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Abstract
The use of typed intermediate languages can significantly increase
the reliability of a compiler. By type-checking the code produced
at each transformation stage, one can identify bugs in the compiler
that would otherwise be much harder to find. Also it guarantees that
any property that was enforced by the source-level type-system is
holds also for the generated code. Recently, several people have
tried to push this effort a bit further by verifying formally that the
compiler indeed preserves typing. This is usually done with proof
assistants or experimental languages.

Instead, we decided to use Haskell, to see how far we can go
with a more mainstream system, supported by robust compilers and
plentiful libraries. This article presents one part of our type pre-
serving compiler, namely the closure conversion and its associated
hoisting phase, where we use GADTs to let Haskell’s type checker
verify the we obey the object language’s typing rules and that we
correctly preserve types from one phase to the other.

This should be both a good showcase as well as a good stress
test for GADTs, so we also discuss our experience, as well as some
trade-offs in the choice of representation, namely between higher-
order abstract syntax (HOAS) and a first order representation (i.e.
de Bruijn indices) and justify our choice of a de Bruijn represen-
tation. We incidentally present a type preserving conversion from
HOAS (used in earlier phases of the compiler [4]) to a de Bruijn
representation.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms

Keywords Compilation, Typed assembly language, de Bruijn,
Higher-Order Abstract Syntax

1. Introduction
While there is still a long way to go until they become as common
place as in digital systems, formal methods are rapidly improving
and gaining ground in software. Type systems are arguably the most
successful and popular formal method used to develop software,
even more so since the rise of Java. For this reason, there is a lot of
interest in exploring more powerful type systems to enable them to
prove more complex properties.

[copyright notice will appear here]

Thus as the technology of type systems progresses, new needs
and new opportunities appear. One of those needs is to ensure the
faithfulness of the translation from source code to machine code.
After all, why bother proving any property of our source code, if
our compiler can turn it into some unrelated machine code? One of
the opportunities is to use types to address this need. This is what
we are trying to do.

Typed intermediate languages have been used in compilers for
various purposes such as type-directed optimization [6, 22, 15],
sanity checks to help catch compiler errors, and more recently to
help construct proofs that the generated code verifies some proper-
ties [11, 5]. Typically the source level types are represented in those
typed representations in the form of data-structures which have to
be carefully manipulated to keep them in sync with the code they
annotate as this code progresses through the various stages of com-
pilation. This has several drawbacks:

• It amounts to testing the compiler, thus bugs can lurk, unde-
tected.

• A detected type error, reported as an “internal compiler error”,
will surely annoy the user, who generally holds no responsibil-
ity for what went wrong.

• It incurs additional work, obviously, which can slow down the
compiler.

• Errors are only detected when we run the type checker, but
running it as often as possible slows down our compiler even
more.

To avoid those problems, we want to represent the source types of
our typed intermediate language as types instead of data. This way
the type checker of the language in which we write our compiler
can verify once and for all that our compiler preserves the typing
correctly. The compiler itself can then run at full speed without
having to manipulate and check any more types. Also this gives us
even earlier detection of errors introduced by an incorrect program
transformation, and at a very fine grain, since it amounts to running
the type checker after every instruction rather than only between
phases.

We believe that type preservation by a compiler is the perfect
example of the kind of properties that type systems of the future
should allow programmers to conveniently express and verify. Oth-
ers (e.g. [1]) have used typeful program representations to statically
enforce type preservation, but as far as we know, the work presented
here is the first attempt to do so using a language so widely used
and well supported as Haskell, for which an industrial strenth com-
piler is available. Also, to our knowledge, this is the first time such
a technique is applied to closure conversion and hoisting.

This work follows a similar goal to the one of [7], but we
only try to prove the correctness of our compiler w.r.t the static
semantics rather than the full dynamic semantics. In return we want
to use a more practical programming language and hope to limit
our annotations to a minimum such that the bulk of the code should
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Source language (LS)

(types) τ ::= τ1 → τ2 | int
(type env) Γ ::= • | Γ, x :τ

(primops) p ::= + | − | ·
(exps) e ::= x | let x = e1 in e2 | λx . e | e1 e2 | n

| e1 p e2

Target language (LC )

(types) τ ::= . . . | closure τ1 τ2 | τ1 × · · · × τn

(exps) e ::= . . . | closure ef eenv

| let (xf , xenv) = open e1 in e2

| 〈e1, . . . , en〉 | e.i

Typing rules (LC )

• ` ef : (τ1 × τenv) → τ2 Γ ` eenv : τenv

Γ ` closure ef eenv : closure τ1 τ2

Γ ` e1 : closure τ1 τ2

Γ, xf : (τ1 × τenv) → τ2, xenv :τenv ` e2 : τ2

Γ ` let (xf , xenv) = open e1 in e2 : τ2

Figure 1. Source and target language

deal with the compilation rather than its proof. Also we have started
this work from the frontend and are making our way towards the
backend, whereas Leroy’s work has started with the backend.

In an earlier article [4], we presented the CPS phase of our com-
piler, which used a higher order abstract syntax (HOAS) [14] rep-
resentation of terms to render the type preservation proof easier. In
this article we present the closure conversion and function hoisting
phases, both of which use a first order representation of terms, us-
ing de Bruijn indices. We found a first order representation to be
easier to use for closure conversion.

Our main contributions are the following:

• We show a type-preserving closure conversion written in
Haskell with GHC extensions (mainly GADTs) and where the
GHC type checker verifies the property of type-preservation.

• We similarly show a type-preserving function hoisting phase.
• We additionally show a type preserving conversion from strongly

typed higher-order abstract syntax (HOAS) terms (follow-
ing [23]) into strongly typed first order terms using de Bruijn
indices.

The paper is structured as follows: We begin with background
material on closure conversion, hoisting and generalized algebraic
datatypes (GADTs) in Section 2. We present the details of closure
conversion over a concrete program representation with De Bruijn
indices, and outline the main features of our implementation in
Haskell in Section 3; we do the same for hoisting in Section 4. Fi-
nally, we present a technique for converting a typeful higher-order
abstract syntax (HOAS) representation into our first-order repre-
sentation with de Bruijn indices in Section 5, before concluding
with related and future work.

2. Background
In this section we describe what we mean by closure conversion,
hoisting and type preservation, and briefly show the kind of typeful
program representation using GADTs we use.

CJxK = x
CJlet x = e1 in e2K = let x = CJe1K in CJe2K

CJλx . eK = closure (λ〈x, xenv〉 . ebody) eenv

where y1, . . . , yn = FV (e)
ebody = let y1 = xenv.1

...
yn = xenv.n

in CJeK
eenv = 〈y1, . . . , yn〉

CJe1 e2K = let (xf , xenv) = open CJe1K
in xf 〈CJe2K, xenv〉

CJnK = n
CJe1 p e2K = CJe1K p CJe2K

Figure 2. Closure conversion

2.1 Closure conversion
Closure conversion makes the creation of closures explicit. Func-
tions are made to take an additional argument, the environment, that
captures the value of its free variables. A closure consists of the
function itself, which is closed, along with a copy of the free vari-
ables forming its environment. At the call site, the closure must be
taken apart into its function and environment components and the
call is made by passing the environment as an additional argument
to the function.

The source language (LS) used here is a simply typed, call-by-
value λ-calculus, with a non-recursive let-form and integers as a
base type.1 Its static and dynamic semantics are standard and are
not reproduced here. However we will henceforth refer to a typing
judgement Γ ` e : τ over LS expressions, assuming standard
definitions.

The target language (LC ) extends LS with syntactic forms for
constructing and opening closures, as well as n-tuples. The syntax2

of the two languages, as well as the typing rules for closures, are
shown in Fig. 1. We will refer to a typing judgement Γ ` e : τ over
LC expressions, which extends that for LS with the typing rules
for closures (as shown) and n-tuples.

The usual formulation of closure conversion is shown in Fig. 2.
The result of closure conversion applied to a simple program is
shown in Fig. 3. In the next section, we discuss how such transfor-
mation preserves types.

2.2 Type preservation
In its simplest form, type preservation states that closure conversion
takes well typed programs to well typed programs:

THEOREM 2.1. (CC type preservation) For any LS expression e,
if • ` e : τ , then • ` CJeK : τ ′ for some LC type τ ′.

In reality, there is a close correspondence between types in LS

and those in LC . That correspondence between types (and type
environments) is captured by the relation CtypeJ−K (and CenvJ−K)
defined in Fig. 4.

We can now be more precise about the type of the converted
term, and generalize the statement to open terms:

THEOREM 2.2. (CC type correspondence) For any LS expression
e, if Γ ` e : τ , then CenvJΓK ` CJeK : CtypeJτK.

1 Although the languages used here are in direct style, our implementation
actually preforms closure conversion over programs in CPS.
2 To make programs easier to read, we freely use pattern matching (e.g. to
introduce multiple bindings at once using tuple syntax), and use Haskell-
style indentation to clarify program structure.
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Source program (LS):

let a = 2
b = 5
f = λx . λy . a · x + b · y

in f 7 3

Closure-converted program (LC ):

let a = 2
b = 5
f = closure λ〈x, env〉 .

let 〈a, b〉 = env
in closure λ〈y, env〉 .

let 〈a, b, x〉 = env
in a · x + b · y

〈a, b, x〉
〈a, b〉

〈ff , fenv〉 = open (let 〈ff , fenv〉 = open f
in ff 〈7, fenv〉)

in ff 〈3, fenv〉

Figure 3. Example of closure conversion

CtypeJintK = int
CtypeJτ1 → τ2K = closure CtypeJτ1K CtypeJτ2K

CenvJ•K = •
CenvJΓ, x :τK = CenvJΓK, x :CtypeJτK

Figure 4. Correspondence between types (en environments) in LS

and LC .

let `0 = λ〈y, env〉 . let 〈a, b, x〉 = env
in a · x + b · y

`1 = λ〈x, env〉 . let 〈a, b〉 = env
in closure `0 〈a, b, x〉

a = 2
b = 5
f = closure `1 〈a, b〉
〈ff , fenv〉 = open (let 〈ff , fenv〉 = open f

in ff 〈7, fenv〉)
in ff 〈3, fenv〉

Figure 5. Program from Fig. 3 after hoisting.

The above theorem captures the key invariant that guarantees
type preservation: a variable x of type τ in the source program is
mapped to a variables of the same name x of type CtypeJτK in the
target program. In particular, when constructing a closure, every
variable referenced in the body of the closure is bound to a value
(extracted from the environment) of the expected type.

2.3 Hoisting
After closure conversion, λ-abstractions are closed and can be
moved to the top level. (Note that the typing rules for closures
actually forces functions to be closed: an open function inside a
closure would simply not type check.)

For example, the result of the hoisting transformation applied
to the program from Fig. 3 is shown in Fig. 5. In this example,
the inner function (λ〈y, env〉 . . . .) gets bound to `0, and the outer
function (λ〈x, env〉 . . . .) gets bound to `1.

It is easy to see that hoisting preserves types: a λ-abstraction is
merely replaced by a variable occurrence of the same type.

2.4 Generalized algebraic datatypes
Generalized algebraic datatypes (GADTs) [24, 2] are a generaliza-
tion of algebraic datatypes where the return types of the various
data constructors for a given datatype need not be identical – they
can differ in the type arguments given to the type constructor being
defined. The type arguments can be used to encode additional infor-
mation about the value that is represented. For our purpose, we pri-
marily use GADTs to represent abstract syntax trees, and use these
type annotations to track the source-level type of expressions. For
example, consider the usual typing rule for function application:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Using plain algebraic datatypes, we would represent object pro-
grams with a type such as the following:

data Exp where
App :: Exp -> Exp -> Exp
. . .

where the source types of e1 and e2 are unconstrained. In contrast,
with GADTs, we can explicitly mention source types as type argu-
ments to Exp:

data Exp t where
App :: Exp (t1 -> t2) -> Exp t1 -> Exp t2
. . .

This type guarantees that if we can construct a Haskell term of
type Exp t, then the source expression it represents is well typed: it
has some type τ , the source type for which t stands. Note that the
use of the arrow constructor (t1 -> t2) to represent function types
(τ1 → τ2) is purely arbitrary: we could just as well have used any
other type of our liking, say Arw t1 t2, to achieve the same effect.

While this example captures the essential feature of GADTs we
need, there remain non-trivial decisions to be made concerning the
way we use such annotations to track the type of binders as they are
introduced in syntactic forms like λ or let. We will discuss a couple
of ways of doing this in Section 3.1.

3. Closure conversion
In this section the core contribution of this paper is developed, the
type-preserving closure conversion implemented with GADT’s.

We begin with an overview of possible program representations,
both first-order and higher-order, and justify our choice of de Bruijn
indices. We then update our definition of closure conversion (CJ−K)
to work with de Bruijn indices, yielding a transformation (CbJ−K−)
that is better amenable to typing. We give Haskell types for an
implementation of CbJ−K− and its auxiliary functions.

3.1 Choice of representation
There are at least a few ways in which the program representation
from Section 2.4 can be extended with syntactic forms that intro-
duce binders. We will illustrate two of them by showing how would
be encoded the typing rule for let-expressions:

Γ ` e1 : τ1 Γ, x :τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

HOAS With higher-order abstract syntax, the typing rule for let
would be encoded as follows:

data Exp t where
Let :: Exp t1 -> (Exp t1 -> Exp t2) -> Exp t2
. . .

that is, binders in source programs would be represented by Haskell
binders – and thus it does not require an explicit introduction
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form for variable occurrences. As long as bindings in the source
language behave the same as bindings in Haskell, the technique
amounts to re-using Haskell’s (implicit) type contexts to impose
type constraints on source programs. The technique is particularly
concise, but its simplicity has a cost: explicit constraints on the
type context of a term cannot be expressed. For instance, we cannot
express the fact that a term is closed.

De Bruijn indices In contrast to HOAS, a first-order represen-
tation introduces variables explicitly. With de Bruijn indices, as
with HOAS, variables names are irrelevant, and variables are in-
stead represented as indices. The type associated with an index is
drawn from an explicit type argument (ts) to Exp, which represents
the expression’s type context:

data Exp ts t where
Bvar :: Index ts i t -> Exp ts t
Blet :: Exp ts s -> Exp (s, ts) t -> Exp ts t
. . .

A term of type ExpB ts t is an expression that may refer to
variables whose types are listed in ts. More precisely, a Haskell
term being of type Exp ts t implies that the source term it repre-
sents (e) satisfies Γ ` e : τ , where the Haskell type t stands for the
source type τ , and the type ts reflects Γ.

An index of type Index ts i t represents a de Bruijn index
with index value i, whose type is t within the type environment ts.
Such indices are represented with type-annotated Peano numbers:

data Index ts i t where
I0 :: Index (t, ts) Tzero t
Is :: Index ts n t -> Index (t0, ts) (Tsucc n) t

where Tzero and Tsucc reify the natural numbers as types. Note
that individual indices are polymorphic in ts and t, and assume a
particular type given a particular type context ts.

To illustrate the two techniques, the following expression:

let a = 2
b = 3

in a + b

would be represented in HOAS as:

Elet (Enum 2) (λa ->
Elet (Enum 3) (λb ->

Eadd a b))

and with de Bruijn indices as:

Elet (Enum 2) (
Elet (Enum 3) (

Eadd (Is I0) I0))

Justifications The fact that HOAS does not represent variables
explicitly has the unfortunate consequence that variables cannot be
identified: given two variables a and b, we cannot (directly) deter-
mine whether the two variables are actually the same. This ability is
actually needed to perform closure conversion, as should become
clear in Section 3. To recover this ability, one needs to somehow
“inject” identity into variables, for example by annotating binders
with some sort of names or indices. This approach tends to negate
the chief advantages of HOAS, namely its conciseness and ele-
gance. One would argue that such an “augmented” representation
makes HOAS degenerate into something actually more complex
than de Bruijn indices – why not simply use de Bruijn indices, then?

Aside, as said earlier, the fact that HOAS handles type envi-
ronments implicitly precludes explicit constraints on type contexts,
such as terms being closed. However, the hoisting transformation
actually relies on the fact that functions inside closures are closed,
and de Bruijn’s ability to enforce this is clearly an advantage.

Source language (Lb
S)

(indices) j ::= i0 | i1 | . . .
(exps) e ::= j | let e1 in e2 | λ e | . . .

Target language (Lb
C )

(exps) e ::= . . . | let open e1 in e2 | . . .

Figure 6. Source and target language in de Bruijn form

CbJiKm = m i
CbJlet e1 in e2Km = let CbJe1Km

in CbJe2K(i0 : map shift m)
CbJλ eKm = closure (λ ebody) eenv

where (m′, [j0, . . . , jn−1]) = mkEnv (tail (fvs e))
ebody = let i0.0 (original argument)

i1.1 (environment)
in CbJeK(i1 : map (λj . i0.j) m′)

eenv = 〈m j0, . . . , m jn−1〉

mkEnv [] j = ([], [])
mkEnv (False : bs) j = ((⊥: m), [j0, . . . , jn−1])
mkEnv (True : bs) j = ((n : m), [j0, . . . , jn−1, j])

where (m, bs) = mkEnv [b1, . . . , bp−1]

fvs e = [b0, . . . , bn−1 | bi = True if ii appears in e;
False otherwise]

shift in = in+1

shift in.k = in+1.k

Figure 7. Closure conversion over Lb
S

In the face of these arguments in favour of a first-order encod-
ing, we settled for de Bruijn indices for the task of closure conver-
sion and hoisting, although we could probably have managed with
HOAS, at the cost of having to extend the basic representation in
non-conventional ways.

3.2 Closure conversion and de Bruijn indices
In this section we adjust the definition of CJ−K to work with de
Bruijn indices. We first re-formulate the language definition of the
source and target languages in de Bruijn form, then see precisely
how closure conversion is affected, and show how it works by going
through the details of converting a simple object program.

The de Bruijn form of LS and LC , that we call Lb
S and Lb

C ,
is shown in Fig. 6. The figure only shows the constructs relating
to bindings, the others being left unchanged. A variable x is rep-
resented by an index in: the index i0 refers to the nearest binder
(irrespective of whether it is introduced by λ, let, or open), i1
refers to the second nearest binder, etc. The syntactic constructs
for let, λ and open do not mention variable names. The form
let open e1 in e2 introduces two bindings in e2: i0 is bound to
the environment extracted from the closure e1, and i1 is bound to
the function.

We now turn to closure conversion itself. The central part of
closure conversion is that which converts functions to closures. In
closure-converting the body of a λ-abstraction, one must arrange
for (free) variable references to be turned into references to the
corresponding variables stored in the environment. In the defini-
tion of CJ−K, this is simply achieved by instantiating a number of

A Type-Preserving Closure Conversion in Haskell 4 2007/6/21



let a = 2
b = 4
c = 7
d = 8

in λx . a · x + c

⇓CJ−K

let a = 2
b = 4
c = 7
d = 8

in closure (λarg . let x = arg.0
env = arg.1
a = env.0
c = env.1

in a · x + c)
〈a, c〉

let 2
4
7
8

in λ i4 · i0 + i2

⇓CbJ−K−

let 2 4 7 8
in closure (λ let i0.0

i1.1
in i0.0 · i1 + i0.1)

〈i3, i1〉

Figure 8. Example of closure conversion with variable names
(left) and de Bruijn indices (right)

let-bindings with the same names as the original variables, each
variable being bound to the corresponding value in the environ-
ment. For instance, in the example from Fig.3, the inner function
(λy . a · x + b · y) gets converted into a closure whose body is
syntactically identical to the original (a ·x + b ·y), but whose vari-
able refer to bindings that are local to the closure, each instantiated
to a variable from the environment. Here, we wish to transpose this
technique to our concrete representation with de Bruijn indices; but
indeed, given that there are no variable names, we’ll have to work
a little harder.

Essentially, since we cannot rely on names, we’ll have to carry
around a map that gives the local binding in the converted pro-
gram for each variable in scope in the source program. We denote
CbJeKm the closure-converted form of source program e given local
bindings m; the function CbJ−K− in defined in Fig. 3.2. It refers to
auxiliary functions mkEnv and fvs that are used for constructing
the map m when forming closures.

The local variables map m, for a source term with n variables
in scope, has form [e0, . . . , en−1], where ek gives the local binding
in the target program for source variable ik. In general, ek will be
either a de Bruijn index (when ik is a local variable of the function
being converted) or a projection of the environment (when ik is a
free variable.)

To illustrate, consider the source program shown at the top of
Fig. 8; the final result of the conversion is shown at the bottom.
We now go through the steps involved in closure-converting this
function.

The first step computes the free variables. Rather than producing
a set, the fvs function produces a “bit-map”, indicating whether
each index in scope appears in the term. Taking the free variables
of the function body, we have:

fvs (i4 · i0 + i2) = [True, False, True, False, True]

which reads, from left to right: i0 appears in the term, i1 does not,
i2 appears, and so on.

Next is the construction of the environment and the correspond-
ing local variables map, which is handled by mkEnv. We have:

(m′, [j0, . . . , jn−1]) 0
= mkEnv (tail (fvs (i4 · i0 + i2))) 0
= mkEnv (tail [True, False, True, False, True]) 0
= mkEnv [False, True, False, True] 0
= ([⊥, 1,⊥, 0], [i3, i1])

The first component, m′, maps variables in scope in the func-
tion’s body (except the function’s original argument, i0) to corre-
sponding projections of the environment. From this m′, CbJ−K−
constructs a map in which to interpret the function’s body:

(i1 : map (λj . i0.j) m′) = [i1,⊥, i0.0,⊥, i0.1]

which reads, form left to right:

1. the source variable i0 is mapped to local variable i1,

2. the source variable i1 is not mapped to any local variable, as
indicated by ⊥ (since the variable is in scope but does not
appear in the source term, this is indeed what we want),

3. the source variable i2 is mapped to i0.0, the first projection of
the environment,

and so on. The second component produced by mkEnv, namely
[j0, . . . , jn−1], simply enumerates the source variables that appear
in the function’s body. Finally, the function’s body can be con-
verted:

CbJi4 · i0 + i2K[i1,⊥, i0.0,⊥, i0.1] = i0.1 · i1 + i0.0

What we’ve shown here is a mostly conventional formulation of
closure conversion, only slightly contrived to facilitate typing; in
the next section, we’ll assign types to CbJ−K−, fvs and mkEnv.

3.3 Implementation
In this section we go through the implementation of closure con-
version. We first define a notion of type-preserving maps over type
contexts, which turns out to be a central concept; such a map as-
sociates to each variable in scope of type τ a piece of data whose
type is indexed in τ . The primary interest for this structure is in
typing the local variables map (m) of CbJ−Km: its key feature is
that it maps variables in the source program to variables of the cor-
responding type in the converted program. Next, we see how to
encore the relation CtypeJ−K between types in the Lb

S and Lb
C . We

then construct the type of CbJ−K− and, in turn, that of fvs and
mkEnv.

Type-preserving maps Conceptually, a type-preserving map, of
type MapT ts c, associates each index of type Index ts i t with
a value of type c t.

data MapT ts c where
M0 :: MapT () c
Ms :: c t -> MapT ts c -> MapT (t, ts) c

For example, a type-safe evaluator over de Bruijn expressions
might be given the type:

eval :: MapT ts Value -> ExpS ts t -> Value t

where the evaluation environment (MapT ts Value) maps each
variable in scope (of type τ ) to a value of the corresponding type
(of type Value τ .) The type MapT supports the usual functions over
associative lists:

lookupT :: MapT ts c -> Index ts i t -> c t
updateT :: MapT ts c -> Index ts i t -> c t

-> MapT ts c
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Type correspondence The function CbJ−Km receives a source
term (in context ts) and a local variables map (mapping ts indices
to indices in some target context ts’), and produces an expression
(in the target context ts’); in types, this reads something like:

cc :: ExpS ts t
-> MapT . . .
-> ExpC ts’ CtypeJtK

This way of writing CtypeJ−K (c.f. Fig. 4) in type expressions is
an abuse of notation: Haskell does not currently support type-level
functions defined by case analysis. In the absence of this feature,
we encode the relation between a type and its converted form using
yet another GADT:

data CC_type t cc_t where
CCint :: CC_type Int Int
CCfun :: CC_type s cc_s -> CC_type t cc_t

-> CC_type (s -> t) (Closure cc_s cc_t)

A term of type CC type t cc t is a witness of the correspon-
dence between the type τ (for which t stands) and its converted
form CtypeJτK (for which cc t stands). We define a type CC env sim-
ilarly to encode CenvJ−K, and the type of cc is in fact:

cc :: ExpS ts t
-> MapT . . .
-> ∃cc_t. (CC_type t cc_t, ExpC ts’ cc_t)

Constructing and examining such witnesses is indeed cumber-
some. It requires, for instance, a Haskell function encoding a proof
that CtypeJ−K (or CenvJ−K) is indeed a function. In the remainder of
this paper, we will freely use functions like CtypeJ−K in type expres-
sions, with the implied meaning of using explicit witnesses in the
actual implementation.

Local variables map The map m passed to CbJKm takes each
source index to an index of the converted type in the target context
ts’:

m : Index ts i t ⇒ ∃i’. Index ts’ i’ CtypeJtK

We’ll have to make a few manipulations to make this map an
instance of MapT. First, we define a type3 that abstracts away from
the numeric value of the target index (i’):

type SomeIndex ts t = ∃i. Index ts i t

so that we have:

m : Index ts i t ⇒ SomeIndex ts’ CtypeJtK

What keeps us from instantiating MapT is that the domain is
indexed in t, while the image is indexed in CtypeJtK instead of t.
To address this, we observe that the definition of CenvJ−K gives rise
to the isomorphism:

Index ts i t ↔ Index CenvJtsK i CtypeJtK

so that we could equivalently write:

m : Index CenvJtsK i CtypeJtK ⇒ SomeIndex ts’ CtypeJtK

which is, in fact:

MapT CenvJtsK (SomeIndex ts’)

thus the complete type of cc is:

3 In practice, we use data SomeIndex ts t = SomeIndex (Index ts i t)

cc :: ExpS ts t
-> MapT CenvJtsK (SomeIndex ts’)
-> ExpC ts’ CtypeJtK

Free variables The fvs function, given an expression, indicates
whether each index in scope appears in the expression. Its imple-
mentation produces its result in the type MapT:

fvs :: ExpS ts t -> MapT ts BoolT

where BoolT is a wrapper for the type Bool that has an extra type
argument t that is simply ignored:

data BoolT t = BoolT Bool

In practice, it is necessary for fvs to actually examine the type
context ts, and we have in fact:

fv :: CtxRep ts -> ExpKb ts t -> MapT ts BoolT

where CtxRep ts reifies the type context ts as a Haskell value.

Closure environment construction The function mkEnv in
essence consumes the list of free variables and produces two re-
sults: (1) a local variables map, mapping each index in scope to a
projection of the environment, and (2) a list of indices to be packed
in the environment. There is of course a direct connection between
the two: the local variables map assumes a target context formed
out of the environment being constructed. We can readily express
this in types as follows:

mkEnv :: MapT ts BoolT
-> ∃env. (MapT CenvJtsK (SomeIndex env),

MapT env CenvJtsK)

While this type captures the essence of what mkEnv does,
the index-mangling it performs rises slight complications. For one,
the local variables map (m) and the environment (j0, . . . , jn−1)
grow in opposite directions as the recursion proceeds (c.f. the
case mkEnv (True : bs) j). This is not harmful, but it takes
a little extra machinery to track the way indices are appended to
the environment. In terms of de Bruijn contexts, this means adding
a binding “outside” a term, thus leaving intact an existing context
where i0, . . . , in−1 are in scope while bringing into scope and extra
index in. We reify such context extensions with the following type:

data Append ts s ts_s where
A0 :: Append () s (s, ())
As :: Append ts s ts_s -> Append (t, ts) s (t, ts_s)

which is introduced along with the fresh index (in):

newIndex :: CtxRep ts -> TypeRep s
-> ∃ts_s, i. (Append ts s ts_s,

CtxRep ts_s,
Index ts_s i s)

and using which we can append to the environment:

appendM :: Append ts t ts_t -> MapT ts c -> c t
-> MapT ts_t c

Also involved is the weakening of the already generated indices
to fit into the extended context:

weaken :: Append ts s ts_s -> Index ts i t
-> Index ts_s i t

Another implementation detail relates to the parameter (j) to
mkEnv which keeps track of the current index in the free variable
list. An elegant way to do it is to construct beforehand a list of
indices [i0, . . . , in−1], and have mkEnv recurse on this structure
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Hoisted programs,
with variable names (LH ):

(programs)
p ::= letrec `0 = e0

...
`n−1 = en−1

in e

(exps)
e ::= . . . | `n

Hoisted programs,
with de Bruijn indices (Lb

H ):

(programs)
p ::= letrec e0

...
en−1

in e

(indices)
j ::= . . . | `n

Figure 9. Target language of the hoisting transformation with vari-
able names (left) and de Bruijn indices (right)

collect `m j = ([], j)

collect `m (λ e) = ([λ e′, em+1, . . . , en], `m)
where ([em+1, . . . , en], e′) = collect `m+1 e

collect `m (let e1 in e2) = ([em, . . . , en, en+1, . . . , ep],
let e′1 in e′2)

where ([em, . . . , en], e′1) = collect `m e1

([en+1, . . . , ep], e′2) = collect `n+1 e2

. . .

hoist e = letrec e0

...
en−1

in e′

where ([e0, . . . , en−1], e
′) = collect `0 e

Figure 10. Hoisting transformation (transforms Lb
C into Lb

H )

simultaneously with the free variables bitmap [b0, . . . , bn−1]. The
list of indices has type:

MapT ts (SomeIndex ts)

and is easily constructed. Finally, the complete type of mkEnv is:

mkEnv :: CtxRep ts0 -- complete context
-> CtxRep ts -- partial context
-> MapT ts BoolT -- free variables
-> MapT ts (IndexT ts0) -- indices i0,i1. . .
-> CtxRep env0 -- original environment
-> ∃Env. (CtxRep env, -- extended environment

MapT ts (IndexT env), -- m
MapT env (IndexT ts0)) -- j0,j1. . .

where ts0 is the de Bruijn context of the source term, ts is that part
of the context with remains to be processed, env0 is the part of the
environment that has already been constructed, and Env is the type
of the environment that is produced.

4. Hoisting
Hoisting and recursion The choice of target language may have
a sensible impact on the way hoisting is performed. In Section 2.3,
the fact that LC has no recursive let construct forces us to nest
the top-level let-bindings in a specific order, consistent with the
“sub-term” relation among λ-abstractions in the source program.
For instance, in Fig. 5, we could not have introduced `1 prior to `0,

because `1 actually refers to `0 (thus in effect turning the source
program upside down.) In a realistic compiler producing code with
mutually recursive let definitions, this would not be an issue.

When compiling a source language with mutually recursive
functions, hoisting amounts to merging all sets of mutually recur-
sive functions into a single set. Here, we take the middle ground
and show the compilation of our non-recursive language Lb

S into a
recursive variant of Lb

C .
The target language is shown in Fig. 9. It extends LC (or Lb

C )
with a syntactic category of programs, providing a top-level letrec
construct. The language is shown in both named variables (LH )
and de Bruijn form (Lb

H ); we develop the hoisting transformation
over the latter, the former being shown for illustration purpose only.
The letrec construct introduces a number of variables `0, . . . , `n−1;
the scope of all those variables spans the body of all the letrec-
bindings (e0, . . . , en−1) plus the program body (e). In the de Bruijn
formulation, `0, . . . , `n−1 form a new set of indices, distinct from
those introduced by λ or let (that is, i0, i1 . . . ).

The hoisting transformation is shown in Fig. 10. The auxiliary
function collect, as its name implies, collects the λ-abstractions
contained in a source term. Its first argument `m indicates the
smallest unassigned index (that is, the smallest value of m for
which the binders `0 . . . `m−1 are already assigned to λ-abstractions,
but `m is not.) The second argument gives the source term to con-
vert. The result of collect `m e is a pair consisting of:

1. a list of λ-abstractions em . . . en, where each ek is assigned
the binder `k, and each sub-term of ek that is λ-abstraction is
replaced by its assigned binder, and

2. the converted form of e, that is, e with each λ-abstraction
subterm replaced by its assigned binder.

4.1 Implementation
We first describe a program representation for Lb

H , and then
outline the main features of the implementation of collect and
hoist, which mainly concern the way the types of the expressions
e0 . . . en−1 is constructed as collect proceeds.

Program representation The letrec construct of Lb
H introduces a

number of bindings by listing the expressions (e0 . . . en−1) asso-
ciated with each respective binder (`0 . . . `n−1); the bundle of ex-
pressions (`0 . . . `n−1) can be represented with the usual type for
tuple formation (〈e0, . . . , en−1〉):

data Tuple ts t where
B0 :: Tuple ts ()
Bs :: ExpH ts s -> Tuple ts t

-> Tuple ts (s, t)

where the first type parameter, ts, reflects the De Bruijn context
of every expression in the tuple, and the second type parameter,
t, reflects the type of the tuple itself. To get a bundle of mutually
recursive terms, we take ts = t:

data Program t where
Letrec :: Tuple ts ts -> ExpH ts t -> Program t

Collecting λ-abstractions The parameter `m to the function
collect reflects the number of binders that have already been as-
signed λ-abstractions: when collect meets a λ-abstraction, it read-
ily assigns it to `m, knowing that it’s the smallest unused index.
Each time a λ-abstraction is assigned to a binder, the bundle of
terms to be put in the letrec grows by one – and we’ll have to track
thre type of the bundle of functions as it grows when recursive calls
to collect are made.

Importantly, a term is added to the end of the bundle. We
already know how to represent this with types: we’ll use the type
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Append from Section 3.3. Here traversing a term may introduce
multiple bindings (that is, when a term has multiple λ-abstractions
as subterms.) To track the effect of appending an arbitrary number
of terms to the bundle, we define a type that aggregates a number
of Append’s:

data Ext ts0 ts ts’ where
E0 :: Ext ts () ts
Es :: Append ts0 s ts1 -> Ext ts1 ts ts’

-> Ext ts0 (s, ts) ts’

A term of type Ext ts (t0, (t1, ... (tn, ()) ...)) ts’ is
a witness of the fact that appending types t0, t1 ... tn to the
type ts yields type ts’. The implementation of collect is typed as
follows:

collect ::
CtxRep ts0

-> CtxRep bs
-> ExpB bs t -- source term
-> (∃ts, ts’.

Ext ts0 ts ts’,
Ext bs ts’ bsts’,
Tuple ts’ ts, -- the rest of the tuple
ExpB bsts’ t) -- converted term

where the type variables –

– ts0 reflects the type of the λ-abstractions already assigned to
indices (e0 . . . em−1)

– bs is the de Bruijn context of the expression being converted
(e),

– ts reflects the types of the λ-abstractions that are sub-terms of
e and have been added to the tuple (em . . . en),

– ts’ reflects the types of e0 . . . en, and

– bsts’ is the de Bruijn context of the converted expression: it
adds binders `0 . . . `n to the e’s original context.

Notably, the tuple of functions that is returned by collect is
“partial”: it consists of expressions em through en; however, ex-
pressions in this tuple are put in the complete context, with binders
`0 through `n in scope. In the case of a source expression with
multiple immediate sub-terms, such as let, collect must combine
segments of the bundle together into a larger segment, and perform
weakening on expressions typed in lesser contexts to end up with a
well typed bundle of terms.

Finally, hoist simply takes a closed Lb
C term and produces a

Lb
H program:

hoist :: ExpC () t -> Program t

5. Converting HOAS to de Bruijn indices
Our compiler front-end (which performs type-checking and CPS
conversion) uses HOAS as its primary program representation.
Having found de Bruijn better suited for closure conversion, we
were faced with the task of converting HOAS to de Bruijn form.
We report here the technique we applied for doing so.

As we expect this section to be of interest mainly to readers
already familiar with HOAS programming, we assume familiarity
with the techniques involved; the unfamiliar reader is referrer to
[23] for a comprehensive background.

We illustrate the conversion to de Bruijn with the case of let-
expressions, resuming the example from Section 3.1. When saying
that it would be represented in this way:

data Exp t where
Let :: Exp t1 -> (Exp t1 -> Exp t2) -> Exp t2
. . .

we overlooked a number of details of the concrete representation.
In practice, we would rather use a type like this one:

data ExpF (α t) where
Let :: α t1 -> (α t1 -> α t2) -> ExpF (α t2)
. . .

type Exp α t = Rec ExpF α t

where Rec plays the role of a fixed-point type operator. A term
of source type t would be represented as a Haskell term of type
∀α. Exp α t (where the parametricity in α rules out exotic terms.)
The type Exp comes equipped with an elimination form (the “cata-
morphism”), whose type is

cata :: (∀t. (ExpF (β t) -> β t))
-> (∀t. (∀α. Exp α t) -> β t)

Intuitively, the type β stands for “the result of the computation”
over the source term (indexed by source type); indeed the heart of
the solution lies in picking β judiciously. Since the intent here is to
re-produce the term in de Bruijn form, we’ll have something of the
form:

β t = . . . ExpB ts t . . .

where ExpB ts t is the type for de Bruijn terms in explicit type
context ts.

In essence, the conversion to de Bruijn form introduces indices
in place of variable occurrences. By nature, a de Bruijn index re-
flects the number of binders introduced between a variable occur-
rence and its corresponding binding occurrence. In terms of our
concrete representation, the index measures the “difference” be-
tween the static context ts at the binding occurrence (that is, “out-
side” the let) and the context ts’ where the variable occurs. Thus,
a solution is to parameterize the result by the static context (reified
as a value):

β t = ∀ts. CtxRep ts -> ExpB ts t

Now, the part that “does the work” inspects the two contexts ts
and ts’ and forms an index accordingly:

mkIndex :: Ctxrep (t, ts) -> CtxRep ts’
-> ∃i. Index ts’ i t

For mkIndex to succeed, ts’ must actually be an extension of the
type context (t, ts), in the sense that new binders may have been
introduced between the initial context and that in which appears
the variable. Although it is indeed expected to always be the case,
the types we use do not statically guaranty it; to remedy this, we
need to compare the part of ts’ that must match (t, ts), reified as
Haskell terms.

5.1 Fine points
The fact that index formation involves explicitly comparing seg-
ments of type contexts is not completely satisfactory. This, after all,
amounts to testing rather than verification. But can we do better?

In HOAS, the body of the let is represented by a function of
type α s -> α t. Given this type, the relationship between the
initial static context and the context at the point where a variable
occurs simply cannot be expressed. The best we can do is to have
ts appear in α, thus in effect propagating ts unchanged. This does
not express how ts gets extended as binding forms are traversed.

Thus, to explicitly capture context extensions in HOAS would
require deep changes to the representation. The conversion to de
Bruijn being an artifact introduced as a consequence of our subjec-
tive choice of encoding, we found little motivation to look deeper.
We leave it to future work to investigate a HOAS representation
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that would uncover a closer relationship to a typed de Bruijn repre-
sentation as used here.

6. Related work
Closure conversion is a well-studied problem, both from a perfor-
mance point of view [17], as well as its interaction with types [9,
10]. For obvious reasons we use a fairly naive algorithm, and since
our source language is simply typed, we are not affected by the
potential difficulties linked to closure conversion of polymorphic
code.

There has been a lot of work on typed intermediate languages,
beginning with the TIL [22] and FLINT [18, 16] work, originally
motivated by the optimizations opportunities offered by the extra
type information. [12] introduced the idea of Proof-Carrying Code,
making it desirable to propagate type information even further than
the early optimization stages, as done in in [11].

In [19], Shao et al. show a low-level typed intermediate lan-
guages for use in the later stages of a compiler, and more impor-
tantly for us, they show how to write a CPS translation whose type-
preservation property is statically and mechanically verified, like
ours.

In [13], Emir Pasalic develops a statically verified type-safe
interpreter with staging for a language with binding structures that
include pattern matching. The representation he uses is based on de
Bruijn indices and relies on type equality proofs in Haskell.

In [1], Chiyan Chen et al. also show a CPS transformation
where the type preservation property is encoded in the meta lan-
guage’s type system. They use GADTs in similar ways, including
to explicitly manipulate proofs, but they have made other design
tradeoffs: their term representation is first order using de Bruijn in-
dices, and their implementation language is more experimental. In
a similar vein, Linger and Sheard [8] show a CPS transform over
a GADT-based representation with de Bruijn indices; but in con-
trast to Chen’s work and ours, they avoid explicit manipulation of
proof terms by expressing type preservation using type-level func-
tions. In [4], we showed the CPS phase of our compiler, where the
distinguishing feature is the use of a term representation based on
HOAS.

In [7], Leroy shows a backend of a compiler written in the
Coq proof assistant, and whose correctness proof is completely
formalized. He uses a language whose type systems is much more
powerful than ours, but whose computational language is more
restrictive.

In [3], Fegaras and Sheard show how to handle higher-order
abstract syntax, and in [23], Washburn and Weirich show how to
use this technique in a language such as Haskell. We use this latter
technique and extend it to GADTs and to monadic catamorphisms.

GADTs were introduced many times under many different
names [24, 2, 20]. Their interaction with type classes is a known
problem in GHC and a possible solution was proposed in [21].

7. Experience and Future work
Type Classes Having started this work from an existing untyped
compiler using abstract data types for its term representation, it
was only natural to use GADTs. This said, there is no indication
that the same could not be done with multi-parameter type classes,
but GADTs are probably a more natural representation for abstract
syntax trees in a functional language.

Early on, we tried to use type classes to encode type-level func-
tions as well as various proof objects. This would have helped us
by letting the type checker infer more of the type annotations and
hence leave us with a cleaner code more focused on the actual al-
gorithm than on the type preservation proof. Sadly we bumped into
serious difficulties due to the fact that the current version of GHC is

not yet able to properly handle tight interactions been GADTs and
functional dependencies. This limitation should hopefully be lifted
shortly in a GHC near you, at which point we will definitely want
to revisit this option.

GADTs We successfully and extensively use GADTs, but some
of those uses are not quite satisfactory:

• GADTs are manipulated at runtime and thus incur a potentially
significant performance cost. Laziness may help, as may GHC’s
optimizer, but we expect that GADTs which only encode proofs
will be less efficient than if they were encoded with, say, type
classes.

• Since Haskell is happy to allow constructing non-terminating
objects, its corresponding logic is unsound. This means that
representing proof terms as GADTs is not very satisfactory
since the proof term may be ⊥. Maybe type classes would help
here as well.

• Encoding type-level functions as relations represented as GADTs
is cumbersome. Using type-classes would be better, especially
since the functional dependency could be checked by the type
checker rather than having to write a proof term for it. But even
better would be for Haskell’s type system to provide type-level
functions natively.

Future work Of course we intend to add more compilation
phases, such as optimization and register allocation, to make it
a more realistic compiler. We also intend to make our source lan-
guage more powerful by adding features such as parametric poly-
morphism and recursive types.

Also we hope to find some clean way to move the unsound term-
level manipulation of proofs to the sound type-level and to reduce
the amount of code dedicated to proofs.

In the longer run, we may want to investigate how to generate
PCC-style proofs. Since the types are not really propagated any
more during compilation, constructing a PCC-style proof would
probably need to use a technique reminiscent of [5]: build them
separately by combining the source-level proof of type-correctness
with the verified proof of type preservation somehow extracted
from the compiler’s source code.
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