
Singleton types here
Singleton types there

Singleton types everywhere

Stefan Monnier David Haguenauer
Université de Montréal

{monnier,haguenad}@iro.umontreal.ca

Abstract
Singleton types are often considered a poor man’s substitute for
dependent types. But their generalization in the form of GADTs has
found quite a following. The main advantage of singleton types and
GADTs is to preserve the so-called phase distinction, which seems
to be so important to make use of the usual compilation techniques.

Of course, they considerably restrict the programmers, which
often leads them to duplicate code at both the term and type levels,
so as to reflect at the type level what happens at the term level, in
order to be able to reason about it.

In this article, we show how to automate such a duplication
while eliminating the problematic dependencies. More specifically,
we show how to compile the Calculus of Constructions into λH ,
a non-dependently-typed language, while still preserving all the
typing information. Since λH has been shown to be amenable to
type preserving CPS and closure conversion, it shows a way to
preserve types when doing code extraction and more generally
when using all the common compiler techniques.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Dependent types;
D.3.4 [Programming Languages]: Processors—Compilation;
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs—Type Structure

General Terms Algorithms, Languages, Verification

Keywords Dependent types, singleton types, certified compila-
tion

1. Introduction
Compilation of dependently-typed languages has proved difficult.
For example, it took a long time until someone finally figured
how to do CPS conversion of dependently-typed languages [Barthe
et al., 1999]. To the best of our knowledge, it is still not known how
to perform closure conversion for such a language. Of course, that
did not stop people from compiling such languages. The general
approach has been to perform code extraction [Letouzey, 2008],
which tries to eliminate all the parts of the code that do not affect

[copyright notice will appear here]

the actual end result but instead only participate in the proofs and
types. In other words, code extraction ends up throwing away some
or all of the type information.

We show in this article a transformation which compiles the
Calculus of Constructions [Coquand and Huet, 1988] into a non-
dependently-typed language, namely λH [Shao et al., 2002]. After
this transformation, the code is amenable to all the usual compi-
lation techniques, and indeed performing the equivalent of code
extraction can then be done by applying known optimization tech-
niques such as elimination of unused arguments or hoisting code
out of conditionals. The novel part here is that all this can be done
without losing any type information, such that the end code can still
be type-checked.
λH was designed as an internal language for compilers that

want to generate certified binaries, and has been shown to be able to
handle these needs very well: the original article [Shao et al., 2002]
shows how to perform the usual CPS and closure conversion while
preserving types; then League and Monnier [2006] shows essen-
tially that λH can be seen as a type system for λinkς [Fisher et al.,
2000], and is hence a good target language for compilation of most
object-oriented features; and Monnier [2004] showed how a variant
of λH extended with regions can be used to write a type-preserving
generational garbage collector. Still, λH only provides singleton
types as a poor man’s substitute to dependent types which, while
apparently sufficient for those particular cases, might lead one to
believe that it is not up to the task of handling truly dependent types.
We here show this belief to be unfounded.

Of course it is not a complete surprise: one of the reasons is, of
course, that λH includes the Calculus of Constructions as a subset
of its type language, so while dependent typing is not supported
for the actual computational terms, it is fully available at the level
of types. Another reason is that anybody who has used GADTs
or singleton types has probably learned that whenever dependent
types seem necessary, you can circumvent the problem by duplicat-
ing code. For example, if you need your type system to understand
what your sort function does to its input, “all” you need to do is to
make sure the inputs are singleton-typed, duplicate your sort com-
putational function into a type-level Ssort function, and then show
that sort has type ∀l :List α.Slist l → Slist (Ssort l). Such code
duplication is obviously unpleasant and frustrating, all the more so
since it is very mechanical. Automatically reflecting the computa-
tion function into a type function is not feasible in general since the
computation language includes features such as side effects which
are not available at the level of types, but automatically reifying a
type level function into a computational function of a type like the
one above is, on the other hand, quite doable, and is precisely what
our transformation does. Our contributions are:

1 2009/11/14



• An algorithm that compiles the Calculus of Constructions to a
non-dependently-typed language, while preserving all the type
information. By that we mean that the function mapping the
type of the input code to the type of the output code is injective.

• Coupled with the CPS conversion and closure conversion al-
gorithms already existing for the target language, this is to our
best knowledge the first solution to the problem of performing
a type preserving closure conversion for a dependently-typed
language.

• Show that the “poor man’s substitute for dependent types”,
although obviously not as elegant, can be just as powerful as
truly dependent types, in the sense that its types can express any
constraint expressible with dependent types. Maybe they would
be more appropriately named “hard-working man’s substitute
for dependent types”.

• Demonstrate that a language with a phase distinction, like λH ,
could automatically reify type definitions into the computation
language, saving the poor hard-working man from having to
duplicate his code by hand.

The rest of this article is structured as follows: Sec. 2 presents
the languages and techniques on which we build our algorithm.
Sec. 3 shows the algorithm proper. Sec. 4 presents the formal
properties and proof sketches. Sec. 5 generalizes the algorithm
to apply to the compilation of a Pure Type System. Sec. 6 then
concludes with a discussion of related and future work.

2. Background
Here, we quickly review the languages and techniques used in this
article.

2.1 Pure Type Systems
A Pure Type System (PTS) [Barendregt, 1991] is a convenient way
to specify a typed λ-calculus. A term in a PTS has the following
syntax:

(ptm) A,B ::= s |X | λX:A.B | A B | ΠX:A.P

∆ ` A : B : term A has type B in context ∆

PTS-AXIOM
A:B ∈ A
• ` A : B

PTS-VAR
∆ ` X : ∆(X)

PTS-WEAK
∆ ` A′ : s ∆ ` A : B

∆, X:A′ ` A : B

PTS-FUN
∆, X:A ` B1 : B2 ∆ ` ΠX:A.B2 : s

∆ ` λX:A.B1 : ΠX:A.B2

PTS-APP
∆ ` A1 : ΠX:A2.B2 ∆ ` B1 : A2

∆ ` A1 B1 : B2[B1/X]

PTS-PROD
∆ ` A : s1 ∆, X:A ` B : s2 (s1, s2) ∈ R

∆ ` ΠX:A.B : s2

PTS-CONV
∆ ` A : B1 B1 ≈β B2 ∆ ` B2 : s

∆ ` A : B2

Figure 1. Typing rules for PTS

(kscm) u ::= Πt:κ.u | Πk:u.u | Kind
(kind) κ ::= k | Πt:κ.κ | Πk:u.κ

| λt:κ.κ | λk:u.κ | κ τ | κ κ
(type) τ ::= t | λt:κ.τ | λk:u.τ

| τ τ | τ κ

Figure 2. Syntax of our source language, CC

where X ranges over variables, and s are predefined sorts. The
associated typing rules are given in Fig. 1. To define a particular
PTS, you only have to specify the set S of sorts, their typing axioms
A, and the allowed forms of abstraction and quantification R. For
example System F [Girard, 1972, Reynolds, 1974] can be specified
as follows:

S = Type,Kind
A = Type : Kind
R = (Type,Type), (Kind,Type)

Which says that there are 2 sorts, one for types and one for kinds
(in traditional presentations of System F kinds are usually elided
since there is only one object of type Kind, namely Type, but here
we cannot take this shortcut). The most interesting part isR which
says that λ-abstractions can take terms to terms (the traditional λ)
or types to terms (the usual Λ).

2.2 The Calculus of Constructions
The source language we will compile is the Calculus of Con-
structions (CC) [Coquand and Huet, 1988]. This is a higher-order,
dependently-typed λ-calculus which is used here as a core repre-
sentative of dependently-typed languages. Its syntax is shown in
Fig. 2. As we can see, the language has three layers: terms, types,
and kinds. But because of how we use this language in this article,
we prefer to shift those terms by one level, so as to call the three
layers: types, kinds, and kind schemas.

Rather than give the typing rules for CC, which are very repet-
itive, because of the four λ and corresponding four Π and four ap-
plications, we will simply say that CC can also be defined as a Pure
Type System:

S = Kind,Kscm
A = Kind : Kscm
R = (Kind,Kind), (Kscm,Kind),

(Kind,Kscm), (Kscm,Kscm)

where each element ofR corresponds to a λ in the stratified syntax
used in Fig. 2.

This is a very powerful calculus in which we can encode con-
structive proofs of very complex propositions. Many proof assis-
tants are actually based on a calculus reminiscent of CC, although
usually extended in various ways. So this is a good baseline to
show that our technique can handle realistic languages. Most no-
tably missing here are inductive definitions and dependent elimi-
nation. Some inductive definitions can be expressed, using the so-
called impredicative encoding, since CC, contrary to many of its
siblings, is not predicative. Yet, the lack of inductive definitions
and accompanying dependent elimination in our source language
is a significant limitation we intend to lift.

2.3 TL and λH
Shao et al. [2002] presented a computation language called λH
whose purpose was to serve as a typed intermediate language in
certifying compilers. The languages that such compilers were ex-
pected to handle were left open, although most examples at that
time concentrated on compiling traditional functional program-
ming languages. Despite the apparent simplicity of the kind of type

2 2009/11/14



(kscm) u ::= Πt:κ.u | Πk:u.u | Kind | z
(kind) κ ::= k | Πt:κ.κ | Πk:u.κ | Πz:Kscm.κ

| λt:κ.κ | λk:u.κ | κ τ | κ κ
| Ind(k:Kind){~κ} | Elim[κ, u](τ){~κ}

(type) τ ::= t | λt:κ.τ | λk:u.τ | λz:Kscm.τ
| τ τ | τ κ | τ u
| Ctor(i, κ) | Elim[κ, κ](τ){~τ}

Figure 3. Stratified syntax of TL

(exp) e ::= x | e e | e[A]
(fun) f ::= fn x:τ.e | ΛX:A.f

Figure 4. Syntax of λH

system needed to handle such languages, λH provided a very pow-
erful type language (called TL), which is a superset of CC, where
the main extension is the addition of inductive definitions. This
power was mostly justified at the time by the needs of fully reflexive
intensional type analysis [Trifonov et al., 2000], as well as by the
needs of the very late phases of the compiler, where optimizations
such as array bounds elimination can require non-trivial expressive
power to explain in the type annotations why the resulting code is
still safe. Subsequent work has shown that λH is actually also a
good choice when compiling other kinds of languages, thanks to
the flexibility of its type language.

The design of λH was driven on one side by the desire to of-
fer a powerful type system where complex properties and proofs
could be expressed and manipulated, and on the other side by the
constraint to preserve the phase distinction between computations
and types, meaning that types and computations live in clearly dis-
tinct worlds that live in different phases: types at compile-time and
computations at run-time. This constraint means both that compu-
tations cannot depend on types and that types cannot depend on
computations; the first is important in order to be able to use classi-
cal compilation techniques, and the second is important for decid-
able type checking and to be able to preserve type information even
as the computational part of the program goes through extensive
transformations that may even require changing the computational
language.

The language in which types are written in λH is called TL and
its syntax is shown in Fig. 3, in stratified form. We will also use
PTS notations to refer to it, when convenient. As can be seen, it is
a superset of CC, where a fifth abstraction, from kind schemas to
types, has been added, together with inductive definitions, whose
constructs are:

• Ind(k:Kind){~κ}: the inductive definition as such. It is in many
ways similar to a datatype or a GADT definition.

• Ctor(i, κ): the constructor for an object of inductive type. κ is
the inductive definition and i is the index of the constructor.

• Elim[κ, κ](τ){~τ}: the elimination construct for inductive defi-
nitions, it can be thought of as an induction scheme, or a case
analysis construct.

While inductive definitions in TL are a very welcome addition that
makes manipulating proofs a lot more convenient, they are also
used directly in the definition of λH itself. More specifically, the set
of types that classify valid λH programs is defined as an inductive
definition in TL, usually written in the following way, using a Coq-

inspired syntax:

Inductive Nat : Kind := O : Nat
| S : Nat→ Nat

Inductive Ω : Kind := snat : Nat→ Ω
| →→ : Ω→ Ω→ Ω
| ∀Kind : Πk:Kind.(k → Ω)→ Ω
| ∀Kscm : Πz:Kscm.(z → Ω)→ Ω

So the type of a λH function has the form →→ τ1 τ2, although
we will usually write it τ1 →→ τ2 instead for convenience. Sim-
ilarly a polymorphic λH function will have a type of the form
∀s A (λX:A.τ), but we will usually write it as ∀sX:A.τ .

∆; Γ ` e : τ : in type environment ∆ and value environment Γ,
e has type τ .

E-VAR
∆; Γ ` x : Γ(x)

E-FUN
∆ ` τ1 : Ω ∆; Γ, x:τ1 ` e : τ2

∆; Γ ` fn x:τ1.e : τ1 →→ τ2

E-APP
∆; Γ ` e1 : τ1 →→ τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1 e2 : τ2

E-TFUN
∆ ` A : s ∆, X:A; Γ ` e : τ

∆; Γ ` ΛX:A.e : ∀sX:κ.τ

E-TAPP
∆; Γ ` e : ∀sX:B.τ ∆ ` A : B

∆; Γ ` e[A] : τ [A/X]

E-CONV
∆; Γ ` e : τ1 τ1 ≈β τ2 ∆ ` τ2 : Ω

∆; Γ ` e : τ2

Figure 5. Typing rules for λH

The syntax of λH is shown in Fig. 4. λH as presented in [Shao
et al., 2002] has many other constructs and types defined, but
since we will not use them here, we took the liberty to remove
them. As it happens, other than the above, we will not use any
other inductive definitions either, and we will not even use any
elimination construct on inductive definitions. The typing rules of
λH are given in Fig. 5. Compared to the Pure Type system typing
rules, the only difference is that the environment is now split into
∆ which holds the kinds of all type variables and Γ which holds
the types of all the term variables.

A key element of λH is that its type language TL needs to stand
on its own and be close to preexisting systems, since we need it
to satisfy non-trivial meta-properties such as consistency, so we
would rather take advantage of the work of others in this respect.
The connection between TL and the term language is made on the
one hand by the inductive definition of Ω and on the other by the
term typing rules.

2.4 Reflecting terms and reifying types
Singleton types are based on the idea of duplicating some term
construct to the type level (reflecting them into types). For example,
the canonical case of singleton types, the singleton integers, works
by reflecting the integers provided at the term level into types,
and then indexing the type of singleton integers with that reflected
notion of integers. We replace:

n : int

3 2009/11/14



with
n̆ : sint n̂

where n̂ is the reflection at the type level of the term-level integer
n, n̆ is the new singleton-typed integer constant, and sint is the new
type of singleton integers, indexed with a type-level integer. We can
do the same with other datatype definitions, and if you try to find a
pattern, you will see that converting a non-singleton data

e : MyType

into its singleton typed equivalent will basically always turn it into
something morally equivalent to:

ĕ : S〈MyType〉 ê
where ê is the reflection of e at the level of types, ĕ is the new
singleton-typed object, and S〈MyType〉 is the new definition of
MyType, where the only difference is the addition of the ê index-
ing.

The way this duplication works is by creating mirror images of
the objects we manipulate, which are then available both at the term
level and at the type level, so that, depending on where we need to
refer to them, we can choose to either use the term representation,
or the type representation, thus breaking the need for types to refer
to terms.

But once you have reflected your data into your types, you will
soon find that you also want to reflect your functions. E.g. we do
not want to assign the following type to our addition function, since
it would prevent most useful forms of reasoning in the types about
the arithmetic operations we perform on terms:

+ : ∀n,m:int.sint n→ sintm→ (∃o:int.sint o)

instead we want to assign it the type:

+̆ : ∀n,m:int.sint n→ sintm→ (n+̂m)

where +̂ is a reflection of the addition, i.e. the type-level addition.
If you squint hard enough, you will see that the above type can be
treated as being of the form S〈int → int → int〉 +̂. Whether such
an addition function deserves the name “singleton” is up for debate,
since there may be different implementations of such a function, but
they will all behave in the same way: they might be intensionally
different, but extensionally identical. For the sake of this article, we
will consider it as a form of singleton typing.

More generally, a function f whose original signature is τ1 →
τ2, and which the user wants to turn into a singleton typed function,
will have to have a type of the form:

f̆ : ∀x:τ1.S〈τ1〉 x→ S〈τ2〉 (f̂ x)

Until now we have taken the point of view of the user who has
a classically-typed piece of data or function and wants to reflect
it to the type level. But if you look again at the examples above,
the original classical types (such as int, or τ1) get turned into kinds
by the change to singleton types. So we start with 2 levels (terms
and types), and end with 3, so it is up to the user to interpret this
transformation as taking an e and returning either an equivalent ĕ
(plus a ê reflection), or inversely returning an equivalent ê (plus a
ĕ reification). As it turns out, the second interpretation is easier to
follow, because indeed, the shape and type of ê is really the same as
that of e, whereas the shape and type of ĕ is significantly different
from the one of e.

3. Reifying all types to terms
As shown above, we fundamentally need 3 operations: one to turn
e into ê, another to get ĕ and the last one to find the type S〈τ〉. As
mentioned, a source term e is virtually identical to its destination
type ê, which is why we have defined CC as made of types, kinds,

and kind schemas rather than terms, types, and kinds. This way we
can conflate e and ê, and we are left with only two transformations
to define: one to reify e into ĕ and the other to reify the kind κ of
the type e (remember, we shifted levels) into a type “constructor”
S〈κ〉.

Before showing the actual algorithm, we will try to give some
intuition about how we can get there.

3.1 Intuition
We will denote our reification translation from CC to λH as C. This
function will basically take a term e and return the corresponding
ĕ. The main entry point is to be applied to a CC type τ , and, since
some other parts of C will apply to kinds and to kind schemas,
we call the main entry point Ct and the other ones Ck and Cu. As
described above, when applied to a λ-term f of type Πt:κ1.κ2 it
will return something of type:

Ct Jλt:κ1.f tK : ∀Kindt:κ1.(Ck Jκ1K)t→→ (Ck Jκ2K)(f t)

where we have renamed S to Ck since it is the part of C that applies
to kinds. Notice that there is a good reason to use the same name,
since just like Ct reifies types into terms, Ck reifies kinds into types.
Moreover there is a one to one correspondence between the input
kind and the output type: Ck creates singleton type constructors
which are themselves singleton-kinded!

But let us come back to Ct: given the above type, we know that
the reification of a λ term will look like:

Ct Jλt:κ1.f tK = Λt:κ1.fn x:(Ck Jκ1K)t....

where the ... needs to have a type of the form (Ck Jκ2K)(f t), which
is luckily the type of Ct Jf tK, since the type of f t is κ2 and we
generally want to have Ct JτK : (Ck JκK) τ . So the rule looks like

Ct Jλt:κ.τK = Λt:κ.fn x:(Ck JκK)t.Ct JτK

Now, what we have above is that the original argument t is dupli-
cated into t and x, where t is the (unchanged) type-level represen-
tation of the original type t and x is its reified term-level repre-
sentation. And we will want to keep track of which term variable
corresponds to which type variable so that when we need to refer
to t at the term level we can use x instead. So Ct needs an addi-
tional argument which keeps track of this mapping. We will call
it ct since it is a sort of Ct but specialized to only apply to type
variables (for people accustomed to HOAS [Pfenning and Elliott,
1988], it is more like a scoped extension of the function Ct, using
a hypothetical judgment). I.e. we need to adjust the above rule as
follows:

Ct ct Jλt:κ.τK = Λt:κ.fn x:(Ck JκK)t.Ct {ct, t 7→ x} JτK
Ct ct JtK = ct(t)

Also, if we want Ct JτK : (Ck JκK) τ , the above rule implies that

Ck JΠt:κ1.κ2K = λf:(Πt:κ1.κ2).∀Kindt:κ1.
(Ck Jκ1K)t→→ (Ck Jκ2K)(f t)

If we now go back to the rule for Ct Jτ1 τ2K, the above indicates that
it should look like the following for the rules to be self-consistent:

Ct ct Jτ1 τ2K = (Ct ct Jτ1K)[τ2](Ct ct Jτ2K)
The other rules follow the same principle, tho adjusted for each
particular form of λ abstraction. Additionally to those rules we will
need to provide base rules for each of the built-in types:

Ck JnatK = Snat

and of course, we need to figure out how to translate a kind variable
k. This will require an additional argument ck, that serves the same
purpose as ct but for kinds rather than for types: whenever we pass
a kind (such as nat) as an argument to a function, we need to also

4 2009/11/14



Ct ck ct Jτ : κK : (Ck ck JκK) τ

Ct ck ct JtK = ct(t)
Ct ck ct Jλt:κ.τK = Λt:κ.fn x:(Ck ck JκK)t.Ct ck {ct, t 7→ x} JτK
Ct ck ct Jλk:u.τK = Λk:u.Λt:(Cu JuK)k.Ct {ck, k 7→ t} ct JτK
Ct ck ct Jτ1 τ2K = (Ct ck ct Jτ1K)[τ2] (Ct ck ct Jτ2K)
Ct ck ct Jτ κK = (Ct ck ct JτK)[κ][(Ck ck JκK)]

Cu Ju : KscmK : Π :u.Kind

Cu JKindK = λk:Kind.Π :k.Ω
Cu JΠt:κ.uK = λf:(Πt:κ.u).Πt:κ.(Cu JuK) (f t)
Cu JΠk:u1.u2K = λf:(Πk:u1.u2).Πk:u1.Πt:(Cu Ju1K)k.

(Cu Ju2K) (f k)

Ck ck Jκ : uK : (Cu JuK) κ

Ck ck JkK = ck(k)
Ck ck JnatK = Snat
Ck ck JΠt:κ1.κ2K = λf:(Πt:κ1.κ2).∀Kindt:κ1.

(Ck ck Jκ1K)t→→ (Ck ck Jκ2K)(f t)
Ck ck JΠk:u.κK = λf:(Πk:u.κ).∀Kscmk:u.∀Kindt:(Cu JuK)k.

(Ck {ck, k 7→ t} JκK)(f k)
Ck ck Jκ τK = (Ck ck JκK) τ
Ck ck Jκ1 κ2K = (Ck ck Jκ1K) κ2 (Ck ck Jκ2K)
Ck ck Jλt:κ1.κ2K = λt:κ1.Ck ck Jκ2K
Ck ck Jλk:u.κK = λk:u.λt:(Cu JuK)k.

Ck {ck, k 7→ t} JκK

Figure 6. The compilation algorithm from CC to λH

pass the corresponding translation (e.g. Snat) and we have to record
somewhere the correspondence between the two (type and kind)
variables. So the structure from Ct gets reproduced in Ck, which
leads to the need to introduce Cu to map the type of κ to the type
of Ck JκK.

3.2 The translation algorithm
The complete algorithm is given is Fig. 6. The three functions Ct,
Ck, and Cu show a lot of similarity, which in retrospect is fairly
natural, but definitely was not expected originally. Fundamentally
what this code tells us is that we should consider the type Ck JκK
not only to be a singleton type constructor but also the single type
of the singleton kind (Cu JuK)κ.

Of course, while there are many similarities, there are also
important differences:

• The argument ct is not passed to Ck and Cu: this is simply be-
cause these two functions operate at the level of types, so we
will never want to find the singleton term variable correspond-
ing to a particular type variable and will prefer to use the type
variable instead. After all, that is the whole point of the exer-
cise: not referring to terms from types.

• Similarly, ck is not passed up to Cu: contrary to the previous
point, Cu is free to refer to types, so it could potentially make
use of ck, but it turns out that it never needs to. The reason is
that it would only use it if it needed somewhere to duplicate a
binding of the form t : κ, but that would again be a case where
we are trying to duplicate a type into a term, while being in the
realm of types where we prefer to refer to types than to terms.

• There is no cu argument: given that we do not have kind schema
variables, there would be no mapping to put inside.

• The type of Cu looks different from the rest: actually, this
is just an illusion. It is identical if we replace Π : u.Kind
with (Ce JKscmK) u and then define Ce JKscmK = λz :
Kscm.Π :z.Kind.

• Ck does not duplicate the argument twhen translating λt:κ1.κ2:
indeed, it does not, because that duplicate of t would have to be
a term, which cannot exist in TL. Of course, not only it cannot
duplicate t, but it also does not need to duplicate it, because, at
the level of types, we will never want to refer to the term form
of t and will prefer to use just t instead. This affects not only the
Ck translation of λt:κ1.κ2 but of course as well its translation of
the corresponding function application, and the Cu translation
of Πt:κ.u.

Discussion We said above that Ck JκK is the single type of the
singleton kind (Cu JuK)κ, but in fact this needs to be qualified: in
reality, those kinds often are inhabited by more than one type, so
while it may help to think of them as singleton kinds, they are not
actually singleton. For example the kind of the type Ck JnatK is
nat→ Ω, which is also the kind of Snat ◦S and many other types.

This points to the fact that there is some amount of flexibility in
the translation of the base types like nat, and that it makes it possi-
ble to choose to lose some type information by simply changing the
translation of the base types (and corresponding values, of course).

4. Formal properties
The main property of the algorithm is that it preserves types.

THEOREM 4.1 (Type preservation).
For all ∆, ct, ck such that
∀(t:κ) ∈ ∆. ct(t) = x ∧ x 6∈ Range(ct) and
∀(k:u) ∈ ∆. ck(k) = t ∧ t 6∈ Range(ck) ∧ t 6∈ Dom(∆) then:

• for all τ and κ such that ∆ ` τ : κ, then
(C∆ ck J∆K); (CΓ ck ct J∆K) ` Ct ck ct JτK : (Ck ck JκK) τ

• for all κ and u such that ∆ ` κ : u, then
(C∆ ck J∆K) ` Ck ck JκK : (Cu JuK) κ

• for all u such that ∆ ` u : Kscm, then
(C∆ ck J∆K) ` Cu JuK : Π :u.Kscm

This theorem relies on auxiliary functions CΓ and C∆ defined as
follow:
CΓ ck ct J•K = •
CΓ ck ct J∆, k:uK = CΓ ck ct J∆K
CΓ ck ct J∆, t:κK = (CΓ ck ct J∆K), ct(t) : (Ck ck JκK) t

C∆ ck J•K = •
C∆ ck J∆, t:κK = (C∆ ck J∆K), t:κ
C∆ ck J∆, k:uK = (C∆ ck J∆K), k:u, ck(k) : (Cu JuK) k

The proof is by induction over the typing derivations. It is as
tedious as any, but does not encounter any major obstacle. It does
require several lemmas shown below, which each follow the same
pattern of induction over the typing or evaluation derivation. Those
lemmas state that substitutions can be pushed through the Ck, and
Cu functions in the expected way, and that those functions also
preserve ≈β .

LEMMA 4.2 (Substitution on kinds).
For all ∆, ck, t, k, κ, κ1, u1, u2, u such that
∆, k:u2 ` κ1 : u1 and ∆, k:u2 ` u : Kscm and ∆ ` κ : u2 and
k 6∈ Dom(ck) and t fresh, then

5 2009/11/14



S JKindK = Ω
S JKscmK = Kind

C c JXK = c(X)
C c JsK = λX:s.Π :X.S JsK
C c JλX:A.BK = λλX:A.λλY :(C c JAK)X.C {c,X 7→ Y } JBK
C c JA BK = (C c JAK)@@B@@(C c JBK)
C c JΠX:A.BK = λF:(ΠX:A.B).ΠX:A.ΠY :(C c JAK)X.

(C {c,X 7→ Y } JBK)(FX)

A : B : C :D : λλX:B.C ΠX:B.D C@@A
Ω Ω fnX:B.C B →→ D C A
Ω s C D C
s Ω ΛsX:B.C ∀sX:B.D C[A]
s1 s2 λX:B.C ΠX:B.D C A

Figure 7. Generalized algorithm on a PTS.

(Ck {ck, k 7→ t} Jκ1K)[κ/k][Ck ck JκK/t] ≈β Ck ck Jκ1[κ/k]K
and (Cu JuK)[κ/k][Ck ck JκK/t] ≈β Cu Ju[κ/k]K.

LEMMA 4.3 (Substitution on types).
For all ∆, ck, t, τ, κ1, κ2, u1, u2 such that
∆ ` τ : κ1, and ∆, t:κ1 ` κ2 : u2, and ∆, t:κ1 ` u1 : Kscm, and
t 6∈ Range(ck), then
(Ck ck JκK)[τ/t] ≈β Ck ck Jκ[τ/t]K and
(Cu Ju1K)[τ/t] ≈β Cu Ju[τ/t]K.

LEMMA 4.4 (Conversion of kinds).
For all ∆, κ1, κ2, u1, u2 such that ∆ ` κ1 : u1, and ∆ ` κ2 : u2,
and κ1 ≈β κ2, then Ck ck Jκ1K ≈β Ck ck Jκ2K.

LEMMA 4.5 (Conversion of kind schemas).
For all ∆, u1, u2 such that ∆ ` u1 : Kscm, and ∆ ` u2 : Kscm,
and u1 ≈β u2, then Cu Ju1K ≈β Cu Ju2K.

We can most likely also show our translation to be semantics
preserving by showing an operational equivalence, i.e. an addi-
tional lemma for conversion of types that shows that Ct also pre-
serves ≈β . While we do not foresee any particular problem doing
so, we have not considered it yet.

5. Generalization to a Pure Type System
Given the symmetry between Ct, Ck, and Cu, it is tempting to try
and rephrase the algorithm within the context of a PTS. Doing it
really formally is a bit painful because of the need to distinguish
Ct from the rest since it returns λH code rather than TL code. But
Fig. 7 shows a slightly sloppy formulation, which closes its eyes on
such “details”. The algorithm is split into 3 parts:

• First a function S which needs to be adjusted for each PTS and
which documents the hierarchy between the various sorts, as
well as where Ω does fit.

• The translation itself, which is really a straightforward adapta-
tion of the algorithm presented in the previous section, except
that it uses meta-syntax λλ, Π, and @@ to denote respectively a
function term, a function type term, and an application term,
where those terms can be either taken from various parts of λH
or TL.

• A table that shows how to map that meta-syntax to actual
syntax, depending on the types of the two subterms.

One could also interpret this algorithm in a pure PTS context,
where Ω would simply be an additional sort and the λH types and
terms would then be replaced by their corresponding PTS terms.
I.e. λλX :A.B is simply always mapped back to λX :A.B except

when that function is dependently typed in which case the argument
is dropped to break the dependency.

Rephrasing the algorithm in PTS terms has the advantage of
being more concise and pin-pointing more clearly where the differ-
ences appear. Also it can help better understand what constraints
need to be satisfied by the input and output languages for such a
translation to be valid. It seems pretty clear that the destination lan-
guage needs to be a superset of the input language with one addi-
tional sort, which I here called Ω. We have not yet investigated what
properties the S function needs to enjoy, but it appears at least that
if the input PTS includes (s1, s2) in itsR set, then the output PTS
needs to additionally allow (S Js1K, s2), except when S Js1K = Ω.

6. Related work and conclusion
Barthe, Hatcliff, and Sørensen [1999] define CPS translations for
pure type systems. They were the main inspiration for the idea of
first analyzing the translation algorithm for a stratified presentation
of CC, and only afterwards generalize it to pure type systems. They
also use similar tricks to our meta-syntax to distinguish between
elements in Kind (a.k.a. Prop in their article) and others to recover
the stratification made implicit by the use of a PTS.

Minimide, Morrisett, and Harper [1996] develop a typed closure
conversion algorithm for a language with intensional type analysis.
This is a good example of the kind of trouble you can get into when
trying to perform closure conversion on a language that does not
enjoy the phase distinction property. This should be contrasted to
the simple algorithm used in [Morrisett et al., 1998]. While it may
be possible to perform closure conversion on CC without going
through a transformation like our, that article is a strong indication
that it might get ugly.

Crary, Weirich, and Morrisett [2002] show how to reconcile
type erasure with intensional type analysis by turning all type ar-
guments into a type argument on the one hand and a corresponding
value of singleton type on the other. This recovers the phase distinc-
tion property and hence make it possible to use much simpler and
more traditional algorithms for compilation steps like closure con-
version. We use exactly the same duplication, though for a different
purpose: in their case, they want to distinguish uses of types at the
level of terms from uses of types at the level of types, whereas we
want to distinguish uses of terms at the level of terms from uses of
terms at the level of types. Obviously, the same trick would work
if we had to deal with both cases (e.g. if our input language was
extended with a typecase construct). Their work was an important
inspiration for our algorithm.

Crary and Weirich [1999] extend that work by defining a lan-
guage LX with a richer type language, such that the singleton types
can be defined in that language rather than being hard-coded. Their
article also presents how to encode inductive types in that language,
which could maybe be used to extend this work.

Mishra-Linger and Sheard [2008] propose to extend dependent-
ly-typed languages with annotations to indicate which terms can be
erased by code extraction, similarly to the Prop-vs-Set distinction
in Coq, but via annotations on the function definitions rather than
via the type system. This does not solve the problem of how to
compile such languages while preserving types, but it could be used
as an intermediate language for a code extraction tool.

Fogarty, Pašalić, Siek, and Taha [2007] present an extension of
OCaml called Concoqtion which grafts Coq into its type system, in
a way similar to what Shao et al. suggested with λH . Although it
is not exactly like λH , Concoqtion might work as well as a target
language for a type-preserving compilation of a dependently-typed
language such as CC.

Hinze [2002] shows how to define polytypic functions indexed
by types of arbitrary kinds and these exhibit an uncanny resem-
blance to our translation function. Of course, this is no accident,

6 2009/11/14



since our translation function Ct JτK is a polytypic function and it
hence inevitably follows the same polykinded pattern as Hinze’s
functions when we generalize that function to arbitrary kinds and
kind schemas.

Discussion Of course, this work is also related to the general
issue of combining dependent types and side-effects. Currently,
there are fundamentally two approaches to this problem: one is
to shun dependent types and rely on GADTs or singleton types
instead, as is done in λH , the other is to keep dependent types but
add monads or some kind of effect system to distinguish pure terms
for side effecting terms. The first approach is very popular since it
can be added to existing languages and can reuse all the traditional
compilation machinery. On the other hand, it forces the user to
work much harder to simulate dependent types by duplicating code,
thus discouraging the use of dependent types. The other approach
on the other hand, makes the use of dependent types much more
natural, but has its share of problems as well. One of them is that
the jury is still out on what is the best effect or monadic system for
it, others are that it is more difficult to manipulate such code while
preserving types.

This article shows a way to combine the two approaches. It
could be done by using such a wholesale translation like C in the
compilation process, to eliminate the complexity of manipulating
dependently typed code. For that we would need to refine the
translation so as to distinguish pure from non-pure terms in the
input and compile them differently.

Or it could be made more visible directly in the source language.
E.g. a language with the phase distinction could simply offer the
user the possibility to use types and type functions at the level
of terms (maybe transparently or via a special reify request), thus
performing the code duplication for them.

This article shows that to some extent λH is as expressive
as CC, in the sense that its types can express the same con-
straints as those expressible in CC, but note that this is not macro-
expressible [Felleisen, 1991] since to apply C to a term, we may
need to apply C to all the terms to which it refers.

Future work Our plans for the future are to extend the algorithm
to inductive definitions with dependent elimination, and to better
explore the PTS formulation to try and figure out which require-
ments need to be satisfied by the source PTS, the destination PTS,
and the computation language, for the algorithm to work correctly.
Another direction will be to extend the source language to allow
side-effects via effect annotations, and see how to adjust the com-
pilation so as to make sure that effectful computations do not end
up in the types.

References
Henk P. Barendregt. Lambda calculi with types. In S. Abramsky,

D. Gabbay, and T. Maibaum, editors, Handbook of Logic in
Computer Science (volume 2). Oxford Univ. Press, 1991.

G. Barthe, J. Hatcliff, and M.H. Sørensen. CPS-translations and
applications: the cube and beyond. Higher-Order and Symbolic
Computation, 12(2):125–170, September 1999.

Thierry Coquand and Gérard P. Huet. The calculus of construc-
tions. Information and Computation, 76:95–120, 1988.

Karl Crary and Stephanie Weirich. Flexible type analysis. In
International Conference on Functional Programming, pages
233–248, Paris, France, September 1999. ACM Press.

Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional
polymorphism in type-erasure semantics. Journal of Functional
Programming, 12(6):567–600, November 2002.

Matthias Felleisen. On the expressive power of programming
languages. Science of Computer Programming, 17(1-3):35–75,
December 1991.

Kathleen Fisher, John Reppy, and Jon G. Riecke. A calculus
for compiling and linking classes. In European Symposium
on Programming, volume 1782 of LNCS, pages 134–149, New
York, NY, March/April 2000. Springer-Verlag.

Seth Fogarty, Emir Pašalić, Jeremy Siek, and Walid Taha. Conco-
qtion: Indexed types now! In Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, 2007.

J. Y. Girard. Interprétation Fonctionnelle et Élimination des
Coupures dans l’Arithmétique d’Ordre Supérieur. PhD thesis,
University of Paris VII, 1972.

Ralf Hinze. Polytypic values possess polykinded types. Science of
Computer Programming, 43(2-3):129–159, May-June 2002.

Christopher League and Stefan Monnier. Typed compilation
against non-manifest base classes. Lecture Notes in Computer
Science, 3956:77–98, January 2006.

Pierre Letouzey. Extraction in coq: An overview. In 4th con-
ference on Computability in Europe: Logic and Theory of Al-
gorithms, pages 359–369, Berlin, Heidelberg, 2008. Springer-
Verlag. ISBN 978-3-540-69405-2.

Yasuhiko Minimide, Greg Morrisett, and Robert Harper. Typed clo-
sure conversion. In Symposium on Principles of Programming
Languages, pages 271–283. ACM Press, January 1996.

Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism
in pure type systems. In Conference on Foundations of Software
Science and Computation Structures, volume 4962 of Lecture
Notes in Computer Science, pages 350–364, Budapest, Hungary,
April 2008.

Stefan Monnier. Typed regions. In Informal proceedings of the
SPACE Workshop, Venice, Italy, January 2004.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From
system F to typed assembly language. In Symposium on Princi-
ples of Programming Languages, pages 85–97, January 1998.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax.
In Symposium on Programming Languages Design and Imple-
mentation, pages 199–208, Atlanta, Georgia, June 1988. ACM
Press.

John C. Reynolds. Towards a theory of type structure. In Pro-
ceedings, Colloque sur la Programmation, Lecture Notes in
Computer Science, volume 19, pages 408–425. Springer-Verlag,
Berlin, 1974.

Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspy-
rou. A type system for certified binaries. In Symposium on
Principles of Programming Languages, pages 217–232, January
2002.

Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflexive in-
tensional type analysis. In International Conference on Func-
tional Programming, pages 82–93, Montréal, Canada, Septem-
ber 2000. ACM Press.

7 2009/11/14


