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1 Overview

In this project, you will extend an existing language with an extension of your
choice. The existing language on which you will build your project is a simplified
version of the experimental language Typer, a mix of Coq and Lisp.

2 Typer

The implementation of Typer is written in OCaml; it is structured as follows:

1. Lexical analysis.

2. Syntactic analysis, which returns an abstract syntax tree of type sexp (a
variant of Lisp’s S-expressions).

3. Elaboration, which transforms the sexp into a lexp (“lambda-expression”),
which is the “core language” of Typer, a Pure Type System (PTS) with
a few extensions.

4. Type checking.

5. Erasure, takes a lexp and transforms it into a simplified form called elexp

where type annotations have been erased.

6. elexp interpreter.

2.1 Lexical Analysis

The lexical analysis is very simple: it recognizes comments, strings, numbers,
and everything else is split into “symbols” separated by whitespace, with the
exception of a few characters which are their own symbols.

The only parameter that you may want to change is the map default stt,
defined in src/grammar.ml which indicates which characters are their own sym-
bols. Currently these are the parentheses, the comma, and the semi-colon. For
example a+2: is considered as 1 symbol.
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2.2 Syntactic analysis

The syntactic analysis is also very simple, based on operator precedence gram-
mars (OPG), a very restrictive class of grammars. It is parameterized by a gram-
mar in the form of a map giving the precedence levels of each “keyword”, where
the default table is default grammar which is found in src/grammar.ml. Note
that this table actually comes from typer-smie-grammar, in emacs/typer-mode.el

(where it’s also used by the Emacs mode to aid in navigation and auto-indentation
of the code), which is generated mechanically from a more-or-less BNF repre-
sentation.

It is used to allow the use of infix notation, but the programmer can also use a
Lisp-style prefix notation, which is 100% équivalent. E.g. When the programmer
writes:

type List (a : Type)

| nil

| cons a (List a)

the result is the same as if he had written:

type_ (_|_ (List (_:_ a Type))

nil

(cons a (List a)))

This is because the grammar gives to type a left precedence of None, which
indicates that it is a prefix keyword, whereas | has the same left and right
precedence, which indicates that is infix and that it combines with itself (we say
that it is “associative”).

The result of the analysis is a data structure of type sexp, defined in dans
src/sexp.ml:

type sexp =

| Block of location * pretoken list * location

| Symbol of symbol

| String of location * string

| Integer of location * integer

| Float of location * float

| Node of sexp * sexp list

Note that at this stage there is no notion of semantic, it’s just a tree of symbols;
this part of the code does not know what is a function, a function call, a type
definition, ... 1

1The Block elements will likely not be important for your project, but if you need to
know, they correspond to blocks of text delimited by braces: they are kept “as is” without
performing syntactic analysis (this makes it possible for macros to later perform syntactic
analysis on them with a grammar of their choice).
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2.3 Elaboration

This is the heart of Typer, which can be found in src/elab.ml. It takes a sexp

and transforms it into a lambda-expression lexp (defined in src/lexp.ml),
which requires propagating type information (without really performing type
inference, but rather a bi-directionnel propagation) as well as taking care of
macro expansion.

type ltype = lexp

and lexp =

| Imm of sexp (* Used for strings, ... *)

| Sort of U.location * int

| Builtin of symbol * ltype

| Var of vref

| Susp of lexp * subst

| Let of U.location * (vname * lexp * ltype) list * lexp

| Arrow of vname * ltype * U.location * ltype

| Lambda of vname * ltype * lexp

| Call of lexp * lexp list

| Inductive of U.location * ((vname * ltype) list) SMap.t

| Cons of lexp * symbol

| Case of U.location * lexp

* ltype

* (U.location * vname list * lexp) SMap.t

* (vname * lexp) option

The type U.location keeps track of source code position information. The
constructors Arrow, Lambda, and Call correspond respectively to the type, con-
structor and elimination forms of fonctions (note that Call is curried : the
functions only take a single argument at a time).

The Let describes a list of definitions, which can be mutually recursive;
This also allows defining types and type-level functions, without any of the
restrictions which could guarantee some form of normalization. So we cannot
use this language as a logic (it would be inconsistent) and type checking is not
decidable but that does not bother us.

The Imm corresponds to “imm”ediate constants like numbers or strings; the
Builtin is a reference to a function or type implemented in the OCaml code.
Sort is the sort in the PTS sens, where we have a tower of predicative universes
(although only the universes 0 and 1 have been given a name so far:: Sort(l,0)
is called Type and Sort(l,1) is called Kind).

The Susp(e,s) is a “suspended substitution”, i.e. a lexp e where we still
need to apply the substitution s (we do that to apply substitutions more lazily).
Every time you encounter such a term, you should pass it to push susp e s

which will return the expression hidden behind this suspension.
The Var is of course a variable reference. A vref (defined in src/util.ml)

is made up of two parts:
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type vref = (location * string list) * db_index

The first part holds the name(s) of the variable and the second is an integer:
it is the De Bruijn index which is the position of the variable in the context.
¡Important! the name is not significant, only the index is: the name of variables
in lexp is always optional and only serves for debugging purposes and to print
more understandable error messages.

2.3.1 Algebraic data types

Inductive describes an algebraic data type: the Smap is a map indexed by the
name of the constructor which indicates the list of arguments of the constructor.

Cons is a reference to a particular constructor of an algebraic data type:
its first argument is the algebraic data type and the second is the name of the
constructor to which it refers.

The type declaration:

type List (a : Type)

| nil

| cons a (List a);

is really a call to the macro type which transforms this code into:

List : (a : Type) -> Type;

List (a : Type) = typecons nil (cons a (List a));

nil (a : Type) = datacons (List a) nil;

cons (a : Type) = datacons (List a) cons;

where typecons translates directly to an Inductive and datacons translates
to a Cons.

The Case(l, target, ret, branches, default) corresponds of course to
a case analysis term, where target is the expression that we want to analyse,
ret is the return type (hence also the type of every branch), branches is a
table mapping each constructor name to its corresponding code, and default

is a default branch (for the case where branches does not cover all the possible
constructors).

2.3.2 Macros

When the elaborator encounters an expression e1 e2 e3 ... which looks like
a function call but where e1 is an expression of type Macro, it is a macro
invocation, and the elaborator then calls the function contained in the e1 object,
passing to it the sexps provided as arguments e2 e3 ..., which then returns
the expansion in the form of a new sexp on which elaboration continues. In
other words, this works very similarly to the defmacro of Lisp.

4



2.4 Type checking

Elaboration has to propagate types and thus basically has to perform the job
of checking types. Yet, it is a relatively complex phase that we would rather
not trust too much. So after elaboration we pass the code to check , defined in
src/opslexp.ml. This function tries to check the code as thoroughly and simply
as possible, trying to stay as close as possible to the theoretical presentation of
the typing rules, to minimize the risk of errors.

2.5 Erasure

This phase is very simple and simply erases the type annotations that the inter-
preter does not need. It is implemented in erase type, defined in src/opslexp.ml.
Since types can be manipulated like values, it can happen that some types still
remain in this phase, but they don’t “do” anything any more, so we only keep
them because it’s easier them to remove them and they can be printed some-
times for debugging purposes. The result is of type elexp (“erased” lexp),
defined in src/elexp.ml.

2.6 Interpreter

Finally the code is executed by a straightforward interpreter implemented in
src/eval.ml. That’s also where the bulk of the builtin primitives are defined.

2.7 Differences with Typer

Do not confuse Typer with Typer: the one you use for this cours is a bit simpler
than the official Typer. You will probably encounter references to functionalities
of the official Typer along the way, so here’s a list of those that have been
removed:

• Implicit and erasable arguments, which use functions with arrows of the
form => et ≡>.

• Type inference.

• Monads: the official Typer is a pure functional language, which relies on
monads to confine side effects, whereas the Typer you’re using is not pure,
so it is more like OCaml than like Haskell.

• Universe polymorphism.

• The equality type (which allows the use of cast).

• A (very primitive) module system.
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3 The assignment

This project can be done alone or in groups of two. It is decomposed into three
stages:

1. Choosing an extension(s).

2. Design of the extension.

3. Implementation.

3.1 Choice

You are free to choose whichever extension you’d like to add to Typer, regardless
of other people’s choices. Of course, it has to be an extension to the language
and not just its implementation (this is not a compilation course; we’re not
interested in generating more efficient code, for example).

Examples of extensions:

• Add a class-based object system.

• Add a concept of aspect.

• Add a notion of linear types or of ownership types.

• Gradual typing.

• Hygienic macros.

• Delimited continuations.

• A module system.

• Type classes.

• ...

At this stage, you will just need a brief description (maximum 1 page) of
what the extension you’re considering could look like. This will let me give you
feedback if your extension is sufficient (or too ambitious) and to give you some
directives to try and adjust the complexity.

3.2 Design

At this stage you will have to hand in a report in LATEX(source code, not PDF or
something else, maximum 5 pages) which shows how your extension integrates
with the rest of the Typer language, with a formal description of the added (or
modified) syntactic elements, their static and dynamic semantics (i.e. typing
rules and reduction rules), as well as a description of changes needed to the pre-
existing rules (if needed). This formal presentation should be accompanied with
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a few examples where it will be very important to explain what those examples
are expected to do.

It is possible/likely (depending on your choices) that it be difficult to inte-
grate your extension in a fully satisfactory way. So an important part of the
design will be to be aware of the limitations and to mention them in the report.

Although this stage does not include any code, at that point of the work you
should obviously already be working on the code, since it’s also while coding
that you will encounter problems that will shape your design.

3.3 Implementation

In this final stage you have to hand in the code (in the form of a patch) as well
as a report (again in LATEX, maximum 10 pages) which describes the final design
(potentially identical to that of the previous stage) as well as the approach, the
choices, and the limitations of the implementation.

Adding such extensions to an implementation like that of Typer can be
challenging, so your implementation will likely be a limited prototype which
only covers the core features. It’s normal, but it’s important to clearly describe
those limitations in the report.

Please write your code cleanly, properly indented, do not use more than 80
columns, ...

4 Grade

This project counts for 50% of the final grade. Those 50% are decomposed as
follows: 5% for the choice, 20% for the design, 10% for the final report and 15%
for the implementation.
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