
Stefan Monnier

Singleton Types Here,
Singleton Types There,

Singleton Types Everywhere
Stefan Monnier & David Haguenauer

Université de Montréal

Singleton types everywhere 1

Stefan Monnier

Dependent types for programmers

Type based formal methods for security

Type based formal methods for reliability

Proof systems for program verification

Proof systems for meta theory

Singleton types everywhere 2

Stefan Monnier

Love & hate

Dependent types and programming languages’s troubled relationship:

Dependent types are sexy and elegant

They are to plain types, what plain types are to dynamic typing

They mix very poorly with real-world features

⇒ Poor man’s dependent types

Compiler writers do not know what to do with them

⇒ Don’t compile

⇒ Drop types

⇒ Drop dependencies

Singleton types everywhere 3

Stefan Monnier

Contributions

Tame dependent types for compilers

Type-preserving closure conversion of CC

Singleton types as powerful as dependent types

Way to make singleton types prettier

Singleton types everywhere 4

Stefan Monnier

Singleton types

Poor man’s dependent types which enjoy a phase distinction

aref : n < m⇒ Snat n→ Array α m→ α

What about operations on integers?

Nat = ∃n.Snat n

+ : Nat→ Nat→ Nat

or

+ : Snat n→ Snat m→ Snat (n+m)

¡Two additions!

Singleton types everywhere 5

Stefan Monnier

Poisonous duplication

Everything tends to get sucked up in the copy machine

• First basic data types

• Then operations on them

Proofs at type level want extensions to the type language

• The n < m cannot always be proved automatically

• If the type language does not help, use . . . singleton types!

Singleton types everywhere 6

Stefan Monnier

Dependent types

aref : Πt :∗, n :Nat,m :Nat.(n < m)→ Array t m→ t

No funny Snat, no duplication: simpler, cleaner

Types, values, proofs are neatly intertwined

A happy family . . . or a big mess

No more phase distinction

Singleton types everywhere 7

Stefan Monnier

Compiling dependent types

Drop types altogether

Drop dependencies

aref : ∀α :Ω.Nat→ Nat→ LT→ Array α→ α

⇒ Back to plain types

⇒ “Type preserving” but without preserving type info

Singleton types everywhere 8

Stefan Monnier

There’s hope

Singleton types everywhere 9

Stefan Monnier

Conversion to singleton types

Automate the duplication, so the programmer does not have to see it

Split each element into a value and a type

n : Nat ⇒ n̆ : Snat n̂

We can choose n̂ ≡ n

For other types:

e : τ ⇒ CJeK : SJτK e

Destination type language⊇ source language

We compile the Calculus of Constructions to λH

Singleton types everywhere 10

Stefan Monnier

λH

[Shao, Saha, Trifonov, Papaspyrou, Type safe certified binaries, POPL’02]

A simple functional language, where CIC is used for the type language:

(exp) e ::= x | n | e e | e[A] | λx :A.e | ΛX :A.f

The type of types is an inductive definition:

Inductive Ω : ∗ := Snat : Nat→ Ω

| →→ : Ω→ Ω→ Ω

| ∀ : Πk :∗.(k → Ω)→ Ω

CIC types are λH kinds; CIC kinds are λH kind schemas

Singleton types everywhere 11

Stefan Monnier

Generalize to functions

Applying previous formula CJeK : SJτK e:

(+) : Nat→ Nat→ Nat ⇒ CJ(+)K : SJNat→ Nat→ NatK (+)

sort : List→ List ⇒ CJsortK : SJList→ ListK sort

And since we want:

CJ(+)K : ∀n,m :Nat.Snat n→ Snat m→ Snat (n+m)

CJsortK : ∀l :List.Slist l→ Slist (sort l)

We get:

SJτ1 → τ2K f ≡ ∀x :τ1.SJτ1K x→ SJτ2K (f x)

CJλx :τ.eK ≡ Λx :τ.λx′ : (SJτK x).CJeK

Singleton types everywhere 12

Stefan Monnier

What about variables

How to compute CJxK?

intensional type analysis or dictionary passing. . .

Singleton types everywhere 13

Stefan Monnier

What about variables

How to compute CJxK?

intensional type analysis or dictionary passing. . .

Refine CJλx :τ.eK≡ Λx :τ.λx′ : (SJτK x).CJeK into

C c Jλx :τ.eK≡ Λx :τ.λx′ : (SJτK x).C {c, x 7→ x′} JeK

C c JxK ≡ c(x)

Singleton types everywhere 13

Stefan Monnier

What about type variables

How to compute SJtK?

head : Πt : *.List t→ t

CJheadK : ∀t :∗.∀l :List t.Slist t l→ SJtK (head t l)

Becomes

CJheadK : ∀t :∗.∀St : t→ Ω.∀l :List t.Slist t l→ St (head t l)

So

S s JtK ≡ s(t)
S s JΠt :κ.τK≡ ∀t :κ.∀St :???.S {s, t 7→ St} JτK

Singleton types everywhere 14

Stefan Monnier

Going up one level

Really, SJτK is similar to CJeK

Just like CJeK : SJτKe we have SJτK : S ′JκKτ

In a sense, Snat is treated as “the single value” of S ′J∗KNat

S ′J∗Kτ ≡ τ → Ω

We also have to define S ′JκK for other kinds

But at least, CC has no kind variables, so the tower stops here

Singleton types everywhere 15

Stefan Monnier

Back to array access

We had

aref : Πt :∗, n :Nat,m :Nat.(n < m)→ Array t m→ t

which leads to

CJarefK : ∀t :∗, St : t→ Ω, n :Nat,m :Nat, P : n < m,A : Array t m.

Snat n→ Snat m→ Slt n m P → Sarray t m A

→ St (aref t n m P A)

Requires the usual extra info to make efficient

Singleton types everywhere 16

Stefan Monnier

Conclusion

λH is a good target for ML, OO, and dependent types

SJτKe is injective, so all type information is preserved

Traditional compilation techniques can be used,

e.g. CPS and closure conversion become straightforward

We have generalized it to pure type systems

A surface language for λH could avoid duplication

Need to extend it to inductive definitions

Singleton types everywhere 17

Stefan Monnier

The type farm has declared independence

Singleton types everywhere 18

