graphics 27 (2003) 321–337328



4. Validation of 3D/2D registration

In our application, our 3D/2D registration technique is

validated by comparing the reconstructed model obtained by

our method and by reconstruction from CT-scan slices [34]

by SliceOmaticq (TomoVision. http://www.tomovision.

com/) software. 3D reconstruction models of the vertebrae

contain up to 7,000 points per vertebra and will constitute the

ground truth for our validation procedure. First, the

validation procedure consists of fitting the model of 200

points of our 3D/2D registration method on the scanned

vertebra. To this end, we manually extract some easily

identifiable anatomical landmarks on the reconstructed

model resulting from CT-scan whose position is known,

and we estimate the rigid transformation allowing us to pass

from the set of anatomical landmarks of our reconstructed

model to the set of corresponding anatomical landmarks on

the scanned model. Then, we apply this rigid transformation

to all points of the reconstructed vertebra. Once this is done,

we optimize the rigid transformation, which enables us to

readjust the two models of vertebra. Optimization consists of

finding neighbours on the scanned vertebra to each point of

the reconstructed vertebra and then to estimating and re-

applying the rigid deformation, allowing us to pass from the

set of points of the reconstructed vertebra to the set of points

close to the scanned vertebra.

The variation of error between the two sets of points

is also computed.4 This procedure is repeated until

the difference in variation of error between two successive

stages is lower than a given threshold.

The whole procedure is summarized in Table 1. We can

exploit this 3D/2D registration method to estimate the mean

and the maximum error distance between the 3D recon-

structed model from our method and the 3D model resulting

from CT-scan.

5. Experimental results

5.1. Vertebra database

The vertebra database consists of 1,020 thoracic and

lumbar vertebrae (510 normal and 510 scoliotic). These data

were obtained by digitization of the anatomical points on

anatomical specimens. These anatomical specimens have

been selected from the Hamann–Todd osteology collection

of over 1,800 complete specimens in Cleveland, USA, and

from the Robert J. Terry anatomical skeletal collection of

over 1,700 specimens at the Smithsonian Institution in

Washington, DC, USA5 [39].

Fastrackq (POLHEMUS, A Rockwell Collins

Company, http://www.polhemus.com/ftrakds.htm) is the

name of the electromagnetic device used to digitize each

vertebra by means of a pointer. The accuracy of this device

is evaluated at ^0.2 mm [40]. The 3D coordinates of the

pointer were recorded in a specific reference system. The

digitizing protocol consisted of measuring specific ana-

tomical landmarks on each vertebra, thus creating a set of

approximately 200 points depending on the level measured

with regard to its particular geometry [41]. Different points

were acquired in a specific order and recorded in this

sequence. After the measurements were done, each

vertebra was then reconstructed using computer graphics

software. Each set of points was then re-localized in a local

coordinate system.6

5.2. Radiographic images

In our application, we used two radiographic images

(i.e. postero-anterior and lateral) acquired with a Fuji

FCR 7501S radiographic imaging system. Radiography is

the image in 2D projection of a 3D object whose X-rays

are the source of illumination. The intensity transmitted

through a specific zone of an object decreases according

to the nature and thickness of the material through which

radiation passes. Thus, air, soft tissue (muscles, cartilage,

etc.) and bones present different attenuation coefficients

for X-rays and can, in this way, become theoretically

localized in radiological images. Thus, the radiographic

Table 3

Deterministic algorithm used for optimization of the energy function [33]

Gradient descent algorithm

E : energy function

u : the deformation parameter vector

Dui : Step of each parameter

Sampling in u of function Eðs; uÞ around the estimation given by the rigid

reconstruction technique (cf. Section 3.1)

For each configuration or sample obtained

For each parameter uið1 , i , tÞ

Evaluate:

Eðu1;…; ui 2 Dui;…; utÞ

Eðu1;…; ui;…utÞ

Eðu1;…; ui þ Dui;…; utÞ

Retain the configuration u associated with the lowest energy

We stop the algorithm for this sample when Eðs; uÞ is stable and the

estimate obtained is memorized if the computed energy is lower than the

last better estimate

4 Many methods have been proposed in the literature to estimate the rigid

transformations R and T : In Ref. [35], LORUSSO compared the quaternion

method [24], polar decomposition [36], the method of decomposition in

singular values (SVD) [37], and the duaux quaternion method [38]. This

study concludes that the difference in precision is not significant, the

computational times are comparable, and that the only substantial

difference is the sensitivity of the algorithms when the points used

approach a degenerated configuration. In our case, we use the quaternion

method.

5 Age, sex, race, height, weight, cause of death and peculiar dissection

findings of each scoliotic specimen are available.
6 To our knowledge, the vertebrae base is the largest database available in

the literature [39].
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Fig. 9. Morphometric parameters used in our validation protocol.

Fig. 10. Preprocessing: (a) postero-anterior image, (b) lateral image (256 £ 256 pixels), (c) and (d) EDGE map using a Canny edge detector, (e) and (f) edge

potential field.
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image illustrates the superposition of various structures

on a same plane and gives place to semi-transparent

images.

5.3. Calibration

Calibration is a necessary step to compute the geometri-

cal parameters of the radiological environment. The images

are calibrated by a calibration object which is composed of

two acrylic sheets parallel to the X-ray film plane. The two

sheets contain embedded radiopaque spherical markers (55

steel balls) which are easily detectable on the radiographic

images. The scene is calibrated using the 3D coordinates

ðX;Y ;ZÞT of each steel ball previously measured and their

corresponding 2D observations ðx; yÞT to solve the following

equation,

ðx y mÞT ¼ Dðq;kÞ £ ðX Y ZÞT;

where m is the X-ray tube distance q and k being,

respectively, the scale and rotation vector [42].

5.4. Comparison protocol

We have validated our 3D/2D registration method on 57

scoliotic vertebrae (six lumbar vertebrae and 51 thoracic

vertebrae) from 13 patients (13 pairs of radiographic

images (postero-anterior and lateral views) of scoliotic

spines). This comparison was made using the distance

(mean, root mean square (RMS), and maximum) between a

point from the reconstructed vertebra and the surface of the

corresponding vertebra obtained with CT-scan, which was

considered as the ground truth and whose accuracy is

^1 mm [43].

We also considered five morphometric parameters

related mostly to the dimensions of the pedicles and the

spinal canal (Fig. 9). These measures can be useful for

the surgeon because the pedicles are significant places

for the installation of screws and hooks to allow rectification

of the spinal column.

5.5. Experimental results

The mean vertebra shape of each vertebral level is

computed from a sample of 30 normal vertebrae. The

deformation modes of each vertebral level is computed on a

sample of 30 scoliotic vertebrae.

We used the Canny edge detector to estimate the edge

map which is then employed to estimate the edge potential

field on the two radiographic views (Fig. 10). In our

application, sigma ¼ 1, mask size is 5 £ 5, and the lower

and upper thresholds are given by the unsupervised

estimation technique proposed in [26].

In our application, we have chosen to take the number of

deformation modes that allows representation of at least

90% of the admissible deformations for each type of

vertebra. Table 4 shows that, for the L3 vertebra, the first 10

deformation modes integrate 90.90% of the deformations

considered to be statistically admissible. For the T6

vertebra, the first eight deformation modes represent

92.49% of the deformations.

Besides, experiments have shown that the crude and

rigid reconstruction procedure is not always a good

initialization for the gradient-based optimization tech-

nique. As already stated in Section 3.5 and, in order to

overcome this problem, our solution consists of placing

the template at evenly-spaced positions and in deforming

it according to a discretized set of translation orientations

or scales (corresponding to rigid parameters) within a

range of values around the initial estimate obtained by the

rigid reconstruction procedure. These deformed template

configurations can then be used to initialize a determinis-

tic gradient descent algorithm. However, spacing between

the template positions and the sampling of the transform-

ations must be chosen judiciously: not too spaced out to

cover all the significant local minima of the energy

surface, and not too little spacing to avoid high

computational requirements.

For the experiments, we have chosen b ¼ 1 for the

weighting factor penalizing the prior energy term with

respect to external energy. The proposed method allows

good registration of the vertebra. An example of projections

of the shape of a L3 vertebra on postero-anterior and lateral

radiographic images for a scoliotic patient is shown in

Fig. 11.

The mean and the maximum error distance between

the reconstructed model resulting from our 3D/2D

registration method and the model resulting from CT-scan

are, respectively, (0.71 ^ 0.06), and (3.67 ^ 0.80) mm

for the lumbar vertebrae and (1.48 ^ 0.27), and

(6.44 ^ 1.76) mm for the thoracic vertebrae. The results

of comparison for 11 vertebral levels are given in

Table 5. Pedicle width, pedicle height, pedicle depth,

canal depth and canal width difference between

Table 4

Normalized eigenvalues computed on a training set of 178 point models of

30 vertebrae obtained from the covariance matrix

L3 vertebra T6 vertebra

li=VT (%) li=VT cumulated (%) li=VT li=VT cumulated (%)

26.46 26.46 27.62 27.62

19.44 45.90 24.06 51.68

8.95 54.85 12.37 64.04

7.95 62.80 9.55 73.59

6.89 69.69 6.49 80.09

6.22 75.91 5.42 85.50

4.88 80.80 4.19 89.69

3.88 84.68 2.80 92.49

3.45 88.12

2.78 90.90
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the reconstructed model resulting from our 3D/2D

registration method and the model resulting from CT-

scan are of the same order. The results of comparison for

11 vertebral levels are given in Table 6. Visual

comparison between the reconstructed model resulting

from our 3D/2D registration method and the model

resulting from CT-scan for the L3 and T6 vertebrae is

presented respectively in Figs. 12 and 13.

Fig. 11. Initial estimate of the mean shape of the vertebra on the two radiographic views by the proposed crude and rigid initial reconstruction method.
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6. Discussion and conclusion

We have presented an original statistical method of

3D/2D registration of scoliotic vertebrae using both the

contours extracted from biplanar radiographic images and

a priori knowledge of the geometric structure of each

vertebra. This technique can also be viewed as an

original 3D/2D reconstruction or segmentation model.

The 3D/2D registration problem is stated as the

minimization of a cost function for each vertebra and is

solved with a gradient descent technique combined with a

sampling strategy.

The results of validation presented above show that the

reconstruction of lumbar vertebrae obtained by our 3D/2D

registration method is more accurate than the 3D biplanar

reconstruction method using non-stereo-corresponding

points (NSCP) [7] and the 3D biplanar reconstruction

method using corresponding points (DLT) [6,8]. The mean

error is 0.7 mm for our method, 1.4 mm for NSCP, and

2.4 mm for DLT in [8], and 2.6 mm for DLT in [43]. Some

maximum errors obtained on spinous processes are still high

(i.e. maximum error is 3.9 mm for lumbar vertebra and

7.9 mm for thoracic vertebra) (Figs. 14 and 15). Even

though these maxima correspond to points with no

significant role in surgery planning, the accuracy of

reconstruction is relatively acceptable with the results

obtained by CT-scan which is considered as the more

accurate reconstruction technique.

We note that the results are better for the lumbar

vertebrae. For the thoracic vertebrae, the segmented

contours are difficult to detect due to the presence of the

ribs. Let us add that the size of the vertebra database, on

which we performed a principal component analysis (PCA)

to extract the deformations (considered to be statistically

admissible), remains insufficient and does not certainly

contain all the scoliotic deformations. Consequently, a

large part of our reconstruction error results from the fact

that some scoliotic deformations have not been modeled by

PCA. Another part of our reconstruction error is due to the

reconstruction error of the CT-scan technique considered

as null in our validation protocol. Nevertheless, we can

observe that the results obtained for morphometric

parameters are nearly comparable with those obtained by

CT-scan. Let us mention that these parameters are

important for the surgical correction of scoliosis.

Let us recall that the surgical correction of scoliosis

consists of correcting the scoliotic deformation by

rotations and translations practiced at the level of the

vertebrae and/or the level of the spine until a more normal

alignment of the vertebrae is obtained. Correction consists

of fixing the spine in this configuration using a metal rod

supported by hooks and screws installed in the pedicles.

Knowledge of the accurate sizes and geometry of these

pedicles is thus crucial.

Let us note that the estimated global deformation

parameters after reconstruction (i.e. parameter vector b,

setting the amplitude of each deformation mode of the

scoliotic deformations) and the measures of morphometric

parameters can also be used to quantify the scoliosis, its

nature or to analyze the improvement of orthopedic or

surgical corrections.

To conclude, this method has demonstrated its efficiency

and robustness. We strongly believe that a method which

Table 5

Results on comparisons of 57 scoliotic vertebrae

Level N Mean error

(mm)

Root mean square

(mm)

Maximum error

(mm)

T6 3 1.16 ^ 0.07 0.20 ^ 0.06 5.30 ^ 1.04

T7 6 1.70 ^ 0.29 0.22 ^ 0.06 6.01 ^ 0.57

T8 9 1.79 ^ 0.18 0.25 ^ 0.10 7.28 ^ 4.00

T9 10 1.46 ^ 0.32 0.24 ^ 0.07 6.89 ^ 1.61

T10 9 1.24 ^ 0.31 0.23 ^ 0.07 6.59 ^ 0.61

T11 9 1.62 ^ 0.52 0.21 ^ 0.07 6.63 ^ 1.28

T12 5 1.37 ^ 0.21 0.16 ^ 0.03 6.38 ^ 1.17

L1 2 0.49 ^ 0.03 0.04 ^ 0.01 3.84 ^ 0.21

L2 1 0.76 ^ 0.12 0.05 ^ 0.01 3.85 ^ 0.90

L3 2 0.80 ^ 0.02 0.06 ^ 0.01 4.91 ^ 0.15

L5 1 0.77 ^ 0.06 0.04 ^ 0.01 2.07 ^ 1.26

Table 6

Results on point-to-surface comparisons of 57 scoliotic vertebrae

Level N Pedicle width (mm) Pedicle height (mm) Pedicle depth (mm) Canal depth (mm) Canal width (mm)

T6 3 0.43 ^ 0.28 0.68 ^ 0.22 0.71 ^ 0.14 0.36 ^ 0.45 0.53 ^ 0.47

T7 6 1.03 ^ 0.46 1.03 ^ 0.55 1.33 ^ 0.52 0.97 ^ 0.64 1.42 ^ 0.44

T8 9 1.34 ^ 0.94 1.14 ^ 0.63 1.44 ^ 0.37 0.91 ^ 0.50 0.59 ^ 0.44

T9 10 1.15 ^ 0.63 0.99 ^ 0.81 1.59 ^ 0.40 0.95 ^ 0.72 1.00 ^ 0.63

T10 9 1.04 ^ 0.61 1.05 ^ 0.66 1.28 ^ 0.48 1.32 ^ 0.59 1.36 ^ 0.88

T11 9 1.06 ^ 0.68 1.22 ^ 0.71 1.30 ^ 0.63 1.40 ^ 0.52 0.96 ^ 0.65

T12 5 1.12 ^ 0.46 0.88 ^ 0.63 1.12 ^ 0.59 1.23 ^ 0.71 1.06 ^ 0.36

L1 2 0.26 ^ 0.06 0.18 ^ 0.08 0.22 ^ 0.19 0.11 ^ 0.05 0.02 ^ 0.01

L2 1 0.27 ^ 0.05 0.50 ^ 0.09 0.17 ^ 0.09 0.41 ^ 0.11 0.14 ^ 0.10

L3 2 0.22 ^ 0.25 0.30 ^ 0.17 0.31 ^ 0.18 0.38 ^ 0.34 0.21 ^ 0.25

L5 1 0.25 ^ 0.15 0.03 ^ 0.01 0.29 ^ 0.15 0.04 ^ 0.02 0.61 ^ 0.31
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Fig. 12. Visual comparison between 3D reconstruction using our 3D/2D registration method (red lines) and reference CT-scan (black lines) for the L3

vertebra.

Fig. 13. Visual comparison between 3D reconstruction using our 3D/2D registration method (red lines) and reference CT-scan (black lines) for the T6

vertebra.
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gives results almost equal to those obtained by using more

than 500 CT images for a whole spine but based on only two

standard X-ray images is quite original, important, and

interesting.

It is interesting for the quantity of data to be

acquired, processed and managed. For example, two

plain digital Fuji X-rays require 15 Mbytes (1,760 £

2,140 £ 2 bytes) of storage in comparison to 260 Mbytes

(512 £ 512 £ 2 bytes £ 500 slices).

It is important for the quantity of radiation received by

the patient. With the generalization of multi-detector spiral

CT, patients will be more and more exposed to radiation and

a method that can keep this amount of radiation as low as

possible is also quite important and has to be considered. It

becomes especially important when we deal with young

scoliotic patients who will be exposed to multiple diagnostic

radiographic examinations during their childhood and

adolescence. In Ref. [44], a retrospective study confirmed

that multiple radiographic examinations may increase the

risk of breast cancer among women with scoliosis. Another

important point is that scoliosis must be evaluated when the

patient is in a standing position, which is impossible with

standard CT scanners.

The proposed method remains sufficiently general to be

applied to other medical reconstruction problems (i.e. rib

cage, pelvis, knee, etc.) for which the database of this

anatomical structure is available (with two or several

radiographic views). We now intend to improve the proposed

method by integrating a region homogeneity term in the

energy function related to this statistical reconstruction

approach, to refine the statistical model by local defor-

mations, and to use a more efficient global optimization

technique.

7. Summary

We propose a new 3D/2D registration method for

vertebrae of the scoliotic spine, using two conventional

radiographic views (postero-anterior and lateral), and a priori

global knowledge of the geometric structure of each vertebra.

This geometric knowledge is efficiently captured by a

statistical deformable template integrating a set of admissible

deformations, expressed by the first modes of variation in KL

expansion, of the pathological deformations observed on a

representative scoliotic vertebra population. The proposed

registration method consists of fitting the projections of this

deformable template with the preliminary segmented con-

tours of the corresponding vertebra on the two radiographic

views. The 3D/2D registration problem is stated as the

minimization of a cost function for each vertebra and solved

with a gradient descent technique. Registration of the spine is

then done vertebra by vertebra. The proposed method

efficiently provides accurate 3D reconstruction of each

scoliotic vertebra and, consequently, it also provides

accurate knowledge of the 3D structure of the whole scoliotic

spine. This registration method has been successfully tested

on several biplanar radiographic images and validated on 57

scoliotic vertebrae. This method has demonstrated its

efficiency and robustness. We strongly believe that a method

which gives results almost equal to those obtained by using

more than 500 CT images for a whole spine but based on only

two standard X-ray images is quite original, important, and

interesting. It is interesting for the quantity of data to be

acquired, processed and managed. For example, twoFig. 15. Maximum and mean errors for reconstructed T6 vertebra.

Fig. 14. Maximum and mean errors for reconstructed L3 vertebra.
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plain digital Fuji X-rays require 15 Mbytes

(1760 £ 2140 £ 2 bytes) of storage in comparison to

260 Mbytes (512 £ 512 £ 2 bytes £ 500 slices). It is import-

ant for the quantity of radiation received by the patient. With

the generalization of multi-detector spiral CT, patients will

be more and more exposed to radiation and a method that can

keep this amount of radiation as low as possible is also quite

important and has to be considered. It becomes especially

important when we deal with young scoliotic patients who

will be exposed to multiple diagnostic radiographic exam-

inations during their childhood and adolescence. Another

important point is that scoliosis must be evaluated when the

patient is in a standing position, which is impossible with

standard CT scanners. The proposed method remains

sufficiently general to be applied to other medical recon-

struction problems (i.e. rib cage, pelvis, knee, etc.) for which

the database of this anatomical structure is available (with

two or several radiographic views). We now intend to

improve the proposed method by integrating a region

homogeneity term in the energy function related to this

statistical reconstruction approach, to refine the statistical

model by local deformations, and to use a more efficient

global optimization technique.
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