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Abstract
Recent type systems allow the programmer to use types that de-
scribe more precisely the invariants on which the program relies.
But in order to satisfy the type system, it often becomes necessary
to help the type checker with extra annotations that justify why
a piece of code is indeed well-formed. Such annotations take the
form of term-level type manipulations, such as type abstractions,
type applications, existential package packing and opening, as well
as coercions, or casts. While those operations have no direct run-
time cost, they tend to introduce extra runtime operations equiva-
lent to η-redexes or even empty loops in order to get to the point
where we can apply that supposedly free operation.

We show a coercion that is like a pacific swiss army knife of
coercions: it cannot cut but it can instantiate, open, pack, abstract,
analyze, or do any combination thereof, reducing the need for extra
surrounding runtime operations. And all that, of course, for the
price of a single coercion, which still costs absolutely nothing at
runtime. This new coercion is derived from Karl Crary’s coercion
calculus [Crary, 2000], but can also replace Crary and Weirich’s
vcase [Crary and Weirich, 1999].

It additionally happens to come in handy to work around some
limitations of value polymorphism. It is presented in the context of
Shao et al.’s Type System for Certified Binaries [Shao et al., 2002].

Other than the coercion itself, another contribution of this work
is a slightly different proof technique to show soundness of the type
erasure.

1. Introduction
Recent type systems allow the programmer to use types that de-
scribe more precisely the invariants on which the program relies.
This means that types abstract values more closely and that it be-
comes more frequent to have type mismatches where the two types
are although different somehow compatible. Also this compatibility
is generally too complex to be automatically inferred so in order to
satisfy the type system, it often becomes necessary to help the type
checker with extra annotations that justify why a piece of code is
indeed well-formed. Such annotations take the form of term-level
type manipulations, such as coercions, or casts. While those op-
erations have no direct runtime cost, they tend to introduce extra
runtime operations equivalent to η-redexes or even empty loops in
order to get to the point where we can apply that supposedly free
operation.
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Furthermore other type manipulations such as type abstractions,
type applications, and existential package packing and opening also
become much more frequent, so it is important for the compiler to
make those operations efficient, e.g. by enforcing a value restric-
tion on polymorphic quantification. But here again, making those
operations free is not always sufficient since they may still require
extra runtime operations equivalent to η-redexes.

In [Crary, 2000], Crary presented a coercion calculus that
solved this problem by extending coercions such that whole eta-
redexes could be written as part of a coercion which can then be
implemented as a no-op. In our work, using a language similar
to Shao et al.’s Type System for Certified Binaries [Shao et al.,
2002], we have found this coercion calculus very helpful but have
needed to extend it somewhat and also to reformulate it to better fit
our language. More specifically we have extended it to fully sup-
port polymorphic and existential types. And we have reformulated
the coercion calculus itself as an inductive definition in our type
language, the calculus of inductive constructions (CIC) [Paulin-
Mohring, 1993]. This has the side-benefit of enforcing that our
coercions are finite.

The resulting coercion is like a pacific swiss army knife of
coercions: it cannot cut but it can instantiate, open, pack, abstract,
analyze, or do any combination thereof, reducing the need for extra
surrounding runtime operations. And all that, of course, for the
price of a single coercion, which still costs absolutely nothing at
runtime.

Interestingly, by virtue of being expressed within the calcu-
lus of inductive constructions, our coercion can be used to imple-
ment term-level typecase operations such as Crary and Weirich’s
vcase [Crary and Weirich, 1999], where the type really does not
exist at runtime, so the typecase is really just another kind of coer-
cion.

Another bonus is that this coercion helps resolve a particular
tension that sometimes appears in heavily typed code: in order for
polymorphic quantification to be implemented as a no-op the lan-
guage will typically want to use of some form of value restriction:
polymorphic abstraction is only permitted around syntactic values
rather than arbitrary code. In SML code, this is a very minor restric-
tion, but in systems that use very refined types, this can become a
serious nuisance precisely because polymorphic quantification is
needed at many more places. Our coercion is sometimes able to
resolve this tension by adding polymorphism after the fact to the
result of a computation.

Other than the coercion itself, another contribution of this work
is a slightly different proof technique to show soundness of the
type erasure: instead of showing first the soundness of a typed
semantics, then a type erasure and untyped semantics and finally
a bisimulation, we directly show the soundness of the untyped
semantics.

Section 2 shows a sample situation that calls for a more pow-
erful coercion. Section 3 presents the necessary background upon
which this work builds. Section 4 introduces the language and the



coercion itself. Section 5 shows how those coercions can be used.
Section 6 formalizes the dynamic semantics and type erasure of the
language to prove soundness. Section 7 concludes by presenting
related works and open problems left for future work.

2. Motivation
We originally encountered the need for a more powerful form
of coercion while working on the gc copy function of a type-
preserving stop&copy garbage collector [Monnier et al., 2001]. But
related needs appear in many different situations.

GC’s copy function The ideal goal here is to write the code for
a type preserving deep-copy function that is as close as possible to
what we would write in an untyped setting. The idealized untyped
version of the code could look something like:

(* Copy heap from region f to region t. *)
gc copy x =

case x.tag of
0 ⇒ return x
1 ⇒ return {tag = 1,

val = (gc copy x.val.0, gc copy x.val.1)T}
Here we intend for x to be a tagged boxed value, where x.tag ex-
tracts the tag and x.val extract the actual value. The value can either
be an immediate such an integer or a pointer to a pair in which case
we can fetch the two elements using the .0 and .1 selectors. In the
case of an immediate value, the copy function does not need to do
anything else than return that same tagged immediate value; in the
case of a pair, the copy function needs to recursively copy each of
the two elements in the pair and then build a new pair (allocated in
the destination region T as indicated by the superscript) and tag the
resulting pointer before returning it. We will here gleefully ignore
issues surrounding low-level representation details and forwarding
pointers.

Now if the types of the values we copy only includes integers
int and pairs τ1 × τ2, this can be type checked without too much
trouble. But what if your values can also have existential types ∃t.τ
or recursive types µt.τ? In lambdaH this would mean that before
being able to give a type to x.tag, we need to open any existential
packaging, and unfold any recursion. The problem is: where should
we insert those fold/unfold and pack/open operations? Clearly, the
only possible place is at the very beginning (and end) of the func-
tion just before extracting x.tag, but at that point we know nothing
about x so we have no idea whether it’s indeed a recursively or
existentially typed value. Worse: x might have an existential type
whose body is itself an existential type, so we may need more than
one open/pack before being able to extract x.tag.

Now it may seem kind of silly to worry about where to place no-
ops such as fold/unfold and open/pack operation, in which order
and how many of them, since no matter how many of them we
introduce they’re still no-ops. Yet, our type checker needs them.

Repacking in data-structures Another situation which calls for
more sophisticated coercions is one where we have a list of integers
smaller than 100, whose type could hence be:

List (∃n.∃P :n < 100.snat n)

, where snat n denotes the singleton type of the constant n. If we
want to pass this list to a function that expects a list of integers
smaller than 200, we need to weaken the type to:

List (∃n.∃P :n < 200.snat n)

Weakening any one of those integers from ∃n.∃P :n < 100.snat n
to ∃n.∃P :n < 200.snat n is just a matter of unpacking and
repacking existentials and can be done at no cost, but doing it on the
whole list would typically require looping over the list in order to

(sort) s ::= Kind | Kscm | Ext
(ptm)τ, κ, ϕ, P ::= s | x | λx :ϕ. ϕ | ϕ ϕ | Πx :ϕ. ϕ

| Ind(x :ϕ){~ϕ} | Ctor (i, ϕ) | Elim[ϕ](ϕ){~ϕ}
(funcs) f ::= λx :τ ⇒ e Function

| Λt :κ.f Type abstraction
(terms) e ::= n Integer

| x Variable
| f Polymorphic function
| e1 e2 Apply e1 to e2

| e[ϕ] Type application
| 〈t=ϕ1, e :ϕ2〉 Existential package
| let 〈t, x〉 = e1 in e2 Open e1 in e2

| (e0, ..., en−1) Tuple of size n
| π[P ] e1 e2 Project field e1 of tuple e2

Figure 1. Syntax of the λH language.

apply the no-op on each element. The coercion calculus of [Crary,
2000] was specifically intended to eliminate such runtime cost by
making it possible to do the loop directly within the coercion. But
this does not help us here, because Crary’s coercion calculus does
not allow this kind of unpacking and repacking, except in the rare
case where the witness is not used1.

3. Background
We introduce in this section the two main works on which we build
this article: the λH language presented in [Shao et al., 2002] to
which we add a coercion primitive; and the coercion calculus pre-
sented in [Crary, 2000] which we rephrase and extend by present-
ing it in the context of λH .

3.1 λH

In [Shao et al., 2002], Shao et al. presented a programming lan-
guage λH that can represent and manipulate arbitrarly complex
propositions and proofs, by using CiC as their type language. More
specifically, λH types are CiC terms, and hence CiC types are λH

kinds. Figure 1 shows part of the syntax of the language in BNF
notation. The first two syntactic categories of sorts s and pure type
terms τ, κ, ϕ, P is just a concise representation of the syntax of
CiC terms. The term language is a polymorphic λ-calculus, where
the polymorphism enforces the value restriction by allowing type
abstraction only on functions (via the syntactic category f ); An ex-
istential package 〈t = ϕ1, e : ϕ2〉 packs e with the witness ϕ1 to
create an object of type ∃t.ϕ2 and can be opened with the let form;
the language also includes n-tuples and has the particularity that
the field index of the projection function π can be an arbitrary ex-
pression rather than just a constant, so tuples can also be used as
arrays; to guarantee the soundness of the language, the field access
operation requires an additional type annotation P which proves
that the index is within bounds.

The figure does not show the available types: in a traditional
system, we would add a separate category for types which could
look like the following:

(types) τ ::= t | snat n | tup n ϕ | τ → τ | ∀t :κ.τ | ∃t :κ.τ

Where snat n is the type used for natural numbers; tup n ϕ is
the type used for tuples of size n; and the last three are the usual
function types, polymorphic types, and existential types. But this
would be deceptive here: the type language is much richer than that.

1 To be fair, Crary’s coercion calculus does not include existential types, so
this limitation really only applies to the obvious generalization of his work
to existential types.



Instead, these type constructors are created directly within CiC as
part of the inductive definition of the Ω kind2:

Inductive Ω : Kind :=
| snat: nat → Ω
| tup : nat → (nat → Ω) → Ω
| arw : Ω → Ω → Ω
| ∀ : (k → Ω) → Ω
| ∃ : (k → Ω) → Ω

The type snat n is the singleton type of the natural constant n; the
type tup n ϕ is the type of tuples of size n where ϕ is a type-
level function that takes a field index as argument and returns its
type; the type arw τ1 τ2 is the usual type of functions that take
arguments of type τ1 and return values of type τ2; the type ∀ ϕ is
the polymorphic type traditionally written ∀t : κ.ϕ t and similarly
the type ∃ ϕ is the existential type traditionally written ∃t : κ.ϕ t:
we encode the usual quantifier types using a form of higher-order
abstract syntax [Pfenning and Elliott, 1988].

The λH language is not dependently typed: it keeps the usual
phase distinction between types and terms, and hence type check-
ing is decidable even in the presence of side-effects and non termi-
nation. As a matter of fact, the term language and type language are
very independent, since the only way in which they are linked is ba-
sically by using CiC as the language in which to write types, which
mostly amounts to defining the inductive Ω kind. So although the
language presented in [Shao et al., 2002] is a kind of polymorphic
λ-calculus, the same underlying idea can be applied just as easily
to other languages, as was done in [Monnier, 2004].

Although λH is not dependently typed, the reasoning power
provided by the language is comparable to that of dependently
typed languages. This is obtained by using singleton types: for
example, the type snat 3 has only one member, which is the natural
number 3. This amounts to lifting values into to the level of types
and hence provides the limited form of dependency necessary to
enable powerful reasoning: e.g. [League and Monnier, 2006] uses
a variant of λH to express and verify the invariants used in an
encoding of sophisticated object oriented features such as non-
manifest base classes.

3.2 The calculus of coercions
As part of his work on compiling away subtyping (using bounded
polymorphic) down to intersection types [Crary, 2000], Crary in-
troduced a coercion calculus which can apply coercions not only
on simple values but also inside data-structures and on functions,
removing the common need to keep η-redexes and empty loops at
runtime just for the sake of executing some coercion. The coercion
themselves follow the following syntax:

c ::= id | c1 ◦ c2 | c1 → c2 | c1 × c2 | app τ | ∀t.c | gen

id is the trivial identity coercion; c1 ◦ c2 is the composition of
two coercions; c1 → c2 is the congruence coercion for functions
which applies the coercion c1 to the function’s argument and c2

to the function’s return result; c1 × c2 is the congruence coercion
on pairs which applies the coercion c1 to the first element of a
pair and c2 to the second; app τ is the primitive coercion which
eliminates polymorphism by doing a type application; finally ∀t.c
is the congruence coercion on polymorphic values which applies
the coercion c to the return value of the type abstraction; and
gen is the primitive coercion which introduces polymorphism by
wrapping a value inside a trivial type abstraction.

Clearly, since coercions include type application as a special
case, Crary’s term language does not need to provide a separate

2 To make the notation more lightweight, we use a convention similar to that
used by Twelf whereby most of the Π quantifiers are left implicit

∆ ` c : τ1 C τ2 c is a valid coercion from τ1 to τ2

∆ ` id : τ C τ

∆ ` c1 : τ1 C τ2 ∆ ` c2 : τ2 C τ3

∆ ` c1 ◦ c2 : τ1 C τ3

∆ ` c1 : τ21 C τ11 ∆ ` c2 : τ12 C τ22

∆ ` c1 → c2 : τ11 → τ12 C τ21 → τ22

∆ ` c1 : τ11 C τ21 ∆ ` c2 : τ12 C τ22

∆ ` c1 × c2 : τ11 × τ12 C τ21 × τ22

∆ ` app τ2 : ∀t.τ1 C τ1[τ2/t]

∆, t ` c : τ1 C τ2

∆ ` ∀t.c : ∀t.τ1 C ∀t.τ2

t 6∈ fv(τ)

∆ ` gen : τ C ∀t.τ

Figure 2. Formation rules for Crary’s coercions

type application construct. Coercions are even able to do type
application inside data-structures and functions without opening
those data-structures or calling those functions.

Coercions are comparable to witnesses of subtyping. They have
types of the form τ1 C τ2 which means that a term of type τ1 can
be coerced to type τ2, or equivalently that τ1 is a subtype of τ2.
Figure 2 shows the formation rules. The identity and composition
rules are straightforward, as is the congruence on pairs; The con-
gruence on functions obeys of course the contra-variance rule; the
type application rule just reproduces the normal typing rule of type
application; finally the congruence on polymorphic types needs to
adjust the type environment which is used elsewhere (not shown
here) to ensure that the types are themselves well-formed; and the
type abstraction rule is restricted to only allow introduction of poly-
morphism in the case where the quantified variable is actually not
used. This last restriction is the main one we will want to lift in this
article.

Crary’s coercion calculus also includes additional coercions to
introduce and eliminate intersection types as well as a top type
which is the supertype of all types. It did not include existential
types, but since they are dual to polymorphic types, they can be
added easily. Another important element that was included, on
the other hand, was recursive types which introduced a significant
amount of complexity, since they came with 4 coercions: fold and
unfold of course, but also rec and isorec which provided 2 different
forms of congruence on recursive types, one where the induction
hypothesis was always covariant with the conclusion, and the other
where both covariant and contravariant hypothesis were available.

4. The language λCH

In this section we will formally present the language’s syntax,
typing rules, and dynamic semantics.

4.1 Syntax of λCH

Figure 3 shows the syntax of the language λCH, which is basically
a variant of λH [Shao et al., 2002] extended with our swiss coer-
cions. It is a typed λ-calculus with natural constants (n), functions
(λx : τ ⇒ e), applications (e1 e2), tuples (e0, ..., en−1), polymor-
phic functions (Λt :κ.f ), as well as existential types, opened via the
form let 〈t, x〉 = e1 in e2. In order for the type applications to be
no-ops at runtime, we apply the value restriction by imposing that
only functions can be polymorphic. For access to tuple fields, in-
stead of the usual fixed-field selection (πi e), we use a more general



(sort) s ::= Kind | Kscm | Ext
(ptm)τ, κ, ϕ, P ::= s | x | λx :ϕ. ϕ | ϕ ϕ | Πx :ϕ. ϕ

| Ind(x :ϕ){~ϕ} | Ctor (i, ϕ) | Elim[ϕ](ϕ){~ϕ}
(funcs) f ::= λx :τ ⇒ e Function

| Λt :κ.f Type abstraction
(terms) e ::= n Integer

| x Variable
| f Polymorphic function
| e1 e2 Apply e1 to e2

| let 〈t, x〉 = e1 in e2 Open e1 in e2

| (e0, ..., en−1) Tuple of size n
| π[P ] e1 e2 Project field e1 of tuple e2

| cast[P ] e Apply coercion P to e

Figure 3. Syntax of λCH.

form (π[P ] e1 e2) where the field index is an arbitrary expression,
so tuples can also be used as arrays; for this reason the form takes
an additional argument P which is a proof that the index is indeed
within bounds. Finally, the language includes coercion expressions
(cast[P ] e) where P describes the coercion to apply. Note that the
language includes neither type application expressions nor expres-
sions to create existential packages: instead, those are provided in-
directly as special cases of cast[P ] e expressions.

Following the approach used for λH , the type (and kind) lan-
guage is the Calculus of Inductive Constructions (CiC) [Paulin-
Mohring, 1993]. In such a system, instead of including the tradi-
tional type constructors directly in the type language, they are de-
fined within the type language as one particular inductive kind:

Inductive Ω : Kind :=
| snat: nat → Ω
| tup : nat → (nat → Ω) → Ω
| arw : Ω → Ω → Ω
| ∀ : (k → Ω) → Ω
| ∃ : (k → Ω) → Ω
| µ : (k → k) → (k → Ω) → Ω

The type snat n is the singleton type of the natural constant n:
every constant has its own type. The type tup n ϕ is the type
of tuples of size n, ϕ is a function that describes the type of
each field: it takes the index of a field and returns its type. The
type arw τ1 τ1 is the type of functions of argument type τ1 and
return type τ2. The types ∀ ϕ and ∃ ϕ are the universal and
existential types, respectively, where the quantification can be over
types of any kind. We will often use the more common notation
∀t : κ.τ to stand for ∀ (λt : κ.τ), and similarly for ∃. Finally the
type µ ϕ1 ϕ2 is the recursive type which stands for the infinite
expansion ϕ2(ϕ1(ϕ1(ϕ1(...(⊥))))). Although this representation
allows recursive types of higher kinds, we will only use it here with
kind Ω, in which case ϕ2 can be forced to the identity function3.
We will also use the more common notation µt.τ to stand for
µ (λt.τ) (λt.t).

4.2 Static semantics of λCH

Figure 4 shows the static semantics of λCH. The constant and vari-
able rules are as uneventful as they should, except for the fact that
natural numbers have singleton types and that we abuse the nota-
tion, writing n both at term and type levels, but really these are
two different terms representing the same number in two different
ways: once as a value and once as a type. The introduction and
elimination rules for arw, ∀, and ∃ are equally straightforward, the

3 See [Collins and Shao, 2002] for how to use such a construct with higher
kinds.

∆ ` Γ Γ is well-formed in type environment ∆
∆; Γ ` e : τ e has type τ in environments ∆ and Γ

∆ ` •
∆ `CIC τ : Ω ∆ ` Γ

∆ ` Γ, x :τ

∆; Γ ` n : snat n

Γ(x) = τ

∆; Γ ` x : τ

∆ `CIC τ1 : Ω ∆; Γ, x :τ1 ` e : τ2

∆; Γ ` λx :τ1 ⇒ e : arw τ1 τ2
(I-arw)

∆; Γ ` e1 : arw τ1 τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1 e2 : τ2
(E-arw)

∆ `CIC κ : Kind ∆, t :κ; Γ ` f : τ

∆; Γ ` Λt :κ.f : ∀t :κ.τ
(I-∀)

∆, t :κ; Γ, x :τ1 ` e2 : τ2

∆; Γ ` e1 : ∃t :κ.τ1 ∆ `CIC τ2 : Ω

∆; Γ ` let 〈t, x〉 = e1 in e2 : τ2
(E-∃)

∀i ∆; Γ ` ei : ϕ i

∆; Γ ` (e0, ..., en−1) : tup n ϕ
(I-tup)

∆; Γ ` e2 : tup ϕ2 ϕ
∆; Γ ` e1 : snat ϕ1 ∆ `CIC P : ϕ1 ≤ ϕ2

∆; Γ ` π[P ] e1 e2 : ϕ ϕ1
(E-tup)

∆; Γ ` e : τ1 ∆ `CIC P : τ1 C τ2

∆; Γ ` cast[P ] e : τ2
(Cast)

Figure 4. Typing rules of λCH.

only unusual part being the recourse to the typing rule of CiC (`CIC)
to check well-formedness of types and kinds, as well as to check
that the witness type does not escape from the let package opening
construct. The I-tup rule checks that the tuple has the same number
of elements as specified in its type and that ϕ properly describes
the type of each element. The E-tup rule checks that the index is
indeed a number and that the object from which to select is indeed a
tuple and it additionally uses CiC to check that P is a proof that the
index is within bounds. Finally the Cast rule implements the coer-
cion itself by checking the proof P which specifies the coercion to
perform.

The valid coercions are determined by a subtyping relation C
which is also defined within the type language as another inductive
kind:

Inductive C : Ω → Ω → Kind :=
| cid : tC t
| ccomp : t1 C t2 → t2 C t3 → t1 C t3
| ctup : (Π i, i < n → ϕ1 iC ϕ2 i) → tup n ϕ1 C tup n ϕ2

| carw : td2 C td1 → tr1 C tr2 → arw td1 tr1 C arw td2 tr2

| cpack : ϕ tC ∃ ϕ
| ctapp : ∀ ϕC ϕ t
| copen : (Π t, ϕ tC t2) → ∃ ϕC t2
| cgen : (Π t, t1 C ϕ t) → t1 C ∀ ϕ
| cfold : ϕ1(µ ϕ1 id)C µ ϕ1 id
| cunfold: µ ϕ1 idC ϕ1(µ ϕ1 id)



(funcs) f̄ ::= λx ⇒ ē Function
(terms) ē ::= n Integer

| x Variable
| f̄ Function
| (ē0, ..., ēn−1) Tuple of size n
| ē1 ē2 Apply ē1 to ē2

| π ē1 ē2 Project field ē1 of tuple ē2

Figure 5. Syntax of λCU.

pnq = n
pxq = x
pλx :τ ⇒ eq = λx ⇒ peq
pΛt :κ.fq = pfq
p(e0, ..., ei)q = (pe0q, ..., peiq)
pπ[P ] e1 e2q = π pe1q pe2q
pe1 e2q = pe1q pe2q
plet 〈t, x〉 = e1 in e2q = (λx ⇒ pe2q) pe1q
pcast[P ] eq = peq

Figure 6. Type erasure

This inductive definition defines both the syntax and the formation
rules of coercions and should thus be compared to the formation
rules of Crary’s coercions: cid, ccomp, carw, and ctapp correspond
directly to the formation rules of Crary’s id, c1 ◦ c2, c1 → c2,
and app τ respectively; ctup is a natural extension to the case of
n-tuples of Crary’s rule for c1 × c2; cpack is the natural dual of
ctapp; cfold and cunfold also match Crary’s rules for his fold and
unfold coercions; The difference is mostly in the introduction of
polymorphism: where Crary had basically:

| cpoly: (Π t, ϕ1 tC ϕ2 t) → ∀ ϕ1 C ∀ ϕ2

| cgen’: ϕC ∀ (λt.ϕ)

We use instead the single cgen rule:

| cgen: (Π t, t1 C ϕ t) → t1 C ∀ ϕ

This subsumes the two other rules: cgen’ is a combination of cid
and cgen while cpoly can be built by judicious use of cgen and
ctapp. copen is of course just the dual of cgen. Note that the two
rules cpack and ctapp can also be written:

| cpack’: ∃ ϕC t2 → (Π t, ϕ tC t2)
| ctapp’: t1 C ∀ ϕ → (Π t, t1 C ϕ t)

Which is a bit more verbose, but has the advantage of making them
more obviously inverses of copen and cgen respectively.

4.3 Dynamic semantics of λCH

The dynamic semantics of our language λCH is defined indirectly
by first compiling the source code into the untyped language λCU.
Figure 5 shows the syntax of λCU, which is identical to λCHexcept
that every type annotation has disappeared and type related oper-
ations have also been removed: type abstractions, let constructs to
open existential packages, and the coercions.

Figure 6 shows the translation from λCH terms to λCU terms,
which is just a type erasure: every term’s type annotations are
simply dropped. Type abstractions are replaced with their bodies,
coercions are similarly eliminated. The only slightly less trivial
translation is for the let construct which in λCH opens up existential
packages, but in λCU does not exist, and is translated into a standard
encoding of the let binding using a trivial combination of function
abstraction and function application.

ē ē′ ē reduces in one step to ē′

i < n

π i (ē0, ..., ēn−1) ēi (λx ⇒ ē1) ē2  ē1[ē2/x]

ēi  ē′i
(ē0, ..., ēi, ..., ēn−1) (ē0, ..., ē′i, ..., ēn−1)

e1  e′1
π e1 e2  π e′1 e2

e2  e′2
π e1 e2  π e1 e′2

e1  e′1
e1 e2  e′1 e2

e2  e′2
e1 e2  e1 e′2

Figure 7. Operational semantics of λCU.

The dynamic semantics of λCU is shown in Fig. 7 as a small step
reduction relation . It is a bog-standard semantics of λ-calculus
with tuples. The first two rules are the primitive reduction steps
while the rest are congruence rules. The reduction ordering is non-
deterministic, mostly because it made the presentation marginally
simpler, but also because it implies that the formal properties shown
in Sec. 6 are valid both for call-by-value and call-by-name strate-
gies.

5. Examples
In this section, we will show how to solve some particular problems
in our language. More specifically, we will show how we can do the
equivalent of Crary and Weirich’s kwvcase, and even extend it in
various ways; and then we will show how our coercion can work
around some common limitations due to the value restriction.

5.1 Mimicking vcase

In [Crary and Weirich, 1999], Crary and Weirich present a language
LX that is able to perform intensional type analysis, without it
being directly provided by the language. The way it works is that
the language provides a powerful type language with primitive
recursion and singleton types and then they cleverly encode runtime
type representations as singleton types accompanied by proofs of
impossibility (i.e. objects of type void which is not inhabited).
They then use those impossibility proofs together with a special
term-level typecase construct called vcase to reflect the runtime
information recovered by plain case statements back into the type.

This vcase construct is very unusual: it is a construct at the term-
level which decides of the control-flow based solely on type infor-
mation not available at runtime. The twist to make this impossibil-
ity possible is that the typing rule of vcase enforces that all but one
of the branches immediately returns a value of type void, which
implies that only one branch will ever be taken since there are no
values of type void.

The construct looks as follows:

vcase τ of injl t ⇒ dead v
injr t ⇒ e

Here we can see that all but one branch are marked as dead, and the
argument to dead has to be a value of type void. Of course, for this
to be usable, the type of v is not just plain void but rather some type
expression which reduces to void in the case that τ = injl t. The
interest of this construct is that it does type refinement, so within
e the type environment reflects the fact that τ is in fact equal to



injr t. So this can be used to reflect into the type system information
obtained at runtime.

Our language λCH is at least as powerful as LX in terms of its
ability to use type-level primitive recursion as well as singleton
types, so the same kind of programming tricks can be used, and
indeed the gc copy function in Sec. 2 is in the need to use a form
of runtime type analysis. Luckily, our swiss coercion coupled with
CiC’s built-in case analysis and primitive recursion allows us to
encode the same kind of construct as vcase as follows:

goal = ∀ (λt.ϕ (injr t))C ϕ τ
proof = case ϕ of injl t ⇒ ϕimp goal

injr t ⇒ ctapp t
cast[proof]Λt.e

In the LX code, we had that e was types in an environment aug-
mented with t and knowledge that τ = injr t, and the other branch
was ruled out by the type of v. The λCHcode is similar except that
the type refinement is not as sophisticated; it is nevertheless suffi-
cient since we can choose ϕ to be a type-level function of the form
λt′.∀P : t′ = τ....: before the cast we cannot easily instantiate P ,
but after the cast, its kind has turned into τ = τ so P can be instan-
tiated trivially.

Another important difference is that in LX, the impossibility
proof is provided by a value of type void whereas in our encoding,
this is provided by a type expression ϕimp which should have kind
False (a non-inhabited kind). The difference is not very important
in practice since those impossible proofs do not really exist any-
way: they either accompany the real data as an extra tuple slot in
LX or they accompany it as an existential package witness in λCH.
Actually, storing this “data” in existential witnesses rather than in
tuple fields is preferable since it makes it clear that it has no runtime
cost.

Finally, the most significant difference is that the vcase con-
struct is weird and ad-hoc, whereas our encoding in λCH only uses
common constructs without arbitrary restrictions. For example, we
can easily accommodate the situation where more than one branch
in the case is possible (as long as all the branches execute the exact
same code), or where one of the branch needs to “do nothing and
then recurse”.

This last situation is exactly the one we faced in the gc copy
function in Sec. 2: we need a coercion at the toplevel of the function
which checks the type of the argument: if it is a recursive type,
we need to unfold it and then try again with the result, if it is an
existential type we need similarly need to open it and try again with
its content, and this repeated until we hit a real data type such as int
or τ1×τ2. Notice how all three branches of the corresponding vcase
are perfectly possible, but that after some unspecified number of
no-ops the control-flow will eventually end up in the third branch.
We also of course trivially know that the number of no-ops will not
be infinite, since those no-ops are specified as a CiC inductive type
and that CiC is strongly normalizing.

5.2 Defeating the value restriction
The value restriction is a constraint that ensures that type abstrac-
tion is only ever applied to pure values. There are a few differ-
ent variants of this concept such as SML’s restriction to ensure
sound type inference [Wright, 1995], or Haskell’s restriction to
avoid pathological inefficiencies. The variant that interests us here
is the stricter one which is concerned with making sure that a type
application v[ϕ] is still a value. This is crucial to be able to im-
plement type abstractions and applications as no-ops, as well as to
be able to implement closure conversion sanely [Minimide et al.,
1996, Morrisett et al., 1998].

(values) v̄ ::= n Integer
| (v̄0, ..., v̄n−1) Tuple of size n
| λx ⇒ ē Function

Figure 9. Values

But this restriction is sometimes very inconvenient. For exam-
ple, it prevents you from writing code such as:

Λt.(f1[t], f2[t], f3[t])

This kind of construction can occur for example when building dic-
tionaries in the implementation of object-oriented features [League
et al., 2002, League and Monnier, 2006]. But this is no match to our
coercion since we can now first construct the dictionary without in-
stantiating each function and then use the swiss coercion to intro-
duce the outer type abstraction and to instantiate the inner polymor-
phic elements.

6. Soundness
Rather than show the soundness of the type-erased code by first
defining a sound typed semantics and then showing a bisimulation
between the typed semantics and the untyped semantics, we prove
soundness of the untyped semantics directly. To this end, we first
define a type system for λCU, then show that type erasure of a prop-
erly typed λCH program results in a properly typed λCU program,
and finally show the soundness of λCU.

Figure 8 shows the static semantics of λCU. The rules are almost
one-to-one equivalent to the rules of λCH except for minor differ-
ences in the E-∃ rules. Basically, λCU is the Curry-style presenta-
tion of the language, whereas λCH uses the Church-style presenta-
tion. Notice how there are two rules that can apply to an application
e1 e2: either the E-arw or the E-∃, this is due to the fact that the let
construct of λCH which opens existential packages is type-erased
into an application.

THEOREM 6.1 (Type preserving erasure).
If ∆; Γ ` e : τ , then ∆; Γ ` peq : τ .
The proof is a straightforward induction over the typing derivation.

Now that we know that the type-erasure of a well-typed program
in λCH is a well-typed program in λCU, we only have to show that
λCU is sound. To do that we first need to distinguish between a stuck
state and a valid final state. To this end we define in Fig. 9 the
subset of expressions of λCU that are considered as values; these
include constant natural numbers, tuples made up of values and λ
abstractions.

The rest of the proof follows the usual substitution, canonical
forms, progress, and preservation arguments. A few things to note
before we start: typing a program in λCU is in general not decidable;
luckily we do not need to do that: we only need to be able to check
and manipulate typing derivations which already give us the typing
of the program. I.e. we basically use the annotations in λCH to guide
the type checking of the type erased program.

Another unusual aspect is that we write part of the proof on
paper and part in CiC. Basically, all properties of the coercion
calculus need to be proved in CiC (because it is very difficult to
take into account every possible interaction with the rest of the CiC
system when doing it on paper), whereas the rest of the proof that
deals with the term language is written on paper because this part
has simply not been formalized in CiC.

LEMMA 6.2 (Substitution).
If ∆; Γ ` ē1 : τ1 and ∆; Γ, x :τ1 ` ē2 : τ2 then
∆; Γ ` ē2[

ē1/x] : τ2.



∆; Γ ` ē : τ ē has type τ in type environment ∆ and value environment Γ

Γ(x) = τ

∆; Γ ` x : τ ∆; Γ ` n : snat n
(I-snat)

∆; Γ ` e : τ1 ∆ `CIC P : τ1 C τ2

∆; Γ ` e : τ2
(Cast)

∀i ∆; Γ ` ēi : ϕ i

∆; Γ ` (ē0, ..., ēn−1) : tup n ϕ
(I-tup)

∆; Γ ` ē1 : snat ϕ1 ∆; Γ ` ē2 : tup ϕ2 ϕ ∆ `CIC P : ϕ1 ≤ ϕ2

∆; Γ ` π ē1 ē2 : ϕ ϕ1
(E-tup)

∆ `CIC τ1 : Ω ∆; Γ, x :τ1 ` ē : τ2

∆; Γ ` λx ⇒ ē : arw τ1 τ2
(I-arw)

∆; Γ ` ē1 : arw τ1 τ2 ∆; Γ ` ē2 : τ1

∆; Γ ` ē1 ē2 : τ2
(E-arw)

∆ `CIC κ : Kind ∆, t :κ; Γ ` f̄ : τ

∆; Γ ` f̄ : ∀t :κ.τ
(I-∀)

∆; Γ ` ē2 : ∃t :κ.τ1 ∆; Γ ` ē1 : ∀t :κ.arw τ1 τ2 ∆ `CIC τ2 : Ω

∆; Γ ` ē1 ē2 : τ2
(E-∃)

Figure 8. Typing rules of λCU.

If ∆ `CIC ϕ : κ and ∆, t :κ; Γ ` ē : τ then
∆[ϕ/t]; Γ[ϕ/t] ` ē : τ [ϕ/t].
The proof is straightforward, by induction over the typing deriva-
tion.

LEMMA 6.3 (Canonical forms).
If •; • ` v̄ : τ and • `CIC P : τ C (snat n) then v̄ ≡ n.
If •; • ` v̄ : τ and • `CIC P : τ C (tup n ϕ) then
v̄ ≡ (v̄0, ..., v̄n−1).
If •; • ` v̄ : τ and • `CIC P : τ C (arw τ1 τ2) then v̄ ≡ λx ⇒ ē.
PROOF SKETCH: E.g. For snat, the proof is by induction on the
typing derivation. Since the expression is a value and Γ is empty,
the induction will only need to consider the rules I-snat, I-tup, I-
arw, I-∀, and Cast:

• For the first three introduction rules, the conclusion is obtained
by proving in CIC that:

(snat n1)C (snat n2) → N1 = N2
(tup n ϕ)C (snat n) → False
(arw τ1 τ2)C (snat n) → False

• In the case of I-∀, we prove in CIC that

(∀t :κ.τ)C (snat n) → Σw :κ. τ [w/t]C (snat n)

After which we can use the witness w to invoke the induction
hypothesis.

• In the case of Cast, we can simply compose P with the other
coercion into a new coercion and then use the induction hypoth-
esis.

�

LEMMA 6.4 (Type Preservation).
If •; • ` ē : τ and ē ē′, then •; • ` ē′ : τ .
PROOF SKETCH: The proof is by case analysis on the reduction
step and for each possible step, by induction on the typing deriva-
tion. The only unusual part is that the root of the typing derivation
may be a string of casts, so we have to go past those until we reach
a “real” typing rule that corresponds to the reduction step. The in-
duction steps for the congruence rules are uneventful.

Case π i (ē0, ..., ēn−1) =⇒ ēi:

Inversion of the typing derivation has two possible cases: Cast,
which is trivially true by the induction hypothesis, and E-tup which
gives us that •; • ` i : snat ϕ1 and •; • ` (ē0, ..., ēn−1) :

tup ϕ2 ϕ from which we need to show •; • ` ēi : ϕ ϕ1. The
canonical forms lemma gives us that i = ϕ1 and n = ϕ2.

By induction on the typing derivation of the tuple, where we
only need to consider the Cast where we compose all the coercions
into a single one, and I-tup cases where we end up with: •; • `
(ē0, ..., ēn−1) : tup n′ ϕ′ and •; • ` ēi : ϕ′ i and (tup n′ ϕ′) C
(tup n ϕ). Within CIC we can prove:

(tup n′ ϕ′)C (tup n ϕ) → n′ = n ∧Πi :nat. (ϕ′ i)C (ϕ i)

So we can simply use the ith coercion to finally show that •; • `
ēi : ϕ i.

Case (λx ⇒ ē1) ē2 =⇒ ē1[
ē2/x]:

Again, inversion of the typing derivation has two possible cases:
Cast, which is trivially true by the induction hypothesis, and E-arw
which gives us •; • ` λx ⇒ ē1 : arw τ1 τ2 and •; • ` ē2 : τ1.
Sadly, the first judgment might not come directly from I-arw, but
instead through a sequence of Cast and then I-∀ rules. We compose
all the casts into a single coercion. We also prove in CIC that:

(∀t :κ.τ)C (arw τ1 τ2) → Σw :κ. τ [w/t]C (arw τ1 τ2)

So when we reach a I-∀, we can apply the substitution lemma on
the antecedent, using the witness w. This repeats until we finally
get to an I-arw at which point we have:

•; • ` λx ⇒ ē1 : arw τ ′1 τ ′2
and

• `CIC P : (arw τ ′1 τ ′2)C (arw τ1 τ2)

We can also prove in CIC that

(arw τ ′1 τ ′2)C (arw τ1 τ2) → τ1 C τ ′1 ∧ τ ′2 C τ2

so we can use the first coercion to turn •; • ` ē2 : τ1 into •; • ` ē2 :
τ ′1, then apply the substitution lemma to get •; • ` ē1[

ē2/x] : τ ′2 and
finally apply the second coercion to recover •; • ` ē1[

ē2/x] : τ2.�

LEMMA 6.5 (Progress).
If •; • ` ē : τ then either ē ē′ or ē is a value.

The proof is again by induction on the typing derivation, using
the canonical forms lemma.

THEOREM 6.6 (Soundness).
If ∆; Γ ` ē : τ , then either ē is a value, or there exists ē′ such that
ē ē′ and ∆; Γ ` ē′ : τ .
PROOF: Combine the progress and preservation lemmas. �

A note on the CiC proofs: the proofs were written in Coq, but as
it turns out, it seemed basically impossible to write those proofs



directly. Instead, the C inductive type is first converted into an
alternative representation which is more canonicalized so that there
are fewer cases to consider. This moves most of the proof burden
to the conversion of ccomp which needs to do a lot of reduction to
cancel out and merge the coercions is combines.

7. Related work and discussion
Obviously, the most closely related work is [Crary, 2000], already
presented in Sec. 3.

Another related line of research is in [Crary and Weirich, 1999],
where they present a coercion called vcase that takes a very differ-
ent syntactical form, simulating control-flow statements rather than
value manipulations.

Of course, all the work surrounding Shao et al.’s type system
for certified binaries [Shao et al., 2002, League and Monnier, 2006,
Monnier, 2004] was the basis of this work as well.

Systems that provide much more limited forms of coercions are
common. The most closely related is probably Concoqtion [Fogarty
et al., 2007] which defines a system inspired by λH and provides a
simple form of coercion.

A different approach was taken in [Hawblitzel et al., 2004]
where types are partly brought down to the level of terms, and
where the η-redexes and empty loops resulting from free type
operations get compiled away via a special optimization phase.

In [Harper and Stone, 2000], Harper and Stone also define
the semantics and soundness of a source language (SML) by first
translating it into some slightly lower level language which they
prove sound.

Future work Our swiss coercion as presented here covers all of
Crary’s coercions except for the rec and isorec congruence rules for
recursive types (we can easily define intersection types with their
coercions on top of λCH). We have already tried to add crec rules to
our coercions which would cover some or all uses of rec and isorec,
but we are still struggling with the subsequent soundness proof.

We want to extend the cfold and cunfold rules to allow the use
of higher-kinded recursive types. [Collins and Shao, 2002] shows
one way to do that.

The let construct that opens existential packages is unnecessary
as soon as we can show ∀t.arw (ϕ t) τ C arw (∃ ϕ) τ . Sadly, the
current definition of the swiss coercion is not able to prove it
and adding the rule as an additional primitive coercion leads to
difficulty in the soundness proof.
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Canada, September 2000. ACM Press.

Karl Crary and Stephanie Weirich. Flexible type analysis. In
International Conference on Functional Programming, pages
233–248, Paris, France, September 1999. ACM Press.
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