
Is Impredicativity Implicitly Implicit?1

Stefan Monnier2

Université de Montréal - DIRO, Montréal, Canada3

monnier@iro.umontreal.ca4

Nathaniel Bos5

McGill University - SOCS, Montréal, Canada6

nathaniel.bos@mail.mcgill.ca7

Abstract8

Of all the threats to the consistency of a type system, such as side effects and recursion, impredicativity9

is arguably the least understood. In this paper, we try to investigate it using a kind of blackbox10

reverse-engineering approach to map the landscape. We look at it with a particular focus on its11

interaction with the notion of implicit arguments, also known as erasable arguments.12

More specifically, we revisit several famous type systems believed to be consistent and which do13

include some form of impredicativity, and show that they can be refined to equivalent systems where14

impredicative quantification can be marked as erasable, in a stricter sense than the kind of proof15

irrelevance notion used for example for Prop terms in systems like Coq.16

We hope these observations will lead to a better understanding of why and when impredicativity can17

be sound. As a first step in this direction, we discuss how these results suggest some extensions of18

existing systems where constraining impredicativity to erasable quantifications might help preserve19

consistency.20

2012 ACM Subject Classification Theory of computation → Type theory; Software and its engi-21

neering → Functional languages; Theory of computation → Higher order logic22

Keywords and phrases Impredicativity, Pure type systems, Inductive types, Erasable arguments,23

Proof irrelevance, Implicit arguments, Universe polymorphism24

Digital Object Identifier 10.4230/LIPIcs...25

Funding This work was supported by the Natural Sciences and Engineering Research Council of26

Canada (NSERC) grant No 298311/2012 and RGPIN-2018-06225.27

1 Introduction28

Russell introduced the notion of type and predicativity as a way to stratify our definitions29

so as to prevent the diagonalization and self-references that lead to logical inconsistencies.30

This stratification seems sufficient to protect us from such paradoxes, but it does not seem31

to be absolutely necessary either: systems such as System-F are not predicative yet they32

are generally believed to be consistent. Some people reject impredicativity outright, and33

indeed systems like Agda [8] demonstrate that you can go a long way without impredicativity,34

yet, many popular systems, like Coq [18], do include some limited form of impredicativity.35

But those limits tend to feel somewhat ad-hoc, making the overall system more complex,36

with unsatisfying corner cases. For this reason we feel there is still a need to try and better37

understand what those limits to impredicativity should look like.38

© Stefan Monnier and Nathaniel Bos;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7597-5273
mailto:monnier@iro.umontreal.ca
mailto:nathaniel.bos@mail.mcgill.ca
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Is Impredicativity Implicitly Implicit?

Let’s disappoint the optimistic reader right away: we won’t solve this problem. But during39

the design of our experimental language Typer [24], we noticed a property shared by several40

existing impredicative systems, that seemed to link impredicativity and erasability. Some41

mathematicians, such as Carnap [13], have argued that impredicative quantification might be42

acceptable as long as those arguments are not used in a, we shall say, “significant” way. So in43

a sense this article investigates whether erasability might be such a notion of “insignificance”.44

The two main instances of impredicativity in modern type theory are probably Coq’s Prop45

universe, which is designed to be erasable, and the propositional resizing axiom [27] which46

allows the use of impredicativity for all mere propositions, i.e. types whose inhabitants are47

all provably equal and hence erasable. For this reason, it is no ground breaking revelation to48

claim that there is an affinity between impredicativity and erasability, yet it is still unclear49

to what extent the two belong together nor which particular form of erasability would be the50

true soulmate of impredicativity.51

While Coq and the propositional resizing axiom basically link impredicativity to the concept52

of erasure usually called proof irrelevance, where an argument is deemed erasable if its type53

has at most one inhabitant, in this article we investigate its connection to a different form54

of erasability, where an argument is deemed erasable if the function only uses it in type55

annotations. This is the notion of erasability found in systems like ICC* and EPTS [5, 22].56

More specifically, in Section 3, we take various well-known impredicative systems, refine them57

with annotations of erasability, and then show that all impredicatively quantified arguments58

can be annotated as erasable. In other words, we show that those existing systems already59

implicitly restrict the arguments to their impredicative quantifications to be erasable. This60

suggests that maybe a good rule of thumb to keep impredicative quantification sound is to61

make sure its argument is always erasable.62

Armed with this proverbial hammer, we then look at the two main limitations of impredicative63

quantification in existing systems: the restriction we call no-SELIT (which disallows strong64

elimination of large inductive types) in systems like Coq, and the fact that only the bottom65

universe can be impredicative. We then propose systems that replace those somewhat ad-hoc66

restrictions with the arguably less ad-hoc restriction that impredicative quantification is67

restricted to erasable quantification. The contributions of this work are:68

A proof that in CCω all arguments to impredicative functions are erasable.69

A proof that in the CIC resulting from extending CCω with inductive types in the70

impredicative universe, all arguments to impredicative functions and all large fields of71

inductive types are also erasable.72

A new calculus ECIC which lifts the no-SELIT restriction, i.e. it extends CIC with strong73

elimination of large inductive types.74

A proof that restricting impredicativity to erasable quantifiers does not directly make75

impredicativity in more than one universe consistent.76

A new calculus EpCCω with an impredicative universe polymorphism which allows more77

powerful forms of impredicativity, such as a Church encoding with strong elimination.78

As needed for some of the above contributions, we sketch an extension of ICC* with both79

inductive types. While this is straightforward, we do not know of such a system published80

so far, the closest we found being the one by Bernardo in [6] and Tejiscak’s thesis [26].81

S. Monnier and N. Bos XX:3

(var) x, y, t, l ∈ V
(sort) s ∈ S
(argkind) k, c ::= n | e
(term) e, τ ::= s | x | (x :τ1) k→ τ2 | λx :τ k→ e | e1@ke2
(context) Γ ::= • | Γ, x :τ

primitive reductions: (λx :τ k→ e1)@ke2 e1[e2/x]

Figure 1 Syntax and reduction rules of EPTS.

2 Background82

Here we present the notion of erasability we use in the rest of the paper.83

2.1 Erasable Pure Type Systems84

The calculi we use in this paper are erasable pure type systems (EPTS) [22], which are pure85

type systems (PTS) [4] extended with a notion of erasability. We use a notation that makes86

it more clear that the erasability is just an annotation like that of colored pure type systems87

(CPTS) [7] where the color indicates which arguments are ‘n’ormal and which are ‘e’rasable.88

The syntax of the terms and computation rules are shown in Figure 1.89

A specific EPTS is then defined by providing the triplet (S,A,R) which defines respectively90

the sorts, axioms, and rules of this system. The difference with a plain pure type system,91

is that the annotation on a function or function call has to match the annotation of the92

function’s type and that the elements of R have an additional k indicating to which color93

this rule applies: rules in R have the form (k, s1, s2, s3) which means that a function of color94

k taking arguments in universe s1 to values in universe s2 itself lives in universe s3. For95

example, we can define an EPTS which defines a version of System-F with erasability as96

follows:97

S = { ∗, � }
A = { (∗, �) }
R = { (k, ∗, ∗, ∗), (k,�, ∗, ∗) | k ∈ {n, e} }

98

This version has 4 different abstractions, allowing both System-F’s value abstractions λ and99

type abstractions Λ to be annotated as either erasable or normal. It is well known that100

System-F enjoys the phase distinction [9], which means that all types can be erased before101

evaluating the terms, so we could also define an EPTS equivalent to System-F with only 2102

abstractions, using the following rules instead:103

R = { (n, ∗, ∗, ∗), (e,�, ∗, ∗) }104

This is an example of an impredicative calculus where we can make all impredicative105

abstractions (in this case, those introduced by the rule (�, ∗, ∗) in the PTS) erasable.106

Figure 2 shows the typing rules of our EPTS. Compared to a normal CPTS, the only difference107

is that the typing rule for functions is split into n-Lam and e-Lam where e-Lam includes the108

additional constraint x 6∈ fv(e∗) that enforces the erasability of the argument. The expression109

XX:4 Is Impredicativity Implicitly Implicit?

Γ(x) = τ

Γ ` x : τ
(Var)

(s1, s2) ∈ A
Γ ` s1 : s2

(Sort)
Γ ` e : τ1 Γ ` τ2 : s τ1 ' τ2

Γ ` e : τ2
(Conv)

Γ ` τ1 : s1 Γ, x :τ1 ` τ2 : s2 (k, s1, s2, s3) ∈ R

Γ ` (x :τ1) k→ τ2 : s3
(Pi)

Γ ` e1 : (x :τ1) k→ τ2 Γ ` e2 : τ1

Γ ` e1@ke2 : τ2[e2/x]
(App)

Γ ` τ1 : s Γ, x :τ1 ` e : τ2

Γ ` λx :τ1
n→ e : (x :τ1) n→ τ2

(n-Lam)

Γ ` τ1 : s Γ, x :τ1 ` e : τ2 x 6∈ fv(e∗)
Γ ` λx :τ1

e→ e : (x :τ1) e→ τ2
(e-Lam)

Figure 2 Typing rules of our EPTS.
In the Conv rule, ' stands for the ordinary β-convertibility.

“e∗” is the erasure of e, where the erasure function (·)∗ erases type annotations as well as all110

erasable arguments:111

s∗ = s

x∗ = x

((x :τ1) k→ τ2)∗ = (x :τ1∗)→ τ2∗
(λx :τ n→ e)∗ = λx→ e∗
(λx :τ e→ e)∗ = e∗
(e1@ne2)∗ = e1∗@e2∗
(e1@ee2)∗ = e1∗

112

This expresses the fact that erasable arguments do not influence evaluation. The codomain113

of the erasure function is technically another language with a slightly different syntax, i.e.114

without erasability nor type annotations, but we will gloss over those details here since for115

the purpose of this article we only really ever need to know if “x ∈ fv(e∗)” rather than the116

specific shape of “e∗” itself.117

Since the new e-Lam rule is strictly more restrictive than the normal one, it is trivial to118

show that every EPTS S, just like every CPTS, has a corresponding PTS we note bSc where119

erasability annotations have simply be removed, and that any well-typed term e in the EPTS120

S has a corresponding well-typed term bec in bSc. More specifically: Γ ` e : τ in the EPTS121

S implies bΓc ` bec : bτc in the PTS bSc. As a corollary, if the corresponding PTS is122

consistent, the EPTS is also consistent.123

2.2 Kinds of erasability124

The claim that arguments to impredicative functions can be erased could be considered as125

trivial if we consider that Coq’s only impredicative universe is Prop and that it is also the126

universe that gets erased during program extraction.127

But the kind of erasability we use in this article is different from that offered by Coq’s128

irrelevance of Prop: on the one hand it’s more restrictive since the only thing you can do129

with an erasable argument in an EPTS is to pass it around until you finally put it inside a130

S. Monnier and N. Bos XX:5

S = { Prop;Type` | ` ∈ N }
A = { (Prop : Type0); (Type` : Type`+1) | ` ∈ N }
R = { (k,Prop, s, s) | k ∈ {n, e}, s ∈ S }

∪ { (k,Type`1 ,Type`2 ,Typemax(`1,`2)) | k ∈ {n, e}, `1, `2 ∈ N }
∪ { (e,Type`,Prop,Prop) | ` ∈ N }
∪ { (n,Type`,Prop,Prop) | ` ∈ N } ⇐ Rule absent from eCCω and eCIC

Figure 3 Definition of CCω (and its little sibling eCCω) as EPTS.

type annotation, but on the other it’s more flexible because any argument can be erasable,131

regardless of its type. For example, let us take the following polymorphic identity function132

in Coq:133

Definition identity (t : Prop) (x : t) := x.134

We can see that this function is impredicative since “t” can be instantiated with the type of135

identity. Coq’s erasure would erase all uses of this function in terms that do not live in136

Prop, whereas we will concentrate here on the fact that the “t” argument is erasable because137

it is only used in type annotations.138

In [2], Abel and Scherer discuss various other subtly different notions of erasure. One of the139

differences they mention is the difference between internal and external erasure. The rules140

of our EPTS are different in this respect from those of ICC [21] and ICC*[5]: our Conv141

rule requires convertibility of the fully explicit types (which corresponds to external erasure),142

whereas ICC and ICC* use a rule where convertibility is checked after erasure (so-called143

internal erasure):144

Γ ` e : τ1 Γ ` τ2 : s τ1∗ ' τ2∗
Γ ` e : τ2145

We use the weaker rule because it is sufficient for our needs and makes it immediately obvious146

that every well-typed term e in an EPTS S has a corresponding well-typed term bec in bSc.147

Our results would carry over to systems with the stronger rule, of course.148

3 Erasable impredicativity in Prop149

In this section we show that the impredicative quantification in the bottom universe Prop150

is almost always erasable and armed with this observation along with some circumstantial151

evidence, we propose to rely on this property in order to lift the no-SELIT restriction.152

3.1 eCCω: Erasing impredicative arguments of CCω153

We will start by showing that impredicative arguments in the calculus of constructions154

extended with a tower of universes (CCω) are always erasable. We use CCω, shown in155

Figure 3, because it is arguably the pure type system that is most closely related to existing156

systems like Coq. It follows the tradition of having a special impredicative Prop universe with157

a tower of predicative universes named Type`. max(`1, `2) denotes simply the least upper158

bound of l1 and l2.159

XX:6 Is Impredicativity Implicitly Implicit?

The calculus bCCωc we get by removing the erasability annotations is sometimes also called160

CCω in the literature. And indeed the two are equivalent: we can see that any well-typed161

term e in bCCωc has a corresponding well-typed term dee in CCω such that bdeec = e by162

simply making d·e add n annotations everywhere. Our calculus CCω is incidentally almost163

identical to the ICC* calculus of Barras and Bernardo [5] (except for the Conv rule, as164

discussed above).165

With respect to impredicativity, the relevant rules in CCω are (e,Type`,Prop,Prop) and166

(n,Type`,Prop,Prop) which allow functions in Prop to take arguments in any Type`. We will167

now show that the second rule is redundant:168

I Lemma 1 (Confinement of impredicativity in CCω).169

In CCω, if Γ ` x : τx and Γ ` e : τe and Γ ` τx : Type` and Γ ` τe : Prop then x can170

only appear in e∗ within arguments to impredicative functions, i.e. functions whose return171

values live in Prop and whose arguments don’t.172

Proof. By induction on the type derivation of e:173

Given τe : Prop, clearly e is too small to be a type like a sort s or an arrow (y :τ1) k→ τ2,174

and it is also too small to be x itself.175

If the derivation uses the Conv rule to convert e : τe to e : τ ′e, we know that τ ′e also176

has type Prop, by virtue of the type preservation property, so we can use the induction177

hypothesis on e : τ ′e.178

If e is a function λy :τy
k→ ey, then τy does not matter since it is erased from e∗ and only179

occurrences of x in ey is a concern, and since τe : Prop, we also know that the type of ey180

is itself in Prop, hence we can use the induction hypothesis on it.181

If e is an application e1@ke2, as above we can apply the induction hypothesis to e1. As182

for e2, there are two cases: either e1 takes an argument of type τ1 :Prop in which case we183

can again apply the induction hypothesis, or it takes an argument of type τ1 :Type`′ in184

which case we’re done.185 J186

We call eCCω the restriction of CCω where all arguments to impredicative functions are187

erasable, i.e. (n,Type`,Prop,Prop) is removed, as shown in Figure 3.188

I Theorem 2 (Erasability of impredicative arguments in CCω).189

CCω’s rule (n,Type`,Prop,Prop) is redundant, that is, for any derivation Γ ` e : τ in CCω190

there is a corresponding derivation Γ′ ` e′ : τ ′ in eCCω such that bΓ ` e : τc = bΓ′ `191

e′ : τ ′c.192

Proof. By induction on the type derivation of e where we systematically replace n with e on193

all functions, arrows, and applications that previously relied on the rule (n,Type`,Prop,Prop).194

Since the erasability annotation is only used in the typing rule of λ-abstractions, the proof195

follows trivially for all cases except this one. For λ-abstractions that had an n annotation196

that we need to convert to e, we need to satisfy the additional condition that x 6∈ fv(e∗),197

which follows from Lemma 1: In the absence of the rule (n,Type`,Prop,Prop), all functions198

of type (y : τ1) k→ τ2 where τ2 : Prop and τ1 : Type`′ are necessarily erasable, so Lemma 1199

implies that x can never occur in e′∗. J200

S. Monnier and N. Bos XX:7

(index) i ∈ N
(term) e, τ, a, b, p ::= ... | Ind(x :τ)〈~a〉

| Con(i, τ)
| 〈τr〉Case e of 〈~b〉
| Fixi x : τ = e

primitive reductions: 〈τr〉Case (Con(i, τ)
−−→
@ke) of 〈~b〉 bi

−−→
@ke

Fixi x : τ = e e[(Fixi x : τ = e)/x]

Figure 4 Extension of Figure 1’s EPTS with inductive types.

This shows that the erasability of System-F’s impredicative type abstractions can be extended201

to all of CCω’s impredicative abstractions as well.202

3.2 eCIC: Erasing impredicative arguments of CIC203

We now extend this result to a calculus of inductive constructions (CIC). We reuse CCω204

as the base language and add inductive types to it. The term CIC has been used to refer205

to many different systems. Here we use it to refer to a variant of the “original” CIC from206

1994, which only had 3 universes, in which we collapsed Set and Prop into a single universe,207

which we call Prop even though it is not restricted to be proof irrelevant like Coq’s Prop; for208

readers more familiar with Coq, our CIC’s Prop is more like Coq’s impredicative Set. Note209

also that our CIC does have a tower of universes, like Coq, but its inductive types only exist210

in the bottom universe, as was the case in the original CIC, which is why we prefer to call it211

CIC than CICω.212

We mostly follow the presentation of Giménez [16] for the syntax of inductive types but we213

extend its rules according to the presentation of Werner [29] which adds a strong elimination,214

i.e. the ability to compute a type by case analysis on an inductive type, which is needed for215

many proofs, even simple ones. The syntax of terms and the computational rules of inductive216

types are shown in Figure 4. Together with the rules of Figure 3 they define CIC (and its217

little sibling eCIC).218

Ind(x :τ)〈~a〉 is a (potentially indexed) inductive type which itself has type τ and whose ith219

constructor has type ai, where we use the vector notation ~a to represent a sequence of terms220

a0 . . . an. Con(i, τ) denotes the ith constructor of the inductive type e. 〈τr〉Case e of 〈~b〉 is221

a case analysis of the term e which should be an object of inductive type; it will dispatch222

to the corresponding branch bi if e was built with the ith constructor of the inductive type;223

τr describes the return type of the case expression. Finally Fixi x : τ = e is a recursive224

function x of type τ , defined by structural induction on its ith argument (the reduction rule225

shown above is naive, but the details do not affect us here).226

We must of course also extend the definition of our erasure function to handle those additional227

terms:228

Ind(x :τ)〈~a〉∗ = Ind(x)〈−→a∗〉
Con(i, τ)∗ = Con(i)
〈τr〉Case e of 〈~b〉∗ = Case e∗ of 〈

−→
b∗〉

(Fixi x : τ = e)∗ = Fix x = e∗

229

XX:8 Is Impredicativity Implicitly Implicit?

Γ ` τ : s ∀i. Γ, x :τ ` ai : Prop x ` ai con
Γ ` Ind(x :τ)〈~a〉 : τ

τ = Ind(x :τ ′)〈~a〉 Γ ` τ : τ ′

Γ ` Con(i, τ) : ai[τ/x]
∀i. Γ ` τi : Prop

Γ ` ~τ small

Γ ` e : τI

−−→
@kp τI = Ind(x :

−−−−−−→
(z :τz) k→Prop)〈~a〉 Γ ` τr :

−−−−−−→
(z :τz) k→ (_ :τI

−−→
@kz) n→ s

∀i. ai =
−−−−−−→
(y :τy) c→x

−−→
@kp′ s = Prop ∨ Γ ` ~τy small

∀i. Γ ` bi :
−−−−−−−−−−→
(y :τy[τI/x]) c→ (τr

−−→
@kp′@n(Con(i, τI)

−−→
@cy))

Γ ` 〈τr〉Case e of 〈~b〉 : τr

−−→
@kp@ne

Γ ` τ : s

Γ, xf :τ ` e : τ e = λ
−−−−→
y :_ k→λxi :_ k→ eb i = |y| xf ; i;xi; ∅ ` eb term

Γ ` Fixi xf : τ = e : τ

Figure 5 Typing rules of inductive types.

Auxiliary judgments: Γ ` ~τ small checks that the fields ~τ are all in Prop.
x ` ai con checks that a is strictily positive in x.
xf ; i;xi; ∅ ` eb term makes sure all recursive calls use structurally decreasing arguments.

While these new terms may appear not to take erasability into account, this is only because230

the erasability of the fields of those inductive types is introduced by the erasability annotations231

on the formal arguments of ~a which need to match those of ~b: they really do let you specify232

the erasability of each field; and every field, whether erasable or not, is available within the233

corresponding Case branch but those marked as erasable in the Ind definition will accordingly234

only be available as erasable within Case.235

Figure 5 shows the typing rules corresponding to each of those four new constructs. Those236

typing rules are pretty intricate, if not downright scary, and most of the details do not237

directly affect our argument, so the casual reader may prefer to skip them. We use _ at a238

few places where the actual element does not matter enough to give it a name. The notation239

f
−−→
@ke denotes a curried application with multiple arguments f@k1e1 . . .@knen, and similarly240

λ
−−−−→
x :τ k→ e denotes a curried function of multiple arguments λx1 : τ1

k1→ . . . λxn :τn
kn→ e and241 −−−−−→

(x :τ) k→ e denotes the type of such a function (x1 :τ1) k1→ . . . (xn :τn) kn→ e.242

The rules are very similar to those used by Giménez in [16] because they are largely unaffected243

by the erasability annotations. The only exception is for Case where we have to make sure244

that the various erasability annotations match each other, e.g. the vector ~c of erasability245

annotations placed on a given constructor ai must match the erasability annotations of246

the arguments expected by the corresponding branch bi. Two important details are worth247

pointing out:248

In the rule for Ind the type of constructors is restricted to be in Prop: just like in the249

original CIC we only allow inductive types in our bottom universe, contrary to what250

S. Monnier and N. Bos XX:9

systems like Coq [18] and UTT [20] allow.251

In the Case rule, the hypotheses s = Prop ∨ Γ ` ~τy small ensure that when the result252

of the case analysis is not in Prop, i.e. when this is a form of strong elimination, the253

inductive type must be small, meaning that all its fields must be in Prop. This “no-SELIT”254

restriction is taken fromWerner [29], with a slightly different presentation because he chose255

to split the Case rule into two: one for weak elimination and one for strong elimination.256

We do not show the definition of the x ` e con judgment which ensures that e has the257

appropriate shape for an inductive constructor, including the strict positivity, nor that of258

the xf ; i;xi; ν ` e term judgment which ensures that recursive calls are made on structurally259

smaller terms. Their definition is not affected by the presence of erasability annotations and260

does not impact our work here.261

To show that the (n,Type`,Prop,Prop) rule of non-erasable impredicativity is still redundant262

in this new system, we proceed in the same way:263

I Lemma 3 (Confinement of impredicativity in CIC).264

In CIC, if Γ ` x : τx and Γ ` e : τe and Γ ` τx : Type` and Γ ` τe : Prop then x can265

only appear in e∗ within arguments to impredicative functions, i.e. functions whose return266

values live in Prop and whose arguments don’t.267

Proof. The proof stays the same as for CCω, with the following additional cases:268

Given τe : Prop, clearly e is too small to be a type like Ind(x :τ)〈~a〉.269

If e is of the form Con(i, τ), since τ is erased, the erasure is always closed.270

If e is of the form Fixi x : τ = e′, then τ does not matter because it’s erased, and we271

can invoke the inductive hypothesis on e′.272

If e is of the form 〈τr〉Case e′ of 〈~b〉, then τr does not matter because it is erased.273

Furthermore, we can invoke the inductive hypothesis on e′ since we know that e′ lives274

in Prop, like all our inductive types. Finally since the hypothesis tells us that e lives in275

Prop, all branches bi must as well, hence we can also invoke the induction hypothesis on276

every bi.277 J278

We call eCIC the restriction of CIC where all arguments to impredicative functions and all279

large fields of inductive definitions are erasable, i.e. (n,Type`,Prop,Prop) is removed.280

I Theorem 4 (Erasability of impredicative arguments in CIC).281

CIC’s rule (n,Type`,Prop,Prop) is redundant, that is, for any derivation Γ ` e : τ in CIC282

there is a corresponding derivation Γ′ ` e′ : τ ′ in eCIC such that bΓ ` e : τc = bΓ′ ` e′ : τ ′c283

Proof. As before, by induction on the type derivation of e where we systematically replace284

n with e on all functions, arrows, and applications that previously relied on the rule285

(n,Type`,Prop,Prop). The interesting new case is when e is of the form 〈τr〉Case e′ of 〈~b〉:286

as mentioned, the vector ~c of erasability annotations placed on a given constructor ai must287

match the erasability annotations of the arguments expected by the corresponding branch bi.288

Since our inductive types all live in Prop, it means all fields that live in higher universes have289

been annotated as erasable. But that in turns means that all corresponding arguments to the290

branches bi should also be annotated as erasable. When s is Prop (i.e. a weak elimination),291

this is the case because all arguments of higher universe for functions in Prop can only be292

XX:10 Is Impredicativity Implicitly Implicit?

R = { (k,Prop, s, s) | k ∈ {n, e}, s ∈ S }
∪ { (k,Type`1 ,Type`2 ,Typemax(`1,`2)) | k ∈ {n, e}, `1, `2 ∈ N }
∪ { (e,Type`,Prop,Prop) | ` ∈ N }

Γ ` e : τI

−−→
@kp τI = Ind(x :

−−−−−−→
(z :τz) k→Prop)〈~a〉 Γ ` τr :

−−−−−−→
(z :τz) k→ (_ :τI

−−→
@kz) n→ s

∀i. ai =
−−−−−−→
(y :τy) c→x

−−→
@kp′ Γ ` bi :

−−−−−−−−−−→
(y :τy[τI/x]) c→ (τr

−−→
@kp′@n(Con(i, τI)

−−→
@cy))

Γ ` 〈τr〉Case e of 〈~b〉 : τr

−−→
@kp@ne

Figure 6 Rules of the ECIC system. The rest is unchanged from eCIC, Figures 1, 2, 4, and 5.

annotated as erasable. And when s is a higher universe the property is also verified because293

the Γ ` ~τy small constraint imposes that none of the arguments are in higher universes so294

they don’t use the (n,Type`,Prop,Prop) rule. J295

This shows that the erasability of System-F’s impredicative type abstractions can be296

extended not only to all of CCω’s impredicative abstractions but also to CIC’s impredicative297

abstractions and impredicative inductive types.298

3.3 ECIC: Strong elimination of large inductive types299

The reason behind the Γ ` e small special constraint on strong eliminations of CIC in300

Figure 5 is pretty straightforward: without this restriction, we could use an inductive type301

such as the following to “smuggle” a value of universe Type` in a box of universe Prop:302

Inductive Box (t : Type): Prop := box : t -> Box.303

Definition unbox (t : Type) (x : Box t) := match x with304

| box x’ => x’305

end.306

Note that such a box (a large inductive type) is perfectly valid in CIC, but the Γ ` e small307

constraint rejects the unbox definition (which uses a strong elimination). If we remove the308

Γ ` e small constraint, the effect of such a box/unbox pair would be to lower any value of a309

higher universe to the Prop universe and would hence defeat the purpose of the stratification310

introduced by the tower of universes. This was first shown to be inconsistent in [11].311

This restriction makes the system more complex since elimination is allowed from any312

inductive type to any universe except for the one special case of strong elimination of large313

inductive types (SELIT). It also significantly weakens the system. For example, in Coq with314

the --impredicative-set option, we can define a large inductive type like:315

Inductive Ω : Set :=316

| int : Ω317

| arrow : Ω -> Ω -> Ω318

| all : forall k:Set, (k -> Ω) -> Ω.319

which could be used for example to represent the types of some object language. But we320

cannot prove properties such as the following variant of Leibniz equality (which we needed321

in the proof of soundness of our Swiss coercion [23]):322

S. Monnier and N. Bos XX:11

forall k1 k2 f1 f2 p,323

all k1 f1 = all k2 f2 -> p k1 f1 -> p k2 f2.324

In practice, this important restriction significantly reduces the applicability of large inductive325

types (which partly explains why Coq does not allow them in Set any more by default).326

While the Γ ` e small constraint was added to avoid an inconsistency, this same Γ ` e small327

is also the key to making our proof of erasability of impredicative arguments work for CIC:328

it is the detail which makes it possible to mark all the large fields of impredicative inductive329

definitions as erasable, as we saw in the previous section. This might be a coincidence, of330

course, yet it suggests a close alignment between the needs of consistency and the need to331

keep impredicative elements erasable.332

Figure 6 shows a refinement of eCIC we call ECIC whose Case rule does not have the333

Γ ` e small constraint. ECIC is more elegant and regular than CIC thanks to the absence334

of this special corner case, and it allows typing more terms than eCIC and hence CIC. For335

instance in ECIC we can define the above Ω inductive type with an erasable k and then336

prove the mentioned property (with k1 and k2 marked as erasable).337

Note also that the lack of an (n,Type`,Prop,Prop) rule, means we cannot define a box as338

above in this system; instead we are limited to making its content erasable. This in turn339

prevents us from defining unbox since the x’ would now be erasable so it cannot be returned340

as-is from the elimination form. In other words, forcing impredicative fields to be erasable341

also avoids this source of inconsistency usually avoided with the Γ ` e small constraint.342

Based on this circumstantial evidence, we venture to state the following:343

I Conjecture 5. The ECIC system is consistent.344

3.4 SELIT for Coq’s proof-irrelevant Prop345

The Prop universe used in the previous section corresponds to Coq’s impredicative Set346

universe, which is disabled by default. Coq’s impredicative Prop universe is similar except it347

is designed to be proof-irrelevant. This property is used in two ways: to reflect this property348

in the system via an axiom and to erase all Prop terms when extracting a program from349

a proof. This proof-irrelevance property is enforced by two constraints imposed on the350

strong elimination of those inductive types that live in Prop: first, they have to have a single351

constructor and second, all fields must live in the Prop universe. The first constraint makes352

sure there is no run-time dispatch based on an erased value, while the second guarantees353

that the only data we can extract from an erased value is itself erased.354

The second constraint is the no-SELIT constraint. So the Conjecture 5 suggests we could355

relax this restriction and allow strong elimination on any Prop type with a single constructor356

if the fields that do not live in Prop are erasable. From the point of view of extraction, we357

could even relax this further to allow strong elimination on any Prop type with a single358

constructor, and simply treat all the values so extracted as erased.359

3.5 eCoq: Erasing impredicativity in Coq and UTT360

As noted in Section 3.2, we were careful to restrict our inductive types to live in Prop.361

This was no accident: we rely on this property in the confinement lemma used to show the362

erasability of all impredicative arguments in CIC. Indeed, confinement does not hold if we363

can do a case analysis on an inductive type that lives in Type` and return a value in Prop.364

XX:12 Is Impredicativity Implicitly Implicit?

R = { (k,Prop, s, s) | k ∈ {n, e}, s ∈ S }
∪ { (e,Type`,Prop,Prop) | ` ∈ N }
∪ { (n,Type`,Prop,Type`) | ` ∈ N }
∪ { (k,Type`1 ,Type`2 ,Typemax(`1,`2)) | k ∈ {n, e}, `1, `2 ∈ N }

Γ ` τ : s ∀i. Γ, x :τ ` ai : s′ x ` ai con
Γ ` Ind(x :τ)〈~a〉 : τ

Γ ` e : τI

−−→
@kp τI = Ind(x :

−−−−−−→
(z :τz) k→ s′)〈~a〉 Γ ` τr :

−−−−−−→
(z :τz) k→ (_ :τI

−−→
@kz) n→ s

∀i. ai =
−−−−−−→
(y :τy) c→x

−−→
@kp′ Γ ` bi :

−−−−−−−−−−→
(y :τy[τI/x]) c→ (τr

−−→
@kp′@n(Con(i, τI)

−−→
@cy))

Γ ` 〈τr〉Case e of 〈~b〉 : τr

−−→
@kp@ne

Figure 7 Rules of the eCoq system.

Systems such as Coq and UTT [20] allow impredicative definitions in Prop, inductive types365

in higher universes, and elimination from those inductive types to Prop. These systems are366

hence examples of impredicativity which is not straightforwardly erasable like it is in the367

systems seen so far. Here is an example of code which relies on this possibility:368

Inductive List (α : Type0) : Type0 := nil | cons (v : α) (vs : List t).369

370

Definition ifnil (ts : List Prop) (t : Prop) (x y : t) :=371

match ts with372

| nil => x373

| cons _ _ => y.374

In Coq, ifnil lives in Prop because its return value is in Prop. If we extend Coq375

with erasability annotations, the argument “t” could be marked as erasable since it only376

appears in type annotations, but not the other three arguments. To determine in which377

universe it rests, we would use the rules (n,Prop,Prop,Prop) for the last two arguments378

and (e,Type`,Prop,Prop) for the second argument. Those rules obey the principle that379

impredicativity is restricted to erasable arguments. But for the first argument, we need the380

rule (n,Type`,Prop,Prop) which does not obey this principle.381

If we want to obey the principle, we could replace this last rule with the predicative rule382

(n,Type`,Prop,Type`) instead. Figure 7 shows the important rules of such a system we call383

eCoq. With such a system, we would have to adjust the above example in one of two ways:384

Live with the fact that ifnil will now live in Type0 rather than in Prop.385

Experience with Agda and other systems suggests that most code does not rely on386

impredicativity, so in practice this first approach should be applicable in most cases.387

Mark the non-Prop parts of “ts” as erasable so that it can live in Prop. Concretely, it388

means using a new type we could call eList, which is like List except that the “v” field389

of the “cons” constructor is marked as erasable, to allow those “thinner” lists to live in390

Prop.391

We call the second approach thinning. It replaces inductive objects from a higher universe392

S. Monnier and N. Bos XX:13

U = ΠX : �.((℘℘X → X)→ ℘℘X)
τt = ΛX : �.λf : (℘℘X → X).λp : ℘X .(t λx : U .(p (f ({x X} f))))
σs = ({s U} λt : ℘℘U .τ t)
∆ = λy : U .¬∀p : ℘U .[(σy p)⇒ (p τσy)]
Ω = τ λp : ℘U .∀x : U .[(σx p)⇒ (p x)]

[suppose 0 : ∀p : ℘U .[∀x : U .[(σx p)⇒ (p x)]⇒ (p Ω)].
[[〈0∆〉 let x : U .

suppose 2 : (σx ∆).
suppose 3 : (∀p : ℘U .[(σx p)⇒ (p τσx)]).
[[〈3 ∆〉 2] let p : ℘U .〈3 λy : U .(p τσy)〉]]

let p : ℘U .〈0 λy : U .(p τσy)〉]
let p : ℘U .
suppose 1 : ∀x : U .[(σx p)⇒ (p x)].
[〈1 Ω〉 let x : U .〈1 τσx〉]]

Figure 8 Hurken’s paradox.

with similar objects that fit in Prop by marking the non-Prop parts of it as erasable or by393

replacing them with similarly “thinned” elements.394

It is still unclear whether any valid typing derivation in a system like Coq can have395

a corresponding typing derivation in eCoq, that is, whether we can do away with the396

(n,Type`,Prop,Prop) rule because we can always change the source code as described above.397

4 Universe-agnostic impredicativity398

CCω accepts impredicative definitions only in the bottom universe, Prop, just like in most399

known consistent type systems that support impredicative definitions (one counter example400

being arguably the λPREDω+ presented in [14]). This is a direct consequence of various401

paradoxes formalized in systems which allow impredicative definitions in more than one402

universe [17, 12, 19]. In this section we investigate the use of erasability constraints in order403

to lift this restriction and thus allow impredicative definitions in higher universes as well.404

4.1 λeU−: Erasing impredicative arguments in λU−
405

The last two papers referenced above showed a paradox in the system λU− which is Fω406

extended with one extra rule. It can be defined as an EPTS as follows:407

S = { ∗, �, ∆ }
A = { (∗, �), (�, ∆) }
R = { (k, ∗, ∗, ∗), (k,�, ∗, ∗), (k,�,�,�), (k,∆,�,�) | k ∈ {n, e} }

408

Two of the four pairs of rules are impredicative: (k,�, ∗, ∗) and (k,∆,�,�). The first is409

generally considered harmless since ∗ is the bottom universe and hence corresponds to Prop410

in CCω. The new one is (k,∆,�,�) which introduces impredicativity in the second universe,411

�. Following the same idea as in the previous section where we defined ECIC to rely on412

XX:14 Is Impredicativity Implicitly Implicit?

erasability to avoid inconsistency, we could thus define a new λeU− calculus that only allows413

the use of impredicativity with erasable abstractions:414

R = { (k, ∗, ∗, ∗), (e,�, ∗, ∗), (k,�,�,�), (e,∆,�,�) | k ∈ {n, e} }415

Alas, this does not help:416

I Theorem 6. λeU− is not consistent.417

Proof. The proof is the same as the proof of inconsistency of λU− shown by Hurkens in418

[19]. Figure 8 shows Hurken’s original proof, using the same notation he used in his paper.419

To show that the proof also applies to λeU−, we need to make sure that all impredicative420

abstractions can be annotated as erasable. For that, it suffices to know that the integers are421

variable names, the impredicative abstraction in ∗ is introduced by let, the corresponding422

application is denoted with 〈e1 e2〉, the impredicative abstraction in � is introduced by Λ,423

and the corresponding application is denoted with {e1 e2}: by inspection we can see that all424

the arguments introduced by impredicative abstractions are exclusively used either in type425

annotations or in arguments to other impredicative functions. J426

This demonstrates that, even though the notion of erasability we use here has shown strong427

affinities with consistent uses of impredicativity, it is not in general sufficient to tame the428

excesses of impredicativity.429

4.2 Inductive types: Impredicative and universe polymorphic?430

While paradoxes like Hurkens’s suggest that it is impossible to have impredicative definitions431

in more than one universe without losing consistency, inductive definitions suggest otherwise.432

The traditional encoding of inductive types using Church’s impredicative encoding looks like433

the following:434

NatC = (a : Prop)→ a→ (a→ a)→ a435

But this is much more restrictive than the usual definition of Nat as a real inductive type.436

More specifically, when defined as an inductive type we get two extra features compared437

to the above Church encoding: the ability to do dependent elimination, and the ability to438

perform elimination to any universe rather than only to Prop. Let us focus on the second439

one. The following Church-like encoding would lift this restriction, allowing elimination to440

any universe:441

NatL = (l : Level)→ (a : Typel)→ a→ (a→ a)→ a442

Such a definition is possible in systems like Agda which provide the necessary universe443

polymorphism (the l above is a universe-level variable), but this type NatL is traditionally444

placed in a universe too high to be useful as an encoding of natural numbers.445

We have not been able to find a concise description of the rules used in Agda, but a first446

approximation of its type system is described informally in Figure 9 where ω stands for the447

smallest infinite ordinal. According to those rules, Agda would place the above universe-448

polymorphic definition of NatL squarely in the far away Typeω universe. Yet everything that449

can be done with it can also be done with the real Nat inductive type, which lives in the450

much more palatable Type0 universe, so it would arguably be safe to let NatL live in Type0451

S. Monnier and N. Bos XX:15

(level) ` ::= 0 | s ` | l | `1 t `2

S = { UL; Type`; Typeω }
A = { (Level : UL); (Type` : Type(s `)) }
R = { (k,UL,Type`,Typeω) | k ∈ {n, e} }

∪ { (k,UL,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k,Type`,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k,Type`1 ,Type`2 ,Type`1 t `2) | k ∈ {n, e} }

Figure 9 Informal rules of an Agda-like system.

(and thus make this definition impredicative). The same reasoning applies to the following452

type:453

ListType = (l : Level)→ (a : Typel)→ a→ (Type0 → a→ a)→ a454

So ListType should arguably live in Type1 rather than in Typeω since that is what happens455

when defined as a real inductive type. This would also make ListType impredicative but456

should not threaten consistency. This illustrates that every inductive type corresponds457

to an impredicative definition that could live in the same universe, making it clear that458

having impredicative definitions in multiple universe levels is not inherently incompatible459

with consistency.460

Of course, this begs the question: what is it that makes it safe to let those definitions be461

treated as impredicative? What is special about them?462

In the rest of this section we will consider one hypothesis, which is that the universe level463

parameter ` needs to be erasable. In practice the vast majority of universe polymorphism464

can be marked as erasable. Some simple counter examples are:465

Set = λl :Level n→ Typel

ListType = λl1 :Level n→ (l2 :Level) e→ (a :Typel2) e→ a
n→ (Typel1

n→ a
n→ a) n→ a

466

4.3 EpCCω: Impredicative erasable universe polymorphism467

With universe polymorphism, sorts are not closed any more, so we cannot really represent468

the rules that govern them using a simple set like R. So, the (k,UL,Type`,Typeω) rule was469

really meant to say something like:470

Γ ` τ1 : UL Γ, l :τ1 ` τ2 : Type`

Γ ` (l :τ1) k→ τ2 : Typeω

471

Now if we want to make this impredicative when k = e, since ` can refer to l we need to472

substitute l with something before we can use it in the sort of the product. For the NatL473

case, for example, ` will be “s l” and we argued that this product type should live in Type0,474

so we would need to substitute l with −1! Rather than argue why a negative value could475

make sense, we will use 0 in our rule:476

Γ ` τ1 : UL Γ, l :τ1 ` τ2 : Type`

Γ ` (l :τ1) e→ τ2 : Type`[0/l]
477

XX:16 Is Impredicativity Implicitly Implicit?

R = { (n, l :UL,Type`,Typeω) }
∪ { (e, l :UL,Type`,Type`[0/l]) }
∪ { (k, l :UL,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k, t :Type`,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k, t :Type`1 ,Type`2 ,Type`1 t `2) | k ∈ {n, e} }

Figure 10 Informal rules of EpCCω.

While this places NatL in Type1 rather than Type0, it still makes it impredicative, and if all478

our base types live in Type1 we will not notice much difference.479

Figure 10 describes the resulting calculus we call EpCCω, where the second fields of elements480

of R now have the shape “x : s” so we can refer to the variable x that can appear freely in481

the third field.482

4.4 Encoding System-F in EpCCω483

EpCCω is basically a predicative version of CCω (hence the “p”) to which we added universe484

polymorphism and impredicative erasable universe polymorphism (which motivated the “E”).485

Contrary to the previous calculus it does not have a base impredicative universe Prop: its486

only source of impredicativity is the (e, l : UL,Type`,Type`[0/l]) rule which introduces the487

impredicative erasable universe polymorphism. Compared to Agda, it lacks inductive types488

but it adds a form of impredicativity. While we do not know if it is consistent, we can try and489

compare it to existing systems, and for that we start by showing how to encode System-F.490

In order for our encoding function J·K to be based purely on the syntax of terms rather than491

the typing derivation, we take as input a stratified version of System-F:492

(types) τ ::= t | τ1 → τ2 | (t :∗)→ τ

(terms) e ::= x | λx :τ → e | e1 e2 | λt :∗ → e | e τ493

To encode System-F, the only interesting part is the need to simulate System-F’s impredicative494

quantification over types. We can do that in the same way NatC was generalized to NatL,495

i.e. by replacing “(t : ∗)→ τ” with “(l :Level) e→ (t :Typel)
n→ τ”. The only tricky aspect of496

this is that while in System-F all the type variables (and more generally all the types) have497

the same kind ∗, this encoding makes every type variable come with its own universe level,498

so the encoding function needs to keep track of the level of each type in order to know how499

to instantiate the (l :Level) e→ ... quantifiers.500

The encoding function on types takes the form JτK∆ where ∆ maps each type variable to its501

associated level variable, and it returns a pair τ ′; ` where ` is the universe level of τ ′:502

JtK∆ = t ; ∆(t)
Jτ1 → τ2K∆ = τ ′1

n→ τ ′2 ; `1 t `2 where τ ′1; `1 = Jτ1K∆ and τ ′2; `2 = Jτ2K∆
J(t :∗)→ τK∆ = (l :Level) e→ (t :Typel)

n→ τ ′ ; `′ where τ ′; ` = JτK∆,t:l and `′ = 1 t `[0/l]
503

S. Monnier and N. Bos XX:17

Similarly the encoding function for terms takes the form JeK∆:504

JxK∆ = x

Jλx :τ → eK∆ = λt :τ ′ n→ JeK∆ where τ ′; ` = JτK∆
Je1 e2K∆ = Je1K∆ @nJe2K∆

Jλt :∗ → eK∆ = λl :Level e→ λt :Typel
n→ JeK∆,t:l

Je τK∆ = (JeK∆ @e`)@nτ ′ where τ ′; ` = JτK∆

505

Finally we need to encode contexts as well, for which the encoding function takes the form506

JΓK and it returns a pair Γ′; ∆:507

J•K = • ; •
JΓ, x :τK = Γ′, x :JτK∆ ; ∆ where Γ′; ∆ = JΓK
JΓ, t :∗K = Γ′, l :Level, t :Typel ; ∆, t : l where Γ′; ∆ = JΓK

508

I Theorem 7 (EpCCω can encode System-F).509

For any Γ ` e : τ in System-F, we have Γ′ ` e′ : τ ′ and Γ′ ` τ ′ : Type` in EpCCω where510

Γ′; ∆ = JΓK, e′ = JeK∆, and τ ′; ` = JτK∆.511

Proof. By structural induction on the type derivation. J512

4.5 The power of EpCCω513

EpCCω seems to be flexible enough to cover most uses of impredicativity found in the context514

of programming, such as Church’s encoding, Chlipala’s parametric higher-order abstract515

syntax [10], typed closure representations, or iCAP [25]. It does so without restricting516

impredicativity to a single universe, and even makes those uses more flexible in EpCCω such517

as adding the equivalent of strong elimination in Church’s encoding. So in this sense EpCCω518

is more powerful than systems like CCω.519

Yet we have not even been able to generalize the above System-F encoding in order to encode520

arbitrary Fω terms into EpCCω. For example, consider the following Fω term:521

λt1 :∗ → λ(t2 :∗ → ∗)→ λ(x : t2 t1)→ x522

A simple encoding into EpCCω could be:523

λl :Level e→ λt1 :Typel
n→ λ(t2 :Typel

n→ Typel)
n→ λx : t2@nt1

n→ x524

But it’s not faithful to the original Fω term because it only preserves the impredicativity of525

the first λ. In order to get an encoding that can work for any Fω term, we hence need an526

encoding which looks like:527

λl1 :Level e→ λt1 :Typel1

n→ λl2 :Level e→ λt2 :T2
n→ λx :Tx

n→ x528

where T2 refers to l2. We can then choose T2 and Tx as follows:529

T2 = (l3 :Level) e→ Typel3

n→ Typel2

Tx = t2@el1@nt1
530

This makes the term valid, but its semantics doesn’t match that of the original Fω term since531

we cannot pass the identity function λt :∗ → t as f any more: its encoding would now have532

type (l3 :Level) e→ Typel3

n→ Typel3 instead of the expected (l3 :Level) e→ Typel3

n→ Typel2 .533

XX:18 Is Impredicativity Implicitly Implicit?

Similarly, we have not been able to adapt Hurkens’s paradox to the EpCCω system either. Of534

course, all this says is that we do not know if EpCCω is consistent, but at least it indicates535

that this kind of impredicativity might be incomparable to the traditional form seen in CCω536

or λU−.537

5 Related work538

In [3], Augustsson presents a language where inductive types only live in the bottom universe,539

and shows that everything from the higher universes can be erased. This is similar to our540

argument in Section 3.2, but with some important differences in the universe stratification541

and in the definition of erasure. His universe stratification is unusual in that it is designed to542

keep track of erasability and does not enforce predicativity, which makes it fundamentally543

very different. It turns out that for eCCω and eCIC, his stratification rules match our544

traditional rules when it comes to deciding if something is in the bottom universe, so his545

erasure should apply equally to a stratification like the one used here, although this is not546

the case when we consider systems like eCoq. More importantly, his notion of erasure is547

different from ours since his erasure of (x :τ1) k→ τ2 is • meaning that it is significantly more548

permissive. For example, his erasure has to be external (i.e., performed after checking type549

convertibility), whereas the erasure we use here could be internal, as is the case in ICC [21]550

and ICC*[5].551

In [30], Werner discusses internal erasure of Coq’s impredicative Prop universe. This is552

done in the context of the proof-irrelevance kind of erasure, where Prop is restricted to be553

proof-irrelevant so that it can be erased from the non-Prop universes. So this approach is554

contrary to ours: we erase non-Prop arguments from Prop terms, whereas he erases Prop555

arguments from non-Prop terms. More importantly, this kind of erasure is already present in556

Coq, so what Werner proposes is to make it internal, that is to take advantage of this erasure557

to strengthen the convertibility rule during type checking, in the same way ICC [21] and558

ICC*[5] systems use a stronger convertibility rule to take advantage of the kind of erasure we559

use here, as discussed in Section 2.2. This strengthening comes at the cost of normalization,560

as shown by Abel and Coquand [1].561

In [15], Gilbert et.al. present a Coq and Agda library which provides a similar internal562

erasure of proof-irrelevant propositions. In comparison to Werner’s work, they use a slightly563

different definition of proof-irrelevance based on mere propositions [27] and they get internal564

erasure by construction rather than by adding it to they underlying system.565

In [28], Uemura shows a model of a cubical λ-calculus with a bottom universe that is566

impredicative and admits univalence and shows it not to satisfy the propositional resizing567

axiom, which applies to proof-irrelevant propositions. This puts into question the consistency568

of this axiom in such a calculus.569

6 Conclusion570

We have taken a tour of the interactions between impredicativity and erasability of arguments571

in EPTS. We have shown that three of the five most well known systems that admit572

impredicativity do it in a way that implicitly constrains all impredicative abstractions and573

fields to be erasable (and that the remaining two almost do it as well). We have also shown574

that while impredicativity and erasability seem to be correlated, erasability is neither a575

necessary nor a sufficient condition for impredicativity to be consistent: the inconsistency of576

S. Monnier and N. Bos XX:19

λeU− shows it’s not sufficient, and our inability to show that UTT’s impredicative definitions577

are all erasable suggests it’s not necessary either.578

It remains to be seen whether erasability as used in ECIC allows us to lift the restriction that579

strong elimination cannot be used on large inductive types without breaking consistency,580

and whether erasability as used in EpCCω allows us to introduce a form of impredicativity581

applicable to all universe levels without breaking consistency.582

Another avenue of research might be to try and better understand the relationship between the583

kind of erasure of impredicatively quantified arguments discussed here and the impredicativity584

of proof-irrelevant terms, as used in Coq and in the propositional resizing axiom.585

Acknowledgments586

We would like to thank Chris League for his comments on earlier drafts of the paper, as well587

as the reviewers for their careful reading and very helpful feedback.588

This work was supported by the Natural Sciences and Engineering Research Council of589

Canada (NSERC) grant No 298311/2012 and RGPIN-2018-06225. Any opinions, findings,590

and conclusions or recommendations expressed in this material are those of the author and591

do not necessarily reflect the views of the NSERC.592

References593

1 Andreas Abel and Thierry Coquand. Failure of normalization in impredicative type theory594

with proof-irrelevant propositional equality, February 2020. Submitted to Logical Methods in595

Computer Science. URL: https://arxiv.org/abs/1911.08174.596

2 Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality in predicative type597

theory. Logical Methods in Computer Science, 8(1:29):1–36, 2012. doi:10.2168/LMCS-8(1:598

29)2012.599

3 Lennart Augustsson. Cayenne—a language with dependent types. In International Conference600

on Functional Programming, page 239–250. ACM Press, September 1998. doi:10.1145/601

291251.289451.602

4 Henk P. Barendregt. Introduction to generalized type systems. Journal of Functional603

Programming, 1(2):121–154, April 1991. doi:10.1017/S0956796800020025.604

5 Bruno Barras and Bruno Bernardo. Implicit calculus of constructions as a programming605

language with dependent types. In Conference on Foundations of Software Science and606

Computation Structures, volume 4962 of Lecture Notes in Computer Science, Budapest,607

Hungary, April 2008. doi:10.1007/978-3-540-78499-9_26.608

6 Bruno Bernardo. Towards an implicit calculus of inductive constructions. extending the609

implicit calculus of constructions with union and subset types. In International Conference on610

Theorem Proving in Higher-Order Logics, volume 5674 of Lecture Notes in Computer Science,611

August 2009. URL: https://hal.inria.fr/inria-00432649.612

7 Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free: Parametricity613

for dependent types. Journal of Functional Programming, 22(2):1–46, 2012. doi:10.1017/614

S0956796812000056.615

8 Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda – a functional language616

with dependent types. In International Conference on Theorem Proving in Higher-Order617

https://arxiv.org/abs/1911.08174
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.1145/291251.289451
https://doi.org/10.1145/291251.289451
https://doi.org/10.1145/291251.289451
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1007/978-3-540-78499-9_26
https://hal.inria.fr/inria-00432649
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1017/S0956796812000056

XX:20 Is Impredicativity Implicitly Implicit?

Logics, volume 5674 of Lecture Notes in Computer Science, pages 73–78, August 2009. doi:618

10.1007/978-3-642-03359-9_6.619

9 Luca Cardelli. Phase distinctions in type theory. DEC-SRC manuscript, 1988. URL: https:620

//pdfs.semanticscholar.org/4cb5/7987b78c5124bc0857155f99c11aa321546d.pdf.621

10 Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In622

International Conference on Functional Programming, Victoria, BC, September 2008. doi:623

10.1145/1411204.1411226.624

11 Thierry Coquand. An analysis of Girard’s paradox. In Annual Symposium on Logic in625

Computer Science, 1986. Also published as INRIA tech-report RR-0531. URL: https:626

//hal.inria.fr/inria-00076023.627

12 Thierry Coquand. A new paradox in type theory. In Logic, Methodology, and Philosophy of628

Science, pages 7–14, 1994. doi:10.1016/S0049-237X(06)80062-5.629

13 Thomas Fruchart and Guiseppe Longo. Carnap’s remarks on impredicative definitions and630

the genericity theorem. Technical Report LIENS-96-22, ENS, Paris, 1996. URL: ftp://ftp.631

di.ens.fr/pub/reports/liens-96-22.A4.ps.Z.632

14 Herman Geuvers. (In)consistency of extensions of higher order logic and type theory. In Types633

for Proofs and Programs, pages 140–159, 2006. URL: https://www.cs.ru.nl/~herman/PUBS/634

inconsist-hol.pdf, doi:10.1007/978-3-540-74464-1_10.635

15 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional proof-636

irrelevance without K. In Symposium on Principles of Programming Languages, pages 3:1–3:28.637

ACM Press, 2019. doi:10.1145/3290316.638

16 Eduardo Giménez. Codifying guarded definitions with recursive schemes. Technical Report639

RR1995-07, École Normale Supérieure de Lyon, 1994. URL: ftp://ftp.ens-lyon.fr/pub/640

LIP/Rapports/RR/RR1995/RR1995-07.ps.Z.641

17 J. Y. Girard. Interprétation Fonctionnelle et Élimination des Coupures dans l’Arithmétique642

d’Ordre Supérieur. PhD thesis, University of Paris VII, 1972. URL: https://pdfs.643

semanticscholar.org/e1a1/c345ce8ab4c11f176f1c42bcfc6a62ef4e3c.pdf.644

18 Gérard P. Huet, Christine Paulin-Mohring, et al. The Coq proof assistant reference manual.645

Part of the Coq system version 6.3.1, May 2000.646

19 Antonius Hurkens. A simplification of Girard’s paradox. In International conference on Typed647

Lambda Calculi and Applications, pages 266–278, 1995. doi:10.1007/BFb0014058.648

20 Zhaohui Luo. A unifying theory of dependent types: the schematic approach. In Logical649

Foundations of Computer Science, 1992. doi:10.1007/BFb0023883.650

21 Alexandre Miquel. The implicit calculus of constructions: extending pure type systems with651

an intersection type binder and subtyping. In International conference on Typed Lambda652

Calculi and Applications, pages 344–359, 2001. doi:10.1007/3-540-45413-6_27.653

22 Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems.654

In Conference on Foundations of Software Science and Computation Structures, volume655

4962 of Lecture Notes in Computer Science, pages 350–364, Budapest, Hungary, April656

2008. URL: https://web.cecs.pdx.edu/~sheard/papers/FossacsErasure08.pdf, doi:10.657

1007/978-3-540-78499-9_25.658

23 Stefan Monnier. The Swiss coercion. In Programming Languages meets Program Verification,659

pages 33–40, Freiburg, Germany, September 2007. ACM Press. doi:10.1145/1292597.660

1292604.661

https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://pdfs.semanticscholar.org/4cb5/7987b78c5124bc0857155f99c11aa321546d.pdf
https://pdfs.semanticscholar.org/4cb5/7987b78c5124bc0857155f99c11aa321546d.pdf
https://pdfs.semanticscholar.org/4cb5/7987b78c5124bc0857155f99c11aa321546d.pdf
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
https://hal.inria.fr/inria-00076023
https://hal.inria.fr/inria-00076023
https://hal.inria.fr/inria-00076023
https://doi.org/10.1016/S0049-237X(06)80062-5
ftp://ftp.di.ens.fr/pub/reports/liens-96-22.A4.ps.Z
ftp://ftp.di.ens.fr/pub/reports/liens-96-22.A4.ps.Z
ftp://ftp.di.ens.fr/pub/reports/liens-96-22.A4.ps.Z
https://www.cs.ru.nl/~herman/PUBS/inconsist-hol.pdf
https://www.cs.ru.nl/~herman/PUBS/inconsist-hol.pdf
https://www.cs.ru.nl/~herman/PUBS/inconsist-hol.pdf
https://doi.org/10.1007/978-3-540-74464-1_10
https://doi.org/10.1145/3290316
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1995/RR1995-07.ps.Z
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1995/RR1995-07.ps.Z
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1995/RR1995-07.ps.Z
https://pdfs.semanticscholar.org/e1a1/c345ce8ab4c11f176f1c42bcfc6a62ef4e3c.pdf
https://pdfs.semanticscholar.org/e1a1/c345ce8ab4c11f176f1c42bcfc6a62ef4e3c.pdf
https://pdfs.semanticscholar.org/e1a1/c345ce8ab4c11f176f1c42bcfc6a62ef4e3c.pdf
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1007/BFb0023883
https://doi.org/10.1007/3-540-45413-6_27
https://web.cecs.pdx.edu/~sheard/papers/FossacsErasure08.pdf
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1145/1292597.1292604
https://doi.org/10.1145/1292597.1292604
https://doi.org/10.1145/1292597.1292604

S. Monnier and N. Bos XX:21

24 Stefan Monnier. Typer: ML boosted with type theory and Scheme. In Journées Francophones662

des Langages Applicatifs, pages 193–208, 2019. URL: https://hal.inria.fr/hal-01985195/.663

25 Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract predicates. In European664

Symposium on Programming, pages 149–168, 2014. URL: https://cs.staff.au.dk/~birke/665

papers/icap-conf.pdf, doi:10.1007/978-3-642-54833-8_9.666

26 Matus Tejiscak. Erasure in Dependently Typed Programming. PhD thesis, University of St667

Andrews, 2020.668

27 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of669

Mathematics. Institute for Advanced Study, 2013. URL: https://arxiv.org/abs/1308.0729.670

28 Taichi Uemura. Cubical assemblies, a univalent and impredicative universe and a failure of671

propositional resizing. In Types for Proofs and Programs, volume 130 of Leibniz International672

Proceedings in Informatics (LIPIcs), pages 7:1–7:20, 2019. doi:10.4230/LIPIcs.TYPES.2018.673

7.674

29 Benjamin Werner. Une Théorie des Constructions Inductives. PhD thesis, A L’Université675

Paris 7, Paris, France, 1994. URL: https://hal.inria.fr/tel-00196524/.676

30 Benjamin Werner. On the strength of proof-irrelevant type theories. Logical Methods in677

Computer Science, 4(3):1–20, 2008. URL: https://arxiv.org/abs/0808.3928, doi:10.1007/678

11814771_49.679

https://hal.inria.fr/hal-01985195/
https://cs.staff.au.dk/~birke/papers/icap-conf.pdf
https://cs.staff.au.dk/~birke/papers/icap-conf.pdf
https://cs.staff.au.dk/~birke/papers/icap-conf.pdf
https://doi.org/10.1007/978-3-642-54833-8_9
https://arxiv.org/abs/1308.0729
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://doi.org/10.4230/LIPIcs.TYPES.2018.7
https://hal.inria.fr/tel-00196524/
https://arxiv.org/abs/0808.3928
https://doi.org/10.1007/11814771_49
https://doi.org/10.1007/11814771_49
https://doi.org/10.1007/11814771_49

	Introduction
	Background
	Erasable Pure Type Systems
	Kinds of erasability

	Erasable impredicativity in Prop
	eCC: Erasing impredicative arguments of CC
	eCIC: Erasing impredicative arguments of CIC
	ECIC: Strong elimination of large inductive types
	SELIT for Coq's proof-irrelevant Prop
	eCoq: Erasing impredicativity in Coq and UTT

	Universe-agnostic impredicativity
	eU-: Erasing impredicative arguments in U-
	Inductive types: Impredicative and universe polymorphic?
	EpCC: Impredicative erasable universe polymorphism
	Encoding System-F in EpCC
	The power of EpCC

	Related work
	Conclusion

