
Statically Verified Type-Preserving Code

Transformations in Haskell

Louis-Julien Guillemette Stefan Monnier
Université de Montréal

{guillelj,monnier}@iro.umontreal.ca

Abstract

The use of typed intermediate languages can significantly increase the
reliability of a compiler. By type-checking the code produced at each
transformation stage, one can identify bugs in the compiler that would
otherwise be much harder to find. We propose to take the use of types
in compilation a step further by verifying that the transformation itself
is type correct, in the sense that it is impossible that it produces an ill
typed term given a well typed term as input.

We base our approach on higher-order abstract syntax (HOAS), a
representation of programs where variables in the object language are
represented by meta-variables. We use a representation that accounts for
the object language’s type system using generalized algebraic data types
(GADTs). In this way, the full binding and type structure of the object
language is exposed to the host language’s type system. In this setting
we encode a type preservation property of a CPS conversion in Haskell’s
type system, using witnesses of a type correctness proof encoded as values
in a GADT.

1 Introduction

While there is still a long way to go until they become as common place as in
digital systems, formal methods are rapidly improving and gaining ground in
software. Type systems are arguably the most successful and popular formal
method used to develop software, even more so since the rise of Java. For this
reason, there is a lot of interest in trying to beef up type systems incrementally
to enable them to prove more complex properties.

Thus as the technology of type systems progresses, new needs and new op-
portunities appear. One of those needs is to ensure the faithfulness of the
translation from source code to machine code. After all, why bother proving
any property of our source code, if our compiler can turn it into some unrelated
machine code? One of the opportunities is to use types to address this need.
This is what we are trying to do.

Typed intermediate languages have been used in compilers for various pur-
poses such as type-directed optimization [8, 23, 15], sanity checks to help catch
compiler errors, and more recently to help construct proofs that the generated
code verifies some properties [11, 6]. Typically the source level types are repre-
sented in those typed representations in the form of data-structures which have
to be carefully manipulated to keep them in sync with the code they annotate as
this code progresses through the various stages of compilation. This has several
drawbacks:

• Additional work, obviously, which can slow down our compiler. To min-
imize the impact, the type language and the type annotations have to
be very carefully designed and coded, using techniques like hash-consing,
explicit substitutions, and other optimizations [18].

• Occasionally, the need to update the type annotations can make an opti-
mization impractical, e.g. because the necessary type information is not
immediately available and thus requires restructuring the algorithm.

• Need to choose between different design tradeoffs: either place only as
few type annotations as possible to reduce the impact of the first problem
above, or on the contrary, add type annotations everywhere to reduce the
risk of bumping into the second problem above.

• Errors are only detected when we run the type checker, but running it as
often as possible slows down our compiler even more.

• This amounts to testing our compiler, thus bugs can lurk, undetected.

To avoid those problems, we want to represent the source types of our typed
intermediate language as types instead of data. This way the type checker of
the language in which we write our compiler can verify once and for all that
our compiler preserves the typing correctly. The compiler itself can then run
at full speed without having to manipulate and check any more types. Also
this gives us even earlier detection of errors introduced by an incorrect program
transformation, and at a very fine grain, since it amounts to running the type
checker after every instruction rather than only between phases.

The type-preservation argument has been introduced into the implementa-
tion of a compiler using a typeful program representation in [2]. But to our
knowledge, the work presented here is the first attempt to formally establish a
type preservation property using a language so widely used and well supported
as Haskell, for which a industrial strenth compiler is available.

This work follows a similar goal to the one of [9], but we only try to prove
the correctness of our compiler w.r.t the static semantics rather than the full
dynamic semantics. In return we want to use a more practical programming
language and hope to limit our annotations to a minimum such that the bulk
of the code should deal with the compilation rather than its proof. Also we
have started this work from the frontend and are making our way towards the
backend, whereas Leroy’s work has started with the backend. Our contributions
are the following:

2

• We show a type-preserving CPS translation written in Haskell and where
the GHC compiler verifies the property of type-preservation.

• We extend the classical toy example of a generalized algebraic data type
(GADT) representation of an abstract syntax tree, to a full language with
bindings.

• We use higher-order abstract syntax (HOAS) in our intermediate repre-
sentation, following [24], and we show how to combine this technique with
GADTs and how to build such terms using Template Haskell.

The remainder of this paper is organized as follows. We review generalized
algebraic datatypes and the notion of higher-order abstract syntax in Sec. 2.
Section 3 presents the CPS conversion, states a type-preservation property that
it satisfies, and then shows how we encoded it in Haskell. Section 4 presents
some alternative approaches, as well as some solutions to some of the problems
we encountered. Section 5 mentions related work and Sec. 6 concludes.

2 Background

In this section we develop a typeful program representation using GADTs and
higher-order abstract syntax for a simple source language that is a simply-typed
λ-calculus with pairs and integers (herein called λ→.) We briefly describe the
programming techniques used for manipulating such a representation based on
Washburn and Weirich’s work [24].

2.1 Generalized algebraic datatypes

Generalized algebraic datatypes (GADTs) [25, 3] are a generalization of alge-
braic datatypes where the return types of the various data constructors for a
given datatype need not be identical – they can differ in the type arguments
given to the type constructor being defined. The type arguments can be used
to encode additional information about the value that is represented. For our
purpose, we use GADTs to represent abstract syntax trees, and use these type
annotations to track the source-level type of an expression.

Consider the language λ→ defined in Fig. 1. The fragment of λ→ concerned
with integers could be represented in a GADT as follows:

data Exp t where
Num :: Int -> Exp Int
Prim :: PrimOp -> Exp Int -> Exp Int -> Exp Int
If0 :: Exp Int -> Exp t -> Exp t -> Exp t

data PrimOp = Add | Sub | Mult

This Exp data type not only defines the abstract syntax but also encodes the
typing rules of our language. E.g. a statement such as Γ ` e : τ is represented
in Haskell by the fact that e :: Exp τ . The environment Γ is kept implicit.

3

(types) τ ::= τ1 → τ2 | int | τ1 × τ2

(type env) Γ ::= • | Γ, x :τ

(primops) p ::= + | − | ×
(exps) e ::= x | λx :τ1. e : τ2 | e1 e2 | (e1, e2) | πi e | i | e1 p e2

| if0 e1 e2 e3

Typing rules

Γ(x) = τ

Γ ` x : τ

Γ, x :τ1 ` e : τ2

Γ ` λx :τ1. e : τ2 : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2

Γ ` πi e : τi Γ ` i : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 p e2 : int

Γ ` e1 : int Γ ` e2 : τ Γ ` e3 : τ

Γ ` if0 e1 e2 e3 : τ

Figure 1: λ→ syntax and static semantics

Note also that an expression of type Exp t represents a λ→ expression of source
type t, where we have (arbitrarily) chosen the Haskell type t to stand for the
corresponding λ→ type t (e.g. we use the Haskell type Int to represent the λ→
type int.)

Extending this encoding for the variable and the λ cases is not straightfor-
ward since we kept Γ implicit. Of course, we could try to make Γ explicit as in
Exp t Γ, but that can quickly become cumbersome since it can entail reifying
variables at the level of types, and encoding structural rules such as weakening
and exchange. So instead, we use higher-order abstract syntax which allows us
to keep Γ implicit.

2.2 Higher-order abstract syntax

Higher-order abstract syntax (HOAS) [14] is a program representation where
variables in the object language are represented using meta-variables. For in-
stance, functions in our source language would be represented using Haskell
functions; thus we could extend the representation of the language to account
for λ→ functions as follows:

data Exp t where
...
Lam :: (Exp s -> Exp t) -> Exp (s -> t)
App :: Exp (s -> t) -> Exp s -> Exp t

As is apparent from this definition, the typing rule for functions in λ→ can
be expressed straightforwardly in terms of Haskell’s typing rule for functions.

It is difficult in general to define recursive functions over higher-order terms.

4

data ExpF a where
Lam :: (a t1 -> a t2) -> ExpF (a (t1 -> t2))
App :: a (t1 -> t2) -> a t1 -> ExpF (a t2)

Pair :: a t1 -> a t2 -> Expf (a (t1, t2))
Fst :: a (t1, t2) -> ExpF (a t1)
Snd :: a (t1, t2) -> ExpF (a t2)

Num :: Int -> ExpF (a Int)
Prim :: PrimOp -> a Int -> a Int -> ExpF (a Int)
If0 :: a Int -> a t -> a t -> ExpF (a t)

data Rec a b t = Roll (a (Rec a b t)) | Place (b t)

type Exp a t = Rec ExpF a t

Figure 2: Typeful, parametric representation of λ→

The problem comes from the fact that, in order to inspect the term “under a
binder”, one has to apply the corresponding meta-level function – and then,
what information must be passed as argument? To alleviate this difficulty, it
is useful to make use of an elimination form, commonly called a catamorphism
(or iterator; we use the two terms interchangeably here, although they are given
more specific meaning elsewhere [24]). A catamorphism encapsulates the traver-
sal of a recursive structure; more precisely, it is a (higher-order) function that,
given an elementary operation to perform on a single element, applies this op-
eration to every element of the structure. (The most familiar instance of a
catamorphism being the fold function over lists.)

In this work, we make use of Fegara and Sheard’s catamorphism [5], over a
parametric program representation encoded in Haskell [24]. In the remainder of
this section, we briefly show how such an iterator is used and what modifications
must be made to the (naive) program representation shown above, and illustrate
its use with a simple example.

Figure 2 shows the representation we use. It differs from the naive represen-
tation in two ways:

1. It has been split into two types, ExpF and Exp, in order to make the recur-
sive structure of the representation explicit. The type ExpF is the “proto-
type” representation, where the type argument a stands for the recursive
form of the type. The recursive form, defined by the type Exp, is obtained
by application of a sort of fixed-point operator, which is represented by
the type constructor Rec. (You can ignore the data constructor Place,
used internally by the iterator; see [5] if you are curious).

2. The representation is parametric in a type argument a, that is, a λ→ term
of source type t is represented by a term of type ∀a. Exp a t, where t is the
Haskell type that represents t. When applying the catamorphism, the type
variable a is instantiated with the type that represents the information
associated with a term (for instance, in the example of the the pretty-

5

xmapExpF :: (∀t. (a t -> b t, b t -> a t))
-> (∀t. (ExpF (a t) -> ExpF (b t), ExpF (b t) -> ExpF (a t)))

cata :: (∀t. (ExpF (a t) -> a t)) -> (∀t. Exp a t -> a t)
iter :: (∀t. ExpF (b t) -> b t) -> (∀t. ((∀a. Exp a t) -> b t))

showAux :: ExpF ([String] -> String) -> ([String] -> String)
showAux (Num n) (v:vars) = show n
showAux (App x y) vars =
"(" ++ (x vars) ++ " " ++ (y vars) ++ ")"
showAux (Lam z) (v:vars) =
"(fn " ++ v ++ "= " ++ (z (const v) vars) ++ ")"

...

showE :: (∀a. Exp a t) -> String
showE e = iter showAux e vars
where vars = [’a’ .. ’z’] ++ ...

Figure 3: Pretty-printer implementation using Fegara and Sheard’s iterator.

printer below, that information is the textual representation of the term
represented as a string.)

Figure 3 shows the type of the iterator along with an example of its ap-
plication. The internal functions xmapExpF, cata, and iter are taken from [24]
and adapted to the case of a typed representation. The pretty-printer imple-
mentation consists of two functions: showAux, which shows an individual node
of the syntax tree, and showE, which shows an entire tree and is obtained by
application of the iterator.

Indeed, in our higher-order program representation, program variables are
represented as Hasell variables, and thus have no identifiers associated with
them. The pretty-printer assigns identifiers to variables as the traversal pro-
ceeds. The information associated with a term is its textual representation,
which is parameterized by a list of identifiers; thus the type of terms ∀a. Exp a t

is instantiated as Exp ([String] -> String) t. In an imperative language, we
would have simply used a gensym facility, but Haskell being side-effect-free, we
have to thread a list of available identifiers in the display function.

3 CPS conversion

In this section we present the core contribution of this paper: an implementation
of a CPS transformation where the type system of Haskell is used to encode the
proof that this implementation correctly preserves types.

We proceed as follows. We first show the CPS conversion in its theoretical
form; then define the typed representation of the target language λK ; then
show how to encode witnesses of type correspondence using existential types
and GADTs; and finally show how the functional dependency between a type
and its CPS form, a crucial point for completing the type correspondence proof,
can also be encoded using GADTs.

6

KtypeJintK = int
KtypeJτ1 × τ2K = KtypeJτ1K×KtypeJτ2K
KtypeJτ1 → τ2K = (τ1 × (τ2 → 0)) → 0

KJxK κ = κ x
KJλx :τ1. e : τ2K κ = κ (λ(x, c) :KtypeJτ1K× (KtypeJτ2K → 0).KJeK c)

KJe1 e2K κ = KJe1K (λx1. KJe2K (λx2. x1 (x2, κ)))
KJ(e1, e2)K κ = KJe1K (λx1. KJe2K (λx2. κ (x1, x2)))

KJπi eK κ = KJeK (λx. let x = πi x in κ x)
KJiK κ = κ i

KJe1 p e2K κ = KJe1K (λx1. KJe2K (λx2. let x3 = x1 p x2 in κ x3))
KJif0 e1 e2 e3K κ = KJe1K (λx. if0 x (KJe2K κ) (KJe3K κ))

KprogJeK = KJeK (λx. halt x)

Figure 4: CPS conversion

3.1 The theory

Conversion to continuation-passing style (CPS) names all intermediate compu-
tational results and makes the control structure of a program explicit. In CPS,
a function does not return a value to the caller, but instead communicates its
result by applying a continuation, which is a function that represents the “rest
of the program”, that is, the context of the computation that will consume the
value produced. The target language of the CPS conversion, here called λK has
the following syntax:

(types) τ ::= τ → 0 | int | τ1 × τ2

(type env) Γ ::= • | Γ, x :τ

(values) v ::= x | i | λx :τ . e | (v1, v2)
(primops) p ::= + | − | ×
(exps) e ::= let x = v in e | let x = πi v in e | let x = v1 p v2 in e

| v1 v2 | if0 v e1 e2 | halt v

It differs from λ→ in that its syntax is split into two syntactic categories
of expressions and values. Values represent those things that can be bound
to a variable: either another variable, or the introduction forms for functions,
integers or pairs. Expressions consist of a list of declarations (introduced by
let forms), followed by either a function application, a conditional expression,
or the special form halt, which indicates the final “answer” produced by the
program. The fact that a function does not return to the caller is reflected in
its type as τ → 0.

Figure 4 shows the CPS conversion itself. It is defined in three functions. The
main function, KJ−K κ, transforms a λ→ expression in its CPS form expression,
given a continuation κ. The function KtypeJ−K, for each type in λ→, gives the

7

Γ(x) = τ

Γ
K̀

x : τ

Γ, x :τ
K̀

e

Γ
K̀

λx :τ. e : τ → 0 Γ
K̀

i : int

∀i . Γ
K̀

vi : τi

Γ
K̀

(v1, v2) : τ1 × τ2

Γ
K̀

v1 : τ → 0 Γ
K̀

v2 : τ

Γ
K̀

v1 v2

Γ
K̀

v : τ Γ, x :τ
K̀

e

Γ
K̀

let x = v in e

Γ
K̀

v : τ1 × τ2 Γ, x :τi K̀
e

Γ
K̀

let x = πi v in e

Γ
K̀

v1 : int Γ
K̀

v2 : int Γ, x : int
K̀

e

Γ
K̀

let x = v1 p v2 in e

Γ
K̀

v : int Γ
K̀

e1 Γ
K̀

e2

Γ
K̀

if0 v e1 e2

Γ
K̀

v : τ

Γ
K̀

halt v

Figure 5: Typing rules for values and expressions of λK

corresponding type in λK . (Note that this function is used to convert the type
annotations in the case KJλx :τ1. e : τ2K). Finally, KprogJ−K converts an entire
program by arranging for the final result to be passed to the special form halt.

3.2 Type preservation

The static semantics shown in Fig. 5 defines two typing judgments: Γ
K̀

v : τ
assigns type τ to value v; while Γ

K̀
e asserts that expression e is well typed.

In its simplest form, type preservation states that if a program is well-typed
in λ→, then the program after CPS conversion will also be well-typed:

Theorem 3.1 (CPS type preservation) If • ` e : τ , then •
K̀
KprogJeK.

In order to prove the above theorem, it is useful to prove a stronger property
that establishes the correspondence between the types in λ→ and those in λK .
We can state this correspondence formally as follows:

Theorem 3.2 (λ→–λK type correspondence) If • ` e : τ , then •
K̀

λc. KJeK c :
(KtypeJτK → 0) → 0.

Note that the expression in CPS is “wrapped” into a λ-abstraction and thus
turned into a value, so that it can be given a type.

3.3 Program representation

Figure 6 shows the typed representation of λK . Ideally, we would like to define
two mutually recursive types, ValK and ExpK, representing the syntactic cate-
gories of values and expressions, respectively. However, our fixed point operator
(Rec, see Fig. 2) can only be applied to a single type, so instead we use the same
type for the two syntactic categories. (Alternatively, one might prefer to extend
the recursion scheme to the case of two or more types, but we do not attempt
this here.)

8

data V t
data ExpKF a where

-- values
KVnum :: Int -> ExpKF (a (V Int))
KVlam :: (a (V s) -> a Z) -> ExpKF (a (V (s -> Z)))
KVpair :: a (V s) -> a (V t) -> ExpKF (a (V (s, t)))
-- expressions
Klet_val :: a (V t) -> (a (V t) -> a Z) -> ExpKF (a Z)
Klet_fst :: a (V (t1, t2)) -> (a (V t1) -> a Z) -> ExpKF (a Z)
Klet_snd :: a (V (t1, t2)) -> (a (V t2) -> a Z) -> ExpKF (a Z)
Klet_prim :: PrimOp -> a (V Int) -> a (V Int) -> (a (V Int) -> a Z)

-> ExpKF (a Z)
Kapp :: a (V (s -> Z)) -> a (V s) -> ExpKF (a Z)
Kif0 :: a (V Int) -> a Z -> a Z -> ExpKF (a Z)
Khalt :: a (V Int) -> ExpKF (a Z)

type ValK a t = Rec ExpKF a (V t)
type ExpK a = Rec ExpKF a Z

Figure 6: Typeful representation of λK

The distinction between expressions and values is actually not lost: we take
advantage of the GADTs to recover this distinction by encoding the corre-
sponding syntactic constraints as type constraints: values have source type V t

whereas expressions have source type Z, so types statically enforce that con-
structors for values cannot appear where an expression is expected and vice
versa.

3.4 Proving type correspondence

At first approximation, by applying the Curry-Howard isomorphism, the type
correspondence property of the CPS transform (Theorem 3.2) might be reflected
in the type of its implementation in this way:

cps :: (∀a. Exp a t) -> (∀a.ValK a KtypeJtK -> ExpK a) -> (∀a. ExpK a)

Here, indeed, we abuse notation by using KtypeJ−K in a Haskell type expres-
sion – we cannot express KtypeJ−K directly since Haskell lacks intensional type
analysis at the level of types. To circumvent the problem, we encode a proof
of the correspondence between t and KtypeJtK. That is, we instead type cps as
follows:

cps :: (∀a. Exp a t)
-> ∃cps_t. (CpsForm t cps_t,

(∀a. (ValK a cps_t -> ExpK a) -> ExpK a))

where a value of type CpsForm t cps t represents a proof that cps t = KtypeJtK.
Such a proof is encoded in a GADT whose data constructors only permit the
creation of valid associations between a type in the source language and its
corresponding type in CPS form:

9

data CpsForm t cps_t where
CpsInt :: CpsForm Int Int
CpsPair :: CpsForm s cps_s -> CpsForm t cps_t

-> CpsForm (s, t) (cps_s, cps_t)
CpsFun :: CpsForm s cps_s -> CpsForm t cps_t

-> CpsForm (s -> t) ((cps_s, cps_t -> Z) -> Z)

Now, since we use HOAS, we have to structure the CPS transformation
slightly differently: we will define a function that performs CPS conversion of a
single node, and apply the iterator to this function in order to obtain a function
that converts an entire program (like we did in the pretty-printer example of
Sec. 2.2.) The type of the function performing CPS conversion of an individual
node has the following type:

cpsAux :: ∀a. ExpF (CPS a t) -> CPS a t

where CPS a t represents the CPS-converted form of an expression of source
type t, and is an abbreviation whose meaning is defined as follows:

type CPS a t =
∃cps_t. (CpsForm t cps_t,

((ValK a cps_t -> ExpK a) -> ExpK a))

To illustrate the technique, the case that CPS-converts a pair construction
term (a, b) is implemented as follows:

cpsAux (Pair (a::CPS a s) (b::CPS a t)) =
case (a, b) of
((s_cps_s, cps_a), (t_cps_t, cps_b)) ->
((CpsPair s_cps_s t_cps_t),
(λk -> (cps_a (λv1 -> cps_b (λv2 -> k (pairK v1 v2))))))

As can be seen from this example, the code follows the structure of an in-
ductive proof, where the CPS transformation and its proof of type-preservation
are interlaced.

Finally, the main function of the CPS transformation:

cpsProg :: (∀a. Exp a t) -> (∀a. ExpK a)

is obtained by applying the iterator to the function cpsAux. (Since it implements
KprogJ−K, its type does not reflect the type correspondence property, only type
preservation.)

3.5 Functional dependency

In some places of the type correspondence proof, we need to use the fact that
the CPS form of a given type in λ→ is unique, that is:

Theorem 3.3 (Uniqueness of CPS form) If KtypeJτK = τK and KtypeJτK = τ ′K ,
then τK = τ ′K .

10

We refer to this fact as a functional dependency between a type τ and its
CPS form KtypeJτK, in the sense of [7]. By the Curry-Howard isomorphism we
can encode this theorem as a Haskell function. First, we encode type equality
using a GADT:

data Equal a b where
Eq_refl :: Equal a a

whose only introduction form accounts for reflexivity. Then Theorem 3.3 is
proved as follows:

cpsUnique :: CpsForm t cps_t -> CpsForm t cps_t’ -> Equal cps_t cps_t’
cpsUnique CpsInt CpsInt = Eq_refl
cpsUnique (CpsFun (s_cps_s::CpsForm s cps_s)

(t_cps_t::CpsForm t cps_t))
(CpsFun (s_cps_s’::CpsForm s cps_s’)

(t_cps_t’::CpsForm t cps_t’))
= case cpsUnique s_cps_s s_cps_s’ of

(Eq_refl::Equal cps_s cps_s’) ->
case cpsUnique t_cps_t t_cps_t’ of
(Eq_refl::Equal cps_t cps_t’) ->

Eq_refl

We make use of this theorem, for instance, in the case of function application
where we need to use the fact that the CPS form of the argument (e2) matches
the type expected by the CPS-converted function (e1):

cpsAux (App (e1::CPS a (s->t))
(e2::CPS a s)) =

case e1 of
(CpsFun s_cps_s t_cps_t, m1) ->
case e2 of (s_cps_s’, m2) ->
case cpsUnique s_cps_s s_cps_s’ of Eq_refl ->
(t_cps_t,
(λk -> m1 (λr1 -> m2 (λr2 -> appK r1 (pairK r2 (contK k))))))

4 Fine points

We discuss here some differences between the previous section and the code we
actually use; the problem of unsoundness of our proofs and a way we tried to
solve it; as well as how we solve the problem of constructing the HOAS terms,
which we have for now conveniently skipped.

4.1 The CPS conversion of Danvy and Filinski

Danvy and Filinski’s one-pass CPS conversion [4], where administrative redexes
are reduced on-the-fly, can be conveniently expressed using an iterator over a
HOAS, as was illustrated in Washburn and Weirich’s paper [24]. The essential
difference with the conversion shown above is reflected in the representation of
a CPS-converted term which, in our setting, would be as follows:

11

type CPS a t =
∃cps_t. (CpsForm t cps_t,

((ValK a cps_t -> ExpK a) -> ExpK a), cps-meta
((ValK a (cps_t -> Z)) -> ExpK a)) cps-obj

A term in CPS is now represented by both (1) a term cps-meta parameterized
by a meta-level continuation, as before, and (2) a term cps-obj parameterized
by an object-level continuation, that is, a value of source type (cps t -> Z).
Thus the CPS conversion of a term simultaneously defines these two forms.

We have treated type preservation in the case of the basic CPS transfor-
mation in order to simplify the presentation; our compiler actually implements
Danvy and Filinski’s CPS conversion. The type preservation proof extends to
this case without particular difficulty.

4.2 (Un)soundness

One concern with our approach is that the type-preservation proof is encoded
in an unsound logic. That is, one can trivially encode a “proof” of type corre-
spondence between any two types s and t (that is, a value of type CpsForm s t)
as a non-terminating Haskell term.

At any rate, the compiler could be made to traverse the type-preservation
proof after the fact to verify that it is indeed complete – this pass would simply
diverge in the event of an incorrect proof.

Of course, one must be careful not to introduce non-terminating terms when
developing a proof. The risk is slight, however, the presence of such terms being
fairly manifest, and given the fact that we are writing the proof. That is, we are
not in a PCC setting where the possibility of a malicious adversary exploiting
any loop-holes of our logic is a prime consideration. Here, the construction of
witnesses is merely a device to verify our intuition. For that purpose, we believe
that the degree of confidence provided by our technique is reasonable, although
we clearly hope to find something better.

4.3 Haskell type classes

Before resorting to manipulating explicit proofs in an unsound logic, we tried
another approach that relied on multi-parameter type classes. This approach
initially seemed much more promising and elegant.

The intended use of type classes in Haskell is to control ad-hoc polymor-
phism. A type class can be seen as a predicate asserting the existence of a set
of functions defined over that type, the implementation of these functions being
provided as part of an instance declaration. For example, the Show class states
the existence of a show function of type t -> String, defined for each type t

that is a member of the class. In the Haskell 98 standard, a type class may in-
volve only a single type argument. However, a common extension supported by
Haskell compilers permits the definition of multi-parameter type classes, which
extend the notion of predicates over types to that of relations among types.

12

Thus, one can declare a type class that represents a relation between types in
λ→ and type in λK as follows:

class CpsForm t cps_t

The relation is defined as a set of instance declarations as follows:

instance CpsForm Int Int
instance (CpsForm s cps_s, CpsForm t cps_t)

=> CpsForm (s, t) (cps_s, cps_t)
instance (CpsForm s cps_s, CpsForm t cps_t)

=> CpsForm (s -> t) ((cps_s, cps_t -> Z) -> Z)

This set of instance of declarations can be viewed as (static) type-level logic
programming. Each instance declaration can be read as an inference rule: the
first rule is an axiom that states the CPS form of Int is Int, the second rule
states that the CPS form of (s, t) is (cps s, cps t), provided cps s is the CPS
form of s and cps t is that of t, and similarly for the third rule. Finally, we
can express the fact that the relation is a function with an additional clause (a
functional dependency) to the class declaration as follows:

class CpsForm t cps_t | t -> cps_t

Now, making use of the type class, we can express type preservation as
follows. We’d keep the type of cpsAux as before, that is:

cpsAux :: ExpF (CPS a t) -> CPS a t

but the type synonym CPS a t would now stand for the following (existential)
type:

type CPS a t =
∃cps_t. CpsForm t cps_t =>

(ValK a cps_t -> ExpK a) -> ExpK a

Unfortunately, in practice, this scheme doesn’t take us very far. GHC isn’t
currently able to type-check this code, even though it appears logically correct.
For this to work, we’d expect the type checker to apply the functinnal depen-
dency and instance declarations to identify the unique type cps t given t and
to use this information as input for GADT type refinement. But such precise
interaction between functional dependencies and GADTs isn’t currently present
in GHC. The situation may change in the future, if for instance a new internal
representation is adopted in GHC [22].

It is worth noting that associated types [1] may provide an attractive alterna-
tive to functional dependencies. But in the absence of a robust implementation
of associated types, it is unclear at the moment whether we would face the same
difficulties as with type classes.

13

4.4 Construction of higher-order terms

The compiler front-end performs a lexical and syntactic analysis and produces
an abstract syntax tree. Here, the abstract syntax tree is a term in higher-order
abstract syntax. Constructing an efficient representation of such higher-order
terms is the subject of some concern. To illustrate, suppose that one attempts
to construct a parser that directly produces a higher-order representation; then
one invariably ends up writing a parser having essentially this form:

parse ... = case ... of
... -> Lam (λx -> ... (parse x ...) ...)
...

The problem is that the body of the function may indeed refer to the newly
bound variable (x), so the variable has to be passed as argument to parse in
the recursive call. Thus the resulting syntax tree contains a call to parse under
every Lam node, with dramatic consequences on the compiler’s performance.

Fortunately, there is a simple solution to this problem. A higher-order rep-
resentation can be constructed by meta-programming, that is, by using an ex-
tension of Haskell through which fragments of Haskell code can be manipu-
lated under program control. We make use of Template Haskell [20], a meta-
programming facility now included in GHC.

In our compiler, we use a parser producing a first-order abstract syntax, and
then turn it into a HOAS term using Template Haskell. The first-order syntax
trees are represented in a conventional manner:

data AST where
Fvar :: Ident -> AST
Flam :: Ident -> AST -> AST
Fapp :: AST -> AST -> AST
...

where Ident is a type for identifiers. We define a Template Haskell function
lift that turns this representation into HOAS:

lift :: AST -> ExpQ
lift (Fvar x) = varE (mkName x)
lift (Flam x t b) = [| Lam $(lam1E (varP (mkName x)) (lift b)) |]
lift (Fapp a b) = [| App $(lift a) $(lift b) |]
...

The type ExpQ is a type defined by Template Haskell for representing Haskell
expressions. The code in semantic brackets ([|−|]) represents a quoted expres-
sion, and the form $(−) is used to escape from the quotes (much in the manner
of Scheme’s quasiquote and unquote.)

Now, we can apply the above function with the special form $(lift ast).
Thus, the main function of the compiler follows this structure:

14

compile :: ProgramText -> Assembly
compile program_text =

let ast = parse program_text
exp = $(lift ast)

in (generate_code . closure_conversion . cps_conversion) exp

In essence, lift rewrites the source program in Haskell, in terms of the
constructors that define our HOAS representation. If the resutling Haskell code
is well-typed, then so is the source program – thus we also get a source-level
type-checker for free, courtesy of GHC.

5 Related work

There has been a lot of work on typed intermediate languages, beginning with
the TIL [23] and FLINT [17, 16] work, originally motivated by the optimizations
opportunities offered by the extra type information. [12] introduced the idea of
Proof-Carrying Code, making it desirable to propagate type information even
further than the early optimization stages, as done in in [11].

In [19], Shao et al. show a low-level typed intermediate languages for use
in the later stages of a compiler, and more importantly for us, they show how
to write a CPS translation whose type-preservation property is statically and
mechanically verified, like ours.

In [13], Emir Pasalic develops a statically verified type-safe interpreter with
staging for a language with binding structures that include pattern matching.
The representation he uses is based on deBruijn indices and relies on type equal-
ity proofs in Haskell.

In [2], Chiyan Chen et al. also show a CPS transformation where the type
preservation property is encoded in the meta language’s type system. They
use GADTs in similar ways, including to explicitly manipulate proofs, but they
have made other design tradeoffs: their term representation is first order using
deBruijn indices, and their implementation language is more experimental. In a
similar vein, Linger and Sheard [10] show a CPS transform over a GADT-based
representation with deBruijn indices; but in contrast to Chen’s work and ours,
they avoid explicit manipulation of proof terms by expressing type preservation
using type-level functions.

In [9], Leroy shows a backend of a compiler written in the Coq proof assis-
tant, and whose correctness proof is completely formalized. He uses a language
whose type systems is much more powerful than ours, but whose computational
language is more restrictive.

In [5], Fegaras and Sheard show how to handle higher-order abstract syntax,
and in [24], Washburn and Weirich show how to use this technique in a language
such as Haskell. We use this latter technique and extend it to GADTs and to
monadic catamorphisms.

GADTs were introduced many times under many different names [25, 3, 21].
Their interaction with type classes is a known problem in GHC and a possible
solution was proposed in [22].

15

6 Discussion and future work

The use of HOAS raises concerns about the performance of the compiler. There
is a question whether it will incur a significant amount of repeated work, as
would have been the case in the parser had we not used Template Haskell.
The answer wholly depends on the structure of the compiler: if it is stream-
lined to the point that each intermediate representation is used only once, then
performance won’t suffer much. But repeated analysis phases over the same
intermediate representation would clearly result in repeated work. In this case,
we’d simply use Template Haskell again to “flatten” the representation after
certain phases and thus recover viable performance.

Of course we intend to add many more compilation phases, such as closure
conversion, optimization, register allocation, to make it a more realistic com-
piler. Closure conversion in particular offers a greater challenge than CPS since
it is somewhat more intensive w.r.t. program analysis. The type of a code
fragment (at least locally, i.e. within a closure) depends on its free variables.
This mean some program analysis will have to take place statically in order to
be reflected in Haskell’s type system.

We also intend to make our source language more powerful by adding features
such as parametric polymorphism and recursive types.

Also we hope to find some clean way to move the unsound term-level ma-
nipulation of proofs to the sound type-level.

In the longer run, we may want to investigate how to generate PCC-style
proofs. Since the types are not really propagated any more during compila-
tion, constructing a PCC-style proof would probably need to use a technique
reminiscent of [6]: build them separately by combining the source-level proof of
type-correctness with the verified proof of type preservation somehow extracted
from the compiler’s source code.

6.1 Conclusion

We have shown how to write some parts of a compiler using GADTs such that
the type system of the language in which the compiler is written can automati-
cally verify that the compiler properly preserves the types of its programs. We
have specifically shown how to write the CPS conversion and the conversion
from an untyped representation to a typed representation.

As part of this, we have shown how to integrate generalized algebraic data
types with Washburn and Weirich’s technique to encode higher-order abstract
syntax in a Haskell-like language. We have also shown how to use Template
Haskell to leverage Haskell’s type checker to do our type checking for us.

References

[1] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon
Marlow. Associated types with class. In POPL ’05: Proceedings of the 32nd

16

ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 1–13, New York, NY, USA, 2005. ACM Press.

[2] Chiyan Chen and Hongwei Xi. Implementing typeful program transformations.
In PEPM ’03: Proceedings of the 2003 ACM SIGPLAN workshop on Partial
evaluation and semantics-based program manipulation, pages 20–28, New York,
NY, USA, 2003. ACM Press.

[3] James Cheney and Ralf Hinze. First-class phantom types. Technical Report
CUCIS TR2003-1901, Cornell University, 2003.

[4] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391,
1992.

[5] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over datatypes with
embedded functions (or, programs from outer space). In Conf. Record 23rd ACM
SIGPLAN/SIGACT Symp. on Principles of Programming Languages, POPL’96,
St. Petersburg Beach, FL, USA, 21–24 Jan. 1996, pages 284–294. ACM Press,
New York, 1996.

[6] Nadeem Abdul Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and
Zhaozhong Ni. A syntactic approach to foundational proof-carrying code. In
Annual Symposium on Logic in Computer Science, pages 89–100, Copenhagen,
Denmark, July 2002.

[7] Mark P. Jones. Type classes with functional dependencies. Lecture Notes in
Computer Science, 1782:230–244, 2000.

[8] Xavier Leroy. Unboxed objects and polymorphic typing. In Symposium on Prin-
ciples of Programming Languages, pages 177–188, January 1992.

[9] Xavier Leroy. Formal certification of a compiler back-end or: programming a
compiler with a proof assistant. In Symposium on Principles of Programming
Languages, pages 42–54, New York, NY, USA, January 2006. ACM Press.

[10] Nathan Linger and Tim Sheard. Programming with static invariants in omega.
Unpublished, 2004.

[11] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):527–568, 1999.

[12] George C. Necula. Proof-carrying code. In Conference Record of POPL ’97:
The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 106–119, Paris, France, jan 1997.

[13] Emir Pasalic. The Role of Type Equality in Meta-Programming. PhD thesis, Ore-
gon Health and Sciences University, The OGI School of Science and Engineering,
2004.

[14] F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI ’88: Proceedings
of the ACM SIGPLAN 1988 conference on Programming Language design and
Implementation, pages 199–208, New York, NY, USA, 1988. ACM Press.

[15] Zhong Shao. Flexible representation analysis. In International Conference on
Functional Programming, pages 85–98. ACM Press, June 1997.

[16] Zhong Shao. An overview of the FLINT/ML compiler. In International Workshop
on Types in Compilation, June 1997.

17

[17] Zhong Shao and Andrew W. Appel. A type-based compiler for Standard ML. In
Symposium on Programming Languages Design and Implementation, pages 116–
129, La Jolla, CA, June 1995. ACM Press.

[18] Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed in-
termediate languages. In International Conference on Functional Programming,
pages 313–323. ACM Press, September 1998.

[19] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A type
system for certified binaries. In Symposium on Principles of Programming Lan-
guages, pages 217–232, January 2002.

[20] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell.
In Haskell ’02: Proceedings of the 2002 ACM SIGPLAN workshop on Haskell,
pages 1–16, New York, NY, USA, 2002. ACM Press.

[21] Tim Sheard and Emir Pasalic. Meta-programming with built-in type equality. In
Logical Frameworks and Meta-Languages, Cork, July 2004.

[22] Martin Sulzmann, Manuel M. T. Chakravarty, and Simon Peyton Jones. System
F with type equality coercions. Submitted to ICFP’06.

[23] David Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper,
and Peter Lee. TIL: A type-directed optimizing compiler for ML. In Sympo-
sium on Programming Languages Design and Implementation, pages 181–192,
Philadelphia, PA, May 1996. ACM Press.

[24] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encoding higher-
order abstract syntax with parametric polymorphism. In Proceedings of the
Eighth ACM SIGPLAN International Conference on Functional Programming,
pages 249–262, Uppsala, Sweden, August 2003. ACM SIGPLAN.

[25] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype construc-
tors. In Symposium on Principles of Programming Languages, pages 224–235, New
Orleans, LA, January 2003.

18

