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Abstract4

Impredicativity and type theory have a long history since Russel introduced the notion of types5

specifically to try and rule out the logical inconsistency that can be derived from arbitrary6

impredicative quantification. In modern type theory, impredicativity is most commonly (re)introduced7

in one of two ways: the traditional way found in systems like the Calculus of Constructions, Lean,8

Coq, and System-F, is by making the bottom universe impredicative, typically called Prop; the other9

way, proposed by Voevodsky [15] uses axioms that allow moving some types from one universe to a10

lower one, the main example of those being the propositional resizing axiom as found in HoTT [14].11

While Coq’s Prop and HoTT’s propositional resizing axiom seem intuitively closely related, since they12

both restrict the use of impredicative quantification to the definition of proof irrelevant propositions,13

the actual mechanism by which they allow it is very different, making it unclear how they compare14

to each other in terms of expressiveness and interactions with other axioms.15

In this article we try to provide an answer to this question by proving equivalence between specific16

calculi with either an impredicative bottom universe or a set of axioms closely related to the17

propositional resizing axiom. We first show it for a pure type system with the usual infinite tower of18

universes, and then we extend this result with the addition of inductive types.19

This final result shows as a first approximation that the kind of impredicativity provided by Coq’s20

Prop universe is virtually identical to that offered by HoTT’s propositional resizing. In practical21

terms, the syntactic nature of the proof of equivalence means that it can be used also to translate22

code between such systems.23
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1 Introduction32

Russell introduced the notion of type and predicativity as a way to stratify definitions so33

as to prevent the logical inconsistencies exposed typically via some kind of diagonalization34

argument [7]. This stratification seems sufficient to protect us from such paradoxes, but it35

does not seem to be absolutely necessary either: systems such as System-F are not predicative36

yet they are generally believed to be consistent. Impredicativity is not indispensable, and37

indeed systems like Agda [4] demonstrate that you can go a long way without it, yet, many38

popular systems, like Coq [6], do include some limited form of impredicativity.39
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While classical set theory introduces forms of impredicativity via axioms (such as the powerset40

axiom), in the context of type theory, until recently impredicativity was always introduced41

by allowing elements of a specific universe (traditionally called Prop) to be quantified over42

elements from a higher universe, as is done in System-F and the Calculus of Constructions [5].43

More recently, Voevodsky [15] proposed to introduce impredicativity via the use of resizing44

rules which allow moving those types which obey some particular property to a smaller45

universe. The most common of those axioms is the propositional resizing axiom used in46

Homotopy type theory [14].47

The propositional resizing axiom states that any proposition that is proof irrelevant, i.e. any48

type which can have at most one inhabitant, can be considered as living in the smallest49

universe. While the impredicativity of System-F and the original Calculus of Constructions50

is not associated to any kind of proof irrelevance, virtually all proof assistants based on51

impredicative type theories restrict their Prop universe to be proof irrelevant. Intuitively, the52

two approaches are closely related since in both cases they restrict the use of impredicativity53

to propositions that are proof irrelevant. Yet the mechanisms by which they are defined are54

very different, making it unclear how they compare to each other in terms of expressiveness55

and interactions with other axioms.56

In this article, we attempt to show precisely how they compare by proving equivalence57

between a calculus using a Prop universe and one using a resizing axiom.58

Our contributions are:59

A proof of equivalence between iCCω, an impredicative pure type system with a tower of60

universes, and rCCω, its sibling based on the predicative subset pCCω extended with a61

variant of the propositional resizing axiom.62

An extension of that proof to calculi with inductive types iCICω and rCICω. The63

complexity of this extension depends on the details of how inductive types are introduced.64

To cover the kind of definitions allowed in Coq, the extension requires a slightly refined65

resizing axiom.66

The proofs of equivalence take the form of syntactic rewrites from one system to another,67

in the tradition of syntactic models [3], and can thus open the door to the translation of68

definitions between such systems.69

The rest of the paper is structured as follows: in Section 2 we show the syntax and typing70

rules of the systems which we will be manipulating; in Section 3 we show a naive encoding71

exposing our general approach, and we show how it fails to deliver a proof of equivalence;72

in Section 4 we present the actual rCCω and the corresponding encoding which show it to73

be equivalent to iCCω; in Section 5 we show how to extend this result to inductive types;74

in Section 6 we discuss the limitations of our proof as well as the differences between our75

calculi and the existing systems they are meant to model; we then conclude in Section 7 with76

related works.77
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⊢ •
⊢ Γ Γ ⊢ τ : s

⊢ Γ, x : τ

⊢ Γ Γ(x) = τ

Γ ⊢ x : τ

⊢ Γ (s1 : s2) ∈ A
Γ ⊢ s1 : s2

Γ ⊢ τ1 : s1 Γ, x :τ1 ⊢ τ2 : s2 (s1, s2, s3) ∈ R
Γ ⊢ (x :τ1) → τ2 : s3

Γ ⊢ e1 : (x :τ1) → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2{e2/x}
Γ ⊢ (x :τ1) → τ2 : s Γ, x :τ1 ⊢ e : τ2

Γ ⊢ λx :τ1.e : (x :τ1) → τ2

Γ ⊢ e : τ1 Γ ⊢ τ1 ≃ τ2 : s

Γ ⊢ e : τ2

Γ ⊢ (λx :τ1.e1) e2 : τ2

Γ ⊢ (λx :τ.e1) e2 ≃ e1{e2/x} : τ2
(β)

Figure 1 Main typing rules of our PTS

2 Background78

The calculi we use in this paper are all extensions of pure type systems (PTS) [1]. The base79

syntax of the terms is defined as follows:80

(var) x, y, f, t ∈ V
(sort) s ∈ S
(term) e, τ ::= s | x | (x :τ1) → τ2 | λx :τ.e | e1 e2

81

Terms can be either a sort s; or a variable x; or a function λx : τ.e where x is the formal82

argument, τ is its type, and e is the body; or an application e1 e2 which calls the function e183

with argument e2; or the type (x :τ1) → τ2 of a function where τ1 is the type of the argument84

and τ2 is the type of the result and where x is bound within τ2. We can write τ1 → τ2 if x85

does not occur in τ2. A specific PTS is then defined by providing the tuple (S, A, R) which86

defines respectively the set S of sorts, the axioms A that relate the various sorts, and the87

rules R specifying which forms of quantifications are allowed in this system.88

Figure 1 shows the main typing rules of our PTS, where Γ ⊢ e : τ is the main judgment89

saying that expression e has type τ in context Γ. We have two auxiliary judgments: ⊢ Γ says90

that Γ is a well-formed context, and the convertibility judgment Γ ⊢ e1 ≃ e2 : τ says that91

e1 and e2 are convertible at type τ in context Γ. These are all standard rules. We do not92

present the congruence, reflexivity, and symmetry rules for the convertibility in the interest93

of space.94

Here is an example of a simple PTS which defines the familiar System-F:95

S = { ∗, □ }
A = { (∗ : □) }
R = { (∗, ∗, ∗), (□, ∗, ∗) }

96

Where ∗ is the universe of values and □ is the universe of types and the axiom (∗ : □)97

expresses the fact that types classify values. The rule (∗, ∗, ∗) corresponds to the traditional98

“small λ” and says that functions can quantify over “values” (i.e. elements of the universe99

∗) and return values and that such functions are themselves values, while the rule (□, ∗, ∗)100
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S = { Typeℓ | ℓ ∈ N }
A = { (Typeℓ : Typeℓ+1) | ℓ ∈ N }
R = { (Typeℓ1 , Typeℓ2 , Typemax(ℓ1,ℓ2)) | ℓ1, ℓ2 ∈ N }

Figure 2 Definition of pCCω as a PTS.

corresponds to the traditional “big Λ” and says that functions can also quantify over “types”101

(i.e. elements of the universe □) and return values, and that those functions are also values.102

Figure 2 shows the definition of our base, predicative, calculus, we call pCCω. It is a very103

simple pure type system with a tower of universes. All the sorts have the form Typeℓ where104

ℓ is called the universe level and Type0 is the bottom universe. To keep things simple, our105

universes are not cumulative, although our development would work just as well in the106

presence of cumulative universes.107

2.1 Impredicativity108

Informally, a definition is impredicative if it is quantified over a type which includes the109

definition itself. For example in System-F the polymorphic identity function id = Λt.λx : t.x110

is quantified over any type t, including the type ∀t.t → t of the polymorphic identity. This111

opens the door to self-application, e.g. id[∀t.t → t]id, which is a crucial ingredient in most112

logical paradoxes, although in the case of System-F the impredicativity is tame enough that113

it is not possible to encode those paradoxes.114

In System-F, the rule (□, ∗, ∗) is the source of impredicativity because it allows the creation115

of a function in ∗ which quantifies over elements that belong to the larger universe □ and116

which can hence include its own type. To make it predicative, we would need to use (□, ∗,□)117

meaning that a function that quantifies over types and returns values would now belong to118

the universe □. This would prevent instantiating a polymorphic function with a type which119

is itself polymorphic, and would thus disallow id[∀t.t → t]id although you would still be able120

to do id[Int → Int](id[Int]).121

In contrast to System-F, we can see that pCCω is predicative because its rules have the form122

(Typeℓ1 , Typeℓ2 , Typemax(ℓ1,ℓ2)), thus ensuring that a function is always placed in a universe123

at least as high as the objects over which it quantifies.124

The traditional way to add impredicativity to a system like pCCω is by adding rules of the125

form (Typeℓ, Type0, Type0) which allow impredicative quantifications in the bottom universe126

Type0. Such an impredicative bottom universe is traditionally called Prop.127

2.2 Propositional resizing128

In Homotopy type theory [14], instead of providing an impredicative universe, impredicativity129

is provided via an axiom called propositional resizing. This axiom applies to all types that130

are so-called mere propositions, which means that they satisfy the predicate isProp which131

states that this type is proof-irrelevant and which can be defined as follows:132

isProp τ : (x :τ) → (y :τ) → x = y133
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S = { Typeℓ | ℓ ∈ N }
A = { (Typeℓ : Typeℓ+1) | ℓ ∈ N }
R = { (Typeℓ1 , Typeℓ2 , Typemax(ℓ1,ℓ2)) | ℓ1, ℓ2 ∈ N }

∪ { (Typeℓ, Type0, Type0) | ℓ ∈ N }

Figure 3 Definition of iCCω as a PTS.

|| · || : Typeℓ → Type0 for all ℓ ∈ N
| · | : (t :Typeℓ) → t → ||t|| for all ℓ ∈ N

bind : (t1 :Typeℓ1) → (t2 :Typeℓ2) → ||t1|| → (t1 → ||t2||) → ||t2|| for all ℓ1, ℓ2 ∈ N

Γ ⊢ bind τ1 τ2 |e1|τ1 e2 : ||τ2||
Γ ⊢ bind τ1 τ2 |e1|τ1 e2 ≃ e2 e1 : ||τ2||

(β||)

Figure 4 Axioms of r0CCω

The resizing axiom says that any type which is a mere proposition in a universe Typeℓ+1 can134

be “resized” to an equivalent one in the smaller universe Typeℓ. By repeated application, it135

follows that any mere proposition can be resized to belong to the bottom universe Type0.136

Accompanying this axiom, HoTT also provides a propositional truncation operation ||·|| which137

basically throws away the information content of a type, turning it into a mere proposition.138

It comes with the introduction form | · | such that if e : τ , then |e| : ||τ || and with an139

elimination principle (let us call it elim||) which says that if |e1| : ||τ1|| and e2 : τ1 → τ2, then140

elim|| e1 e2 : τ2 under the condition that τ2 is a mere proposition. Intuitively, propositional141

truncation hides the information in a kind of black box and lets you observe it only when142

computing a term which is itself empty of information (because it is a mere proposition).143

3 A first attempt144

In this section we will show a first attempt at defining a calculus with a kind of resizing axiom145

together with an encoding to and from a calculus with an impredicative bottom universe.146

This is meant to show the general strategy we will use later on, but in a simpler setting, as147

well as illustrate some of the problems we encountered along the way and the way in which148

our resizing axioms have been refined, bringing them each time a bit closer to those used in149

HoTT.150

3.1 The iCCω and r0CCω calculi151

Figure 3 shows our basic impredicative calculus we call iCCω, which consists in pCCω152

extended with the traditional rules making its bottom universe impredicative. The result153

is a calculus comparable to the original Calculus of Constructions extended with a tower154

of universes, or seen another way, this is like Coq’s core calculus stripped of all forms of155

inductive types. Note that while this bottom universe is traditionally called Prop, we still156

call it Type0.157

Figure 4 shows the definitions we add to pCCω in order to form r0CCω, our first attempt at a158
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calculus with a kind of resizing axiom. We can see that it introduces a new type constructor159

|| · || (pronounced “erased”), along with an introduction form | · |τ (pronounced “erase” and160

where we will often omit the τ), and an elimination form we called bind because this form of161

erasure forms a monad. The erasure || · || can be seen as a conflation of HoTT’s propositional162

truncation with the propositional resizing, so rather than return an erased version of the163

type in the same universe it immediately resizes it into the bottom universe Type0. To bind164

the introduction and the elimination forms together we also included a conversion rule which165

is a form of β reduction.166

The use of a monad was partly inspired by a similar use of a monad to encode impredicativity167

by Spivack in its formalization of Hurkens’s paradox in Coq [13]. It was also motivated by168

earlier failures to solve this problem we encountered when using the form of erasure found in169

ICC and EPTS [9, 2, 10], which does not form a monad, where it seemed that an operation170

like bind or join was an indispensable ingredient.171

3.2 Encoding r0CCω into iCCω172

As a kind of warm up, we first show how we can encode any term of r0CCω into a term of173

iCCω. This turns out to be very easy because in iCCω we can simply provide definitions for174

the axioms of r0CCω:175

|| · || : Typeℓ → Type0
||τ || = (t :Type0) → (τ → t) → t

| · | : (t :Typeℓ) → t → ||t||
|e|τ = λt :Type0.λx : (τ → t).x e

bind : (t1 :Typeℓ1) → (t2 :Typeℓ2) → ||t1|| → (t1 → ||t2||) → ||t2||
bind = λt1 :Typeℓ1 .λt2 :Typeℓ2 .λx1 : ||t1||.λx2 : (t1 → ||t2||).x1 ||t2|| x2

176

And we can easily verify that these definitions satisfy the convertibility rule (here and later177

as well, we will often omit the first two (type) arguments to bind to keep the code more178

concise):179

bind |e1| e2
≃ |e1| ||τ2|| e2
≃ (λt :Type0.λx : (τ1 → t).x e1) ||τ2|| e2
≃ (λx : (τ1 → ||τ2||).x e1) e2
≃ e2 e1

180

With these definitions in place, any properly typed term of r0CCω is also a properly typed181

term (of the same type) of iCCω.182

3.3 Encoding iCCω into r0CCω183

The other direction of the encoding cannot use the same trick. Instead we will translate184

terms with an encoding function [·]. The core of the problem that we need to solve is that in185

iCCω, functions from Typeℓ to Type0 can belong to universe Type0 whereas in r0CCω they186

necessarily belong to universe Typeℓ, so the encoding will need to erase them with || · || in187

order to bring them down to Type0.188

Following the principle of Coq’s Prop universe, which is proof-irrelevant, our encoding actually189

erases any and all elements of Type0. The encoding function is basically syntax-driven, but190
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it requires type information which is not directly available in the syntax of the terms, so191

technically the encoding takes as argument a typing derivation, but to make it more concise192

and readable, we write it as if its argument were just a term. Note that it does return just193

a term rather than a typing derivation. Here is our first attempt at encoding Prop into a194

resizing axiom:195

[x] = x

[Typeℓ] = Typeℓ

[(x :τ1) → τ2] =
{

||(x : [τ1]) → [τ2]|| if in Type0
(x : [τ1]) → [τ2] otherwise

[λx :τ.e] =
{

|λx : [τ ].[e]| if in Type0
λx : [τ ].[e] otherwise

[e1 e2] =
{

bind [e1] λf : ((x : [τ1]) → [τ2]).f [e2] if e1 in Type0
[e1] [e2] otherwise

196

A crucial property of such an encoding is type preservation: for any typing derivation197

Γ ⊢ e : τ in iCCω, we need to show that there is a typing derivation [Γ] ⊢ [e] : [τ ] in198

r0CCω. And the above encoding fails this basic test: the problem is that bind requires a199

return type of the form ||τ2|| whereas in bind [e1] λf : ((x : [τ1]) → [τ2]).f [e2] the return type200

is [τ2]. This type is in the universe Type0, so we know we will erase it, but as written, the201

types don’t guarantee it. For example if τ2 is a type variable t its encoding will just be t.202

There is a very simple solution to this problem: change bind so it accepts any return type t2.203

This would be compatible with our encoding, since our definition of bind in iCCω does not204

actually take advantage of the fact that the return type is erased. The problem is that it205

strengthens bind to the point of being too different from the elim|| of HoTT: it would let206

us have a simple proof of equivalence between iCCω and r0CCω but at the cost of making207

r0CCω unrelated to the axiom of propositional resizing.208

4 Encoding Prop as an axiom209

In this section we analyze and fix the above problem, terminating with a proof of equivalence210

between iCCω and rCCω.211

Let us consider the following typing derivation in iCCω:212

f1 : (Type0 → Type0), t :Type0, f2 : (t → f1 t), x : t ⊢ f2 x : f1 t213

In order to be able to use bind in the encoding of f2 x, we need a proof that [f1 t] will be an214

erased type. We can get this proof in one of two ways:215

We can obtain it from the encoding of f1 t by making it so the encoding of a type that216

belongs to Type0 is a pair of a type and a proof that it’s erased.217

We can obtain it from the encoding of f2 x by making it so the encoding of values in the218

bottom universe are pairs of a value and proof that this value has an erased type.219

In either case we will want to adjust our axioms so bind does not require a return type of the220

form ||τ2|| but is content with getting a proof that the return type is erased. To some extent,221

both can be made to work, but pairing the proof with the type requires a dependent pair,222

which we would not be able to encode into iCCω without extensions. So we will instead let223
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× : Type0 → Type0 → Type0
(·, ·) : (t1 :Type0) → (t2 :Type0) → t1 → t2 → t1 × t2
·.0 : (t1 :Type0) → (t2 :Type0) → t1 × t2 → t1

|| · || : Typeℓ → Type0 for all ℓ ∈ N
| · | : (t :Typeℓ) → t → ||t|| for all ℓ ∈ N

IsProp : Type0 → Type0
isprop : (t :Typeℓ) → IsProp ||t|| for all ℓ ∈ N

elim|| : (t1 :Typeℓ) → (t2 :Type0) →
||t1|| → (t1 → (t2 × IsProp t2)) → (t2 × IsProp t2) for all ℓ ∈ N

Γ ⊢ elim|| τ1 τ2 |e1|τ1 e2 : τ2 × IsProp τ2

Γ ⊢ elim|| τ1 τ2 |e1|τ1 e2 ≃ e2 e1 : τ2 × IsProp τ2
(β||)

Γ ⊢ (e1, e2).0 : τ

Γ ⊢ (e1, e2).0 ≃ e1 : τ
(β.0)

Figure 5 Axioms of rCCω

JτK =
{

[τ ] × IsProp [τ ] if τ : Type0
[τ ] otherwise

[x] = x

[Typeℓ] = Typeℓ

[(x :τ1) → τ2] =
{

||(x :Jτ1K) → Jτ2K|| if in Type0
(x :Jτ1K) → Jτ2K otherwise

[λx :τ1.e] =
{

(|λx :Jτ1K .[e]|, isprop ((x :Jτ1K) → Jτ2K)) if in Type0
λx :JτK .[e] otherwise

[e1 e2] =
{

elim|| ([e1].0) λf : ((x :Jτ1K) → Jτ2K).f [e2] if e1 : (x :τ1) → τ2 : Type0
[e1] [e2] otherwise

Figure 6 Encoding iCCω into rCCω

f2 return a value together with a proof that it has an erased type, since that only requires224

plain tuples which we can easily encode in iCCω.225

Figure 5 shows the axioms of our new calculus rCCω. Compared to r0CCω, we have added226

pairs (e1, e2) of type τ1 × τ2, as well as a new predicate IsProp τ with a single introduction227

form stating that ||τ || satisfies this predicate. Furthermore bind is now renamed to elim||228

(since it does not quite fit the monad shape any more) and it now requires the elimination to229

return a proof that the result is erased in the sense that it satisfies IsProp . Notice that we230

only included an elimination form to extract the first element of a pair but not the second231

and that there is no elimination form for IsProp τ . This is not an oversight but simply reflects232

the fact that our encoding does not directly make use of these eliminations, although they233

are presumably needed inside elim||.234
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4.1 Encoding iCCω into rCCω235

Figure 6 shows the new encoding function from iCCω into rCCω. The function is now split236

into two: the encoding of terms [·] and the encoding of types J·K. As before we abuse the237

notation in the sense that the functions as written seem to only take a syntactic term as238

argument, yet they really need more type information, such as the information that would239

come with a typing derivation as input. In a sense, instead of writing [e] we should really write240

[Γ ⊢ e : τ ] and when we write JτK it similarly really means JΓ ⊢ τ : TypeℓK. An alternative241

would be to change the syntax of our terms so they come fully annotated everywhere with242

their types, or to make them use an intrinsically typed representation. But we opted for this243

abuse of notation because we feel that it lets the reader see the essence more clearly.244

Note that both of those functions only return syntactic terms and not typing derivations. A245

mechanization of these functions might prefer to return typing derivations, so as to make it246

intrinsically type preserving, but for a paper proof like the one we present here, we found247

it preferable to return syntactic terms and then separately show the translation to be type248

preserving.249

▶ Lemma 1 (Substitution commutes with encoding).250

If Γ, x : τ2, Γ′ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2 hold in iCCω, then in rCCω we have that251

[e1{e2/x}] = [e1]{[e2]/x}.252

Proof. By structural induction on the typing derivation of e1. This is the direct consequence253

of the fact that [x] = x, which is an indispensable ingredient in all such syntactic models [3].254

◀255

▶ Lemma 2 (Computational soundness).256

If Γ ⊢ e1 ≃ e2 : τ holds in iCCω then JΓK ⊢ [e1] ≃ [e1] : JτK holds in rCCω.257

Proof. This lemma needs to be proved by mutual induction with the lemma of type258

preservation since we need the types to be preserved in order to be able to instantiate259

the conversion rules in rCCω. An alternative would be to define our calculi with untyped260

conversion rules [12]. The proof also relies on the fact that Γ ⊢ e1 ≃ e2 : τ implies both261

Γ ⊢ e1 : τ and Γ ⊢ e2 : τ in order to be able to use the [·] functions, although we omit the262

proof of this metatheoretical property which can be shown easily.263

As for the proof itself, the congruence rules are straightforward. For the β rule, we need to264

show that [(λx : τ1.e1) e2] ≃ [e1{e2/x}]. The interesting case is when the function is in265
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Type0:266

[(λx :τ1.e1) e2]
= [by definition of [·]]
elim|| ([(λx :τ1.e1)].0) λf : ((x :Jτ1K) → Jτ2K).f [e2]
= [by definition of [·]]
elim|| ((|λx :Jτ1K .[e1]|, isprop ((x :Jτ1K) → Jτ2K)).0) λf : ((x :Jτ1K) → Jτ2K).f [e2]
≃ [via the β.0 rule]
elim|| (|λx :Jτ1K .[e1]|) λf : ((x :Jτ1K) → Jτ2K).f [e2]
≃ [via the β|| rule]
(λf : ((x :Jτ1K) → Jτ2K).f [e2]) λx :Jτ1K .[e1]
≃ [via the β rule]
(λx :Jτ1K .[e1]) [e2]
≃ [via the β rule]
[e1]{[e2]/x}
= [by the substitution lemma]
[e1{e2/x}]

267

◀268

▶ Theorem 3 (Type Preserving encoding of iCCω into rCCω).269

If we have Γ ⊢ e : τ in iCCω, then JΓK ⊢ [e] : JτK holds in rCCω.270

Proof. By induction on the typing derivation Γ ⊢ e : τ .271

For the conversion rule, the proof defers all the work to the computational soundness lemma.272

For the other rules, the more interesting case is the function application rule when the273

function is in Type0 (i.e. the case that failed in our earlier naive attempt). In that case we274

have Γ ⊢ e1 e2 : τ2{e2/x} and we need to show275

JΓK ⊢ elim|| ([e1].0) λf : ((x :Jτ1K) → Jτ2K).f [e2] : Jτ2{e2/x}K276

By inversion we know that Γ ⊢ e1 : (x :τ1) → τ2 and Γ ⊢ e2 : τ1. Hence by the induction277

hypothesis we have JΓK ⊢ [e1] : J(x :τ1) → τ2K and JΓK ⊢ [e2] : Jτ1K. By definition278

of J·K these rewrite to JΓK ⊢ [e1] : ||(x :Jτ1K) → Jτ2K|| × IsProp ||(x :Jτ1K) → Jτ2K|| and279

JΓK ⊢ [e2] : [τ1] × IsProp [τ1].280

Using the following shorthands:281

P τ = τ × IsProp τ

T1 = (x :Jτ1K) → Jτ2K
282

we can rewrite them as JΓK ⊢ [e1] : P ||(x :Jτ1K) → Jτ2K|| or even JΓK ⊢ [e1] : P ||T1|| and283

JΓK ⊢ [e2] : P [τ1]. Furthermore, since e1 is in Type0 we know that its return value is as284

well, so we know that Jτ2K = P [τ2].285

From that we get the desired conclusion using a mix of construction, weakening, and286

substitution:287
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· × · : Type0 → Type0 → Type0
t1 × t2 = t1

(·, ·) : (t1 :Type0) → (t2 :Type0) → t1 → t2 → t1 × t2
(x1, x2) = x1

·.0 : (t1 :Type0) → (t2 :Type0) → t1 × t2 → t1
x.0 = x

IsProp : Type0 → Type0
IsProp τ = (t :Type0) → t → t

isprop : (t :Typeℓ) → IsProp ||t||
isprop τ = λt :Type0.λx : t.x

|| · || : Typeℓ → Type0
||τ || = (t :Type0) → (τ → t) → t

| · | : (t :Typeℓ) → t → ||t||
|e|τ = λt :Type0.λx : (τ → t).x e

elim|| : (t1 :Typeℓ) → (t2 :Type0) →
||t1|| → (t1 → (t2 × IsProp t2)) → (t2 × IsProp t2)

elim|| = λt1 :Typeℓ.λt2 :Type0.

λx1 : ||t1||.λx2 : (t1 → (t2 × IsProp t2)).
x1 (t2 × IsProp t2) x2

Figure 7 Definitions for rCCω’s axioms in iCCω

JΓK ⊢ [e1] : P ||T1||
JΓK ⊢ [e1] : ||T1|| × . . .

JΓK ⊢ [e1].0 : ||T1||

JΓK , f :T1 ⊢ f : T1

JΓK ⊢ [e2] : Jτ1K
JΓK , f :T1 ⊢ [e2] : Jτ1K

JΓK , f :T1 ⊢ f [e2] : (P [τ2]){[e2]/x}
JΓK , f :T1 ⊢ f [e2] : P ([τ2]{[e2]/x})

JΓK , f :T1 ⊢ f [e2] : P [τ2{e2/x}]
JΓK ⊢ λf.f [e2] : T1 → P [τ2{e2/x}]

JΓK ⊢ elim|| ([e1].0) λf.f [e2] : P [τ2{e2/x}]
JΓK ⊢ elim|| ([e1].0) λf : ((x :Jτ1K) → Jτ2K).f [e2] : Jτ2{e2/x}K

288

◀289

▶ Theorem 4 (Consistency preservation of the encoding of iCCω into rCCω).290

The type J⊥K is not inhabited in rCCω.291

Proof. The traditional choice for ⊥ would be (x :Type0) → x, but we will use (x :Type1) → x,292

since J(x :Type1) → xK is just (x : Type1) → x which should indeed not be inhabited in293

rCCω. ◀294
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4.2 Encoding rCCω into iCCω295

Of course, now we still need to make sure that we can convert terms of our new calculus296

rCCω into iCCω. Figure 7 shows how we do this using the same approach as for r0CCω, i.e.297

by providing definitions for the various axioms.298

We note that our definition of elim|| does not actually need to look at the IsProp proof299

because our encoding of || · || lets us observe the “erased” term even if the result is not itself300

erased, as long as it is in Type0. For this reason we can use degenerate definitions for our301

pairs and for IsProp.302

As before, we have to make sure that those definitions satisfy the convertibility rules of rCCω.303

For β||, the definition of elim|| is basically the same as the earlier bind, so the conversion304

works just as before:305

elim|| |e1| e2
≃ |e1| (τ2 × IsProp τ2) e2
≃ (λt :Type0.λx : (τ1 → t).x e1) (τ2 × IsProp τ2) e2
≃ (λx : (τ1 → (τ2 × IsProp τ2)).x e1) e2
≃ e2 e1

306

And for β.0 it is even simpler, thanks to our degenerate encoding of pairs:307

(e1, e2).0 ≃ e1.0 ≃ e1308

Of course, a more traditional definition of pairs using Church’s impredicative encoding would309

have worked as well.310

We can put these definitions together in a substitution we will call σr. With these definitions311

in place, we can define our encoding as applying the substitution σr:312

▶ Theorem 5 (Type Preserving encoding of rCCω into iCCω).313

If we have Γ ⊢ e : τ in rCCω, then Γ[σr] ⊢ e[σr] : τ [σr] in iCCω.314

Proof. Beside the axioms (provided by σr) and the new convertibility rules which we have315

just shown to be validated by σr, rCCω is a strict subset of iCCω. ◀316

▶ Theorem 6 (Consistency preservation of the encoding of rCCω into iCCω).317

The encoding ⊥[σr] of rCCω’s ⊥ is not inhabited in iCCω.318

Proof. Using (x : Type1) → x as our ⊥ again, we can see that ⊥ does not refer to any of319

rCCω’s axioms, so ((x :Type1) → x)[σr] is just (x :Type1) → x which is indeed not inhabited320

in iCCω. ◀321

5 Inductive types322

As the degenerate definitions in the previous section suggest, limiting ourselves to pure type323

systems like iCCω does not exercise the full complexity of modern impredicative systems. In324

this section we will show how to extend the previous result to systems with inductive types,325

which we will call respectively iCICω and rCICω.326

The first thing to note is that we can take the systems from the previous section and add327

inductive types in higher universes (i.e. Typeℓ for ℓ > 0), as was done in UTT [8], and the328
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τ =
−−−−→
(y :τy) → s ∀i. Γ, x :τ ⊢ τi : s ⊢ isCon(x, τi)

Γ ⊢ Ind(x :τ)⟨τ⃗⟩ : τ

τ = Ind(x :τ ′)⟨τ⃗⟩
Γ ⊢ Con(τ, n) : τn{τ/x}

Γ ⊢ e : τI τ⃗u τI = Ind(x :_)⟨τ⃗⟩ ∀i. Γ ⊢ ei : ∆{x, τi, er, Con(τI , i)}
Γ ⊢ Elim(e, er)⟨e⃗⟩ : er τ⃗u e

Γ ⊢ Elim(Con(τI , i) e⃗s, er)⟨e⃗⟩ : τ τI = Ind(x :
−−−−−→
(xx :τx) → s)⟨τ⃗⟩

eF = λ−−−→xx :τx.λxc :τI x⃗x.Elim(xc, er)⟨e⃗⟩
Γ ⊢ Elim(Con(τI , i) e⃗s, er)⟨e⃗⟩ ≃ ∆[x, τi, ei, eF ] e⃗s : τ

(β − Ind)

Figure 8 Main new rules of pCICω

previous results will carry over trivially, since the encodings leave all the entities from higher329

universes basically untouched.330

Things get interesting only once we try to add inductive types in Type0. For example, inductive331

types in rCICω would normally have no restrictions when it comes to their elimination rules,332

including for strong elimination. Of course, having fully predicative universes, an inductive333

type in rCICω only lives in Type0 if it’s so-called “small”, i.e. it only carries values which334

themselves live in Type0. In the original CIC, such as presented in [17], such small types335

also supported arbitrary strong elimination, but this corresponds to Coq’s impredicative336

Set universe, which does not enjoy proof-irrelevance and hence seems to be impossible to337

encode into a system with a propositional resizing axiom. The kind of impredicative universe338

we can hope to encode using a resizing axiom would be Coq’s Prop universe, where strong339

elimination of small inductive types is restricted to those small types that only have a single340

constructor, so that they can be erased. This in turn means that encoding from rCICω to341

iCICω will not be as simple as before: iCICω is not just a strict superset of pCICω.342

In the other direction we also encounter new difficulties: if our encoding erases all iCICω343

terms in Type0 like we did in the previous section, then strong elimination of those erased344

inductive types will be problematic since those eliminations will not themselves return an345

erased value.346

5.1 Basic predicative inductive types: pCICω347

Before defining iCICω and rCICω we start by extending pCCω with inductive types, to have348

a shared starting point pCICω from which to define them. There are many different ways349

to define inductive types. We use here a presentation inspired from [17]. Nothing in this350

subsection is new. Here is the extended syntax of the language:351

(var) x, y, f, t ∈ V
(sort) s ∈ S
(term) e, τ ::= s | x | (x :τ1) → τ2 | λx :τ.e | e1 e2

| Ind(x :τ)⟨τ⃗⟩ | Con(τ, n) | Elim(e, er)⟨e⃗⟩

352

Ind(x :τ)⟨τ⃗⟩ is a new inductive type of kind τ where τ⃗ are the types of its constructors, where353

x is bound (and refers to the inductive type itself); Con(τ, n) is the nth constructor of the354

inductive type τ ; and Elim(e, er)⟨e⃗⟩ is the corresponding eliminator, where e is a value of355
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x ̸∈ fv(e⃗)
⊢ isCon(x, x e⃗)

⊢ isCon(x, τ2) x ̸∈ fv(τy)
⊢ isCon(x, (y :τy) → τ2)

⊢ isCon(x, τ2) x ̸∈ fv(τ⃗y) x ̸∈ fv(e⃗)

⊢ isCon(x, (
−−−−→
(y :τy) → x e⃗) → τ2)

∆{x, x e⃗, er, ec} = er e⃗ ec

∆{x, (y :τy) → τ2, er, ec} = (y :τy) → ∆{x, τ2, er, ec y}
∆{x, (

−−−−→
(y :τy) → x e⃗) → τ2, er, ec} = (xp : (

−−−−→
(y :τy) → x e⃗)) →

(
−−−−→
(y :τy) → er e⃗ (xp y⃗)) →

∆{x, τ2, er, ec xp}

∆[x, x e⃗, ef , eF ] = ef

∆[x, (y :τy) → τ2, ef , eF ] = λy :τy.∆[x, τ2, ef y, eF ]
∆[x, (

−−−−→
(y :τy) → x e⃗) → τ2, ef , eF ] = (xp : (

−−−−→
(y :τy) → x e⃗)) →

∆[x, τ2, ef xp (λ−−→y :τy.eF e⃗ (ep y⃗)), eF ]

Figure 9 Auxiliary new rules of pCICω

an inductive type, e⃗ are the branches corresponding to each one of the constructors of that356

type, and er is a function describing the return type of each branch and of the overall result.357

We use the notation τ⃗ to mean 0 or more elements τ0...τn; we use that same vector notation358

elsewhere to denote a (possibly empty) list of arguments.359

Figure 8 shows the added rules of our language. These rules rely on auxiliary judgments360

shown in Figure 9. At the top are the three typing rules for the three new syntactic forms.361

The rule for Ind uses an auxiliary judgment ⊢ isCon(x, τ,) which says that τ is a valid type362

for a constructor of an inductive type where x is a variable that stands for that inductive363

type. This judgment thus verifies that τ indeed returns something of type x and that the364

only other occurrences of x in τ are in strictly positive positions. The rule for Con just365

extracts the type of the constructor from the inductive type itself. The rule for Elim enforces366

that we induce on a value of an inductive type and checks that the type of each branch is367

consistent with the inductive type. To do that it relies on an auxiliary meta-level function368

∆{x, τ, er, ec} which computes the type of a branch from the type τ of the corresponding369

constructor where er describe the return type of the elimination, and ec is a reconstruction370

of the value being matched by the branch. This function is basically defined by induction on371

the ⊢ isCon(x, τ,) proof that the constructor’s type is indeed valid. You see in that definition372

that for every field of the inductive type, the branch gets a corresponding argument (the373

field’s value) and in addition to that, for those fields which hold a recursive value the branch374

receives the result of performing the induction on that field.375

The final rule of Figure 8 shows the new reduction rule for inductive types. The term eF376

defined there represents a recursive call to the eliminator, which is applied to every recursive377

field of the constructor. Like the typing rule of Elim, this rule uses an auxiliary meta-function378

∆[x, τ, ef , eF ] which computes the appropriate call to the branch ef from the type τ of the379

constructor, and where eF is the function to use to recurse. Just like ∆{x, τ, er, ec}, this380

function is basically defined by induction on the ⊢ isCon(x, τ,) proof that the constructor’s381



Stefan Monnier XX:15

type is valid.382

5.2 Impredicative universe and inductive types: iCICω383

As mentioned, since we intend to encode the impredicativity of iCICω using a kind of384

propositional resizing axiom, we will not try to provide a proof-relevant impredicative385

universe like Coq’s impredicative Set but we will instead make our bottom universe proof386

irrelevant like Coq’s Prop.387

The first step is as before: we add new impredicative quantification rules. This time, rather388

than make Type0 impredicative, we add a new Prop universe underneath all others:389

S = { Prop, Typeℓ | ℓ ∈ N }
A = { (Prop :Type0), (Typeℓ : Typeℓ+1) | ℓ ∈ N }
R = { (Typeℓ1 , Typeℓ2 , Typemax(ℓ1,ℓ2)) | ℓ1, ℓ2 ∈ N }

∪ { (Prop, Typeℓ, Typeℓ) | ℓ ∈ N }
∪ { (s, Prop, Prop) }

390

We also need to adjust the rules of inductive types to make sure this new Prop universe is
proof-irrelevant and to avoid introducing inconsistencies. We do this by refining the typing
rule of Elim as follows:

Γ ⊢ e : τI τ⃗u τI = Ind(x :
−−−−−→
(xx :τx) → sI)⟨τ⃗⟩ ∀i. Γ ⊢ ei : ∆{x, τi, er, Con(τI , i)}

Γ ⊢ er τ⃗u e : sr sr = Prop ∨ sI = Typeℓ ∨ (|τ⃗ | ≤ 1 ∧ Γ ⊢ isSmall(τ⃗))
Γ ⊢ Elim(e, er)⟨e⃗⟩ : er τ⃗u e

where Γ ⊢ isSmall(τ) makes sure that all the fields of this constructor belong to the Prop391

universe. The extra side conditions are meant to rule out strong eliminations of large392

inductive types, because they render the system inconsistent, and the additional |τ⃗ | = 1 is393

the check that makes sure that terms of the Prop universe are proof-irrelevant (i.e. can be394

erased).395
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5.3 rCICω396

5.4 From iCICω to rCICω397

Erase τ = ⟨||τ ||, isprop τ⟩

JτK =


Σt.IsProp t if τ = Prop
[τ ].0 if τ : Prop
[τ ] otherwise

[x] = x

[Prop] = Type0
[Typeℓ] = Typeℓ+1

[(x :τ1) → τ2] =
{

Erase((x :Jτ1K) → Jτ2K) if in Prop
(x :Jτ1K) → Jτ2K otherwise

[λx :τ.e] =
{

|λx :Jτ1K .[e]| if in Prop
λx :JτK .[e] otherwise

[e1 e2] =


elim|| ((x :Jτ1K) → Jτ2K) Jτ2K ([τ2].1)

[e1] λf : ((x :Jτ1K) → Jτ2K).f [e2]
if e1 in Prop

[e1] [e2] otherwise

[
−−−→
(x :τ) → s]I =

−−−−−→
(x :JτK) → [s]

[x e⃗]c = x [⃗e]
[(y :τy) → τ ]c = (y :JτyK) → [τ ]c
[(

−−−−→
(y :τy) → x e⃗) → τ ]c = (

−−−−−→
(y :JτyK) → x [⃗e]) → [τ ]c

[Ind(x :τ)⟨τ⃗⟩] =



λ
−−−→
xI : τ⃗I .Erase((Ind(x : [τ ]I)⟨ ⃗[τ ]c⟩) x⃗I)

if needErase(Ind(x :τ)⟨τ⃗⟩)
⟨(Ind(x : [τ ]I)⟨ ⃗[τ ]c⟩),
isprop (Ind(x : [τ ]I)⟨ ⃗[τ ]c⟩)⟩

if in Prop

Ind(x : [τ ]I)⟨ ⃗[τ ]c⟩ otherwise

[Con(τ, n)] =
{

λ−−→x :τ .|Con([τ ], n) x⃗| if needErase(τ)
Con([τ ], n) otherwise

398

6 Applicability399

7 Related works and conclusion400

[13] Uses a similar monad to represent impredicativity.401

[3] [16] [5] [14] [11]402
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