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Closure Converting the Universes

ANONYMOUS AUTHOR(S)

Type preserving closure conversion of languages with dependent types has proved difficult. It took until 2018

to get the first solution to the problem, and that solution relies on language constructs custom-made for the

purpose and does not support the customary tower of universes. There are basically three sources of difficulty.

The first of them occurs when we need to close over variables which appear also in the type of the function,

and can be solved with singleton types or translucent types. The second difficulty is the fact that closure

conversion inevitably requires some form of impredicativity since a function can close over free variables that

belong to a higher universe than itself. None of the existing forms of impredicativity (other than those known

to be inconsistent) satisfy the needs of closure conversion with a tower of universes. And the last difficulty is

that closure conversion exposes internal details of functions, and those details affect the definitional equality

of (converted) functions, thereby breaking type preservation.

In this paper we investigate what is necessary to solve those three problems when implementing a type

preserving closure conversion for a dependently typed 𝜆-calculus with a tower of universes without relying
on custom-made constructs in the target language, or more precisely while relying on constructs that are as

generic as possible. Concretely, we use equality proofs to solve the first problem, a new form of impredicativity

for the second, and quotient types for the third. While these functionalities were not custom-made for the

purpose of closure conversion, we show how those high-level features need to be adjusted to accommodate a

lower-level language where functions need to be closed.

CCS Concepts: • Theory of computation → Type theory; Higher order logic; Logic and verification; •

Software and its engineering→ Compilers; Functional languages.

Additional Key Words and Phrases: Closure conversion, Dependent types, Universe polymorphism, Impredica-

tivity, Function equality

1 INTRODUCTION
Closure conversion is a core part of the implementation of a functional programming language.

Preserving the full type information across this compilation stage is nowadays common for tradi-

tional functional languages, but not so for dependently typed languages, where it stayed an open

problem until recently and where the existing solutions are not fully satisfactory yet.

Preserving the types across the various stages of the compiler is important to ensure that the

properties guaranteed by the type checker apply not only to the source code but also to the

corresponding compiled code. This gets particularly important for dependently typed programming

languages where the programmers invest a lot of effort into embedded proofs in the source code.

Currently compilers for dependently typed programs end up throwing away at least some of

the type information along the way because we do not know how to preserve it across all the

compilation stages. As a consequence, there is no way to check that two separately compiled pieces

of code can be linked without breaking any of their invariants, except in indirect ways, such as

when they were compiled with the same compiler and we still have access to their source code to

check their respective source types.

Preserving type information tends to get harder the further you progress in the compiler pipeline.

And dependent types make it a lot more difficult since runtime terms can appear in the types: as

the compilation phases modify those runtime terms, the typing information tends to be affected in

profound ways.

In the case of closure conversion, there are three main hurdles: the first is the need to explain to

the type system that the closure object we pass at runtime to the closed code indeed contains those
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2 Anon.

precise values that were held in the free variables when we constructed the closure. The second is

the fact that closure objects can contain not only other closures of the same type, but also those

closures’ types, and hence their own type, which means that the closure converted code requires

some form of impredicativity even if the source code was fully predicative. The third is the fact

that after closure conversion, the variables captured by a closure are now in full view, which tends

to completely change the notion of equality between functions and hence equality between types.

Bowman and Ahmed [2018] provided a first, and only, solution to those three hurdles, in order

to preserve the types across the closure conversion phase of a dependently typed language, but

that solution still has two main shortcomings: first, it handles only the Calculus of Constructions,

which is only a subset of most dependently typed languages used nowadays, so to be usable for

an actual system it would typically need to be extended to cover inductive types and a tower of

universes. Second, it relies on a custom construct to represent closures in the output language.

While this is a very sensible pragmatic choice, it does beg the questions: What extra features would

a language need in order to be able to accommodate closure converted code without resorting to a

custom construct?

In this article, we show an alternate path which makes different tradeoffs in order to find a

way to preserve the types across the closure conversion phase while sticking to generic language

constructs like dependent tuples and existential packages. Admittedly, our solution still retains a

few unusual characteristics, but gets closer to this ideal, and gives a possible answer to the previous

question.

Our contributions are the following:

• A type-preserving closure conversion algorithm for a dependently typed language with a

tower of universes.

• A novel solution to the problem of aligning the definition of function equivalence in the

code before and after closure conversion.

• A new impredicative typing rule for quantification over universe levels, to handle the need

for impredicativity in the closure conversion algorithm.

• The use of equality proofs instead of the translucent types used by Minamide et al. [1996].

This is admittedly already folklore at this point, and was also sketched by Bowman and

Ahmed [2018], but we are not aware of any previous work that shows the actual details.

This work suffers from a significant theoretical weakness in the form of an open question about

the soundness of our target language and it may also prove impractical because of a somewhat

burdensome encoding and a representation of closures that is not as efficient as that used by real

compilers, but we believe that exposing those weaknesses is also a contribution of this work: Why

is it that even our best type systems are not able to validate the kind of code our compilers have

been generating routinely for decades? Why can’t we describe the workings of fully predicative

functions without resorting to a brand new notion of impredicativity? Do (non-closed) functions

make a type system stronger, in a proof-theoretical sense?

We present the basic problem of type-preserving closure conversion in Section 2. In Section 3 we

present each of the three difficulties specific to closure conversion of dependently typed languages,

along with howwe solved them. In Section 4 we showmore formally the input and output languages

we use and the closure conversion algorithm. In Section 5 we extend the input language to match

the output language. In Section 6 we discuss some of our design decisions.
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Closure Converting the Universes 3

2 BACKGROUND
Let’s consider a predicative Pure Type System (PTS) [Barendregt 1991] with a tower of universes

as our input language:

(levels) ℓ ::= 1 | 𝑆 ℓ

(sorts) 𝑠 ::= Uℓ

(terms) 𝑒, 𝜏 ::= 𝑥 | 𝑠 | (𝑒 : 𝜏)
| (𝑥 :𝜏1) → 𝜏2 | 𝑒1 𝑒2 | 𝜆𝑥.𝑒

Here Uℓ denotes the universe of level ℓ and we use (𝑥 :𝜏1) → 𝜏2 to denote the type of (dependent)

functions, which we will shorten to 𝜏1 → 𝜏2 when 𝑥 is not used in 𝜏2. (𝑒 : 𝜏) is a type annotation to

help the bidirectional type checking, so that 𝜆𝑥 .𝑒 does not need a type annotation. 1 is the base

universe level and 𝑆 ℓ returns the successor of ℓ .

Closure conversion needs to reify closures as data-structures usually represented using tuples,

so our output language will additionally require some kind of tuples:

(telescopes) Γ ::= • | Γ, 𝑥 :𝜏
(terms) 𝑒, 𝜏 ::= ... | ⟨Γ⟩ | ⟨𝑒1, ..., 𝑒𝑛⟩ | 𝑒.𝑖

⟨Γ⟩ is the type constructor for (dependent) tuples, where Γ lists the types of the fields and where

the type of later fields can refer to values of earlier fields; ⟨𝑒1, ..., 𝑒𝑛⟩ is the tuple constructor; and
𝑒.𝑖 returns the 𝑖𝑡ℎ field of the tuple 𝑒 . For convenience we will use a bit of syntactic sugar and write

let ⟨𝑥1, ..., 𝑥𝑛⟩ = 𝑒 in 𝑒′ to mean 𝑒′ [𝑒.1/𝑥1, ..., 𝑒 .𝑛/𝑥𝑛] and 𝜆⟨®𝑥⟩.𝑒 to mean 𝜆𝑦.let ⟨®𝑥⟩ = 𝑦 in 𝑒 where

®𝑥 stands for 𝑥1, ..., 𝑥𝑛 .

Disregarding types for the moment, the closure conversion of a function like 𝑓 = 𝜆𝑥 .𝑥 + 𝑦 + 𝑧

may look like the following:

⟦𝜆𝑥 .𝑥 + 𝑦 + 𝑧⟧ = ⟨ ⟨𝑦, 𝑧⟩,
𝜆⟨𝑥𝑒 , 𝑥⟩.let ⟨𝑦, 𝑧⟩ = 𝑥𝑒 in 𝑥 + 𝑦 + 𝑧 ⟩

This is a pair whose first element holds the “environment” ⟨𝑦, 𝑧⟩ holding the values of the variables
captured by the closure (𝑦 and 𝑧), and whose second element holds a closed function (the “code”).

That function in turn expects as argument a pair ⟨𝑥𝑒 , 𝑥⟩ whose second element (𝑥) is the actual

argument to the function, and whose first element (𝑥𝑒 ) should be the environment, holding the

values of the captured variables, i.e. the first element of the closure.

Accordingly, after closure conversion, a call like 𝑓 42 would turn into:

⟦𝑓 42⟧ = let ⟨𝑓𝑒 , 𝑓𝑐⟩ = 𝑓 in 𝑓𝑐 ⟨𝑓𝑒 , 42⟩

If we build the closure naïvely like we did above, its type would look like the following:

⟨ env : ⟨𝑦 : Int, 𝑧 : Int⟩,
code : ⟨𝑥𝑒 : ⟨𝑦 : Int, 𝑧 : Int⟩, 𝑥 : Int⟩ → Int ⟩

But the type of this pair representing a function whose original type was Int → Int now exposes the

number and types of the captured variables. This implies that after closure conversion, two functions

which originally had the same type can end up being represented by data structures of incompatible

types, thus breaking the type preservation property. For this reason, closures are usually given

an existential type that hides the type of the inner tuple representing the environment. Since our

tuples are dependently typed, we could use them for that, but we don’t want that existentially

quantified type to pollute our runtime values. So let’s add the following syntax to our terms:

(terms) 𝑒, 𝜏 ::= ... | ∃𝑥 :𝜏1.𝜏2 | <𝑒1; 𝑒2> | let <𝑥1;𝑥2> = 𝑒1 in 𝑒2
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4 Anon.

Here <𝑒1; 𝑒2> constructs an existential package, and the open eliminator will be constrained to

make sure that we can always erase the first element of an existential package. With this new

construct, we can now hide the type of the variables captured by our closure:

⟦𝜆𝑥 .𝑥 + 𝑦 + 𝑧⟧ = < ⟨𝑦 : Int, 𝑧 : Int⟩;
⟨ ⟨𝑦, 𝑧⟩,
𝜆⟨𝑥𝑒 , 𝑥⟩.let ⟨𝑦, 𝑧⟩ = 𝑥𝑒 in 𝑥 + 𝑦 + 𝑧 ⟩>

: ∃𝑡 :U.⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 : Int⟩ → Int ⟩
Now the type does not expose the shape of the captured environment, so two different functions

that had the same type before conversion will still have the same type after conversion even if they

capture a different number of variables or variables of different types.

This approach works well for System-F [Morrisett et al. 1998], but when we try to apply it to a

dependently-typed language there are 3 problems that come up:

(1) Some of the captured variables may also appear in the type of the function. In that case, our

closure will be ill-typed because the type checker fails to see that the values extracted from

𝑥𝑒 are the same as the ones that were captured.

(2) The closure will tend to belong to too high a universe compared to the original function,

because it contains the types of the captured variables.

(3) The conversion does not preserve equivalence of terms. For example, when 𝑦 is equal to

7, the above function is equivalent to 𝜆𝑥 .𝑥 + 7 + 𝑧 but their respective closures will not be

equivalent since they don’t even have the same size: one captures two variables whereas

the other captures only one. Since terms, like those functions, can appear in types, this

means that types may also fail to be equivalent after closure conversion.

All three problems need to be solved if we want the closure conversion of properly typed code to

still be properly typed.

3 OUR APPROACH
We present here in more detail the three mentioned problems that afflict type preserving closure

conversion in the specific case of a dependently typed language, and we present the solution we

used to solve each one.

3.1 Taming dependencies
The first problem we face was identified by Minamide et al. [1996] already: if some of the free

variables over which we close a function appear in its type, then the simple existential encoding

fails. For example, say we have the following primitive:

makevec : (𝑡 :U) → (len :Nat) → 𝑡 → Vec 𝑡 len

and we want to perform closure conversion on the following function:

𝜆𝑥 .makevec 𝛼 𝑛 𝑥 : 𝛼 → Vec 𝛼 𝑛

where 𝛼 and 𝑛 are its two free variables. The encoding shown before would give us:

⟦𝜆𝑥 .makevec 𝛼 𝑛 𝑥⟧ = < ⟨𝛼 :U, 𝑛 :Nat⟩;
⟨ ⟨𝛼, 𝑛⟩,
𝜆⟨𝑥𝑒 , 𝑥⟩.let ⟨𝛼 ′, 𝑛′⟩ = 𝑥𝑒 in makevec 𝛼 ′ 𝑛′ 𝑥 ⟩>

: ∃𝑡 :U.⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 :𝛼⟩ → Vec 𝛼 𝑛 ⟩
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Closure Converting the Universes 5

But this code is ill-typed: in makevec 𝛼 ′ 𝑛′ 𝑥 , we tell makevec that we will provide an element of

type 𝛼 ′
but then pass it 𝑥 which has type 𝛼 . Also, even if we were generous enough to accept the

argument 𝑥 , the return type would not match its expected type because makevec 𝛼 ′ 𝑛′ 𝑥 returns a

value of type Vec 𝛼 ′ 𝑛′ rather than Vec 𝛼 𝑛.

In the case of a language like System-F, Morrisett et al. [1998] showed that you can circumvent

the problem by not closing over type variables, which are the only variables that can appear in the

type in such a language, and since types can be erased we don’t really need to close over them. In

the above example, maybe 𝛼 would not be used at run-time and we could then leave it as a free

variable, but that is not an option for 𝑛 since that argument is needed at run time to determine the

size of the returned vector.

Arguably the only value that 𝑥𝑒 above can take is ⟨𝛼, 𝑛⟩ and thus 𝛼 ′
is always equal to 𝛼 and 𝑛′

is always equal to 𝑛. With luck, you might even prove it via parametricity. Nevertheless, while we
may know this, the type system does not. Worse, there is simply no way to write a closed function

of the above type because in order to return something of type Vec 𝛼 𝑛 it would have to refer to

𝛼 and 𝑛, defeating the purpose of the closure conversion. For this reason, if we want the code to

match its expected type, the type needs to make it more obvious that we will always receive in 𝑥𝑒
the exact value stored in the env field of the tuple. Minamide et al. [1996] did this using a feature

called translucent types [Harper and Lillibridge 1994], and we could also solve it using some form of

singleton types, but the more natural solution here is to use equality proofs, which are ubiquitous

in dependently typed languages:

(terms) 𝑒, 𝜏 ::= ... | 𝑒1 = 𝑒2 | refl | cast[𝑒𝑚] 𝑒= 𝑒

𝑒1 = 𝑒2 is the type of equality proofs that 𝑒1 is equal to 𝑒2, refl is the constructor of proofs that 𝑒 = 𝑒 ,

and cast is the eliminator which converts 𝑒 from type 𝑒𝑚 𝑒1 to type 𝑒𝑚 𝑒2 when 𝑒= is a proof that

𝑒1 = 𝑒2, where 𝑒𝑚 is called the motive of the elimination. With that, we can fix our conversion:

⟦𝜆𝑥.makevec 𝛼 𝑛 𝑥⟧ = < ⟨𝛼 :U, 𝑛 :Nat⟩;
⟨ ⟨𝛼, 𝑛⟩,
𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.let ⟨𝛼 ′, 𝑛′⟩ = 𝑥𝑒

in let 𝑥 ′ = cast [𝜆𝑥 ′𝑒 .𝑥 ′𝑒 .1] (eq_comm 𝑝) 𝑥
in let res = makevec 𝛼 ′ 𝑛′ 𝑥 ′

in cast [𝜆𝑥 ′𝑒 .Vec (𝑥 ′𝑒 .1) (𝑥 ′𝑒 .2)] 𝑝 res ⟩>
: ∃𝑡 :U.⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 :𝛼, 𝑝 : (𝑥𝑒 = env)⟩ → Vec 𝛼 𝑛 ⟩
On the second line of the type we see that the code now takes an additional argument 𝑝 holding a

proof that 𝑥𝑒 = env. Some readers at this point may be tempted to optimize away 𝑥𝑒 since we know

it’s the same as env and refer directly to env instead, but that would defeat the purpose since it

would result in a non-closed 𝜆-expression. The proof object 𝑝 allows us to convert back and forth

between the external types which refer to the surrounding variables and the internal types which

refer only to variables local to the function. In the code, we see that 𝑝 is passed a first time to cast
(via eq_comm, which swaps the terms of the equality) in order to turn the input argument 𝑥 of type

𝛼 into 𝑥 ′ of type 𝑥𝑒 .1 (which is also known here as 𝛼 ′
), and then used a second time at the end to

convert the result from Vec (𝑥𝑒 .1) (𝑥𝑒 .2) (also known as Vec 𝛼 ′ 𝑛′) “back” to Vec 𝛼 𝑛.

There is one wrinkle remaining here: this approach still would not quite work when the function

to be converted is dependently typed. In the example above, the function 𝜆𝑥 ′𝑒 .Vec (𝑥 ′𝑒 .1) (𝑥 ′𝑒 .2) we
pass as the motive of the second cast does not need to refer to the argument 𝑥 , so all is well, but in

the general case, the return type may refer to the argument 𝑥 . But this function we use as motive

cannot refer to 𝑥 for two reasons: first, because it would then not be closed, but more importantly
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because the 𝑥 it needs would be the actual 𝑥 on one side of the equality but 𝑥 ′ on the other side.

The usual solution to this problem is to merge both casts into one as follows:

let 𝑓 ′ = 𝜆𝑥 ′ .makevec 𝛼 ′ 𝑛′ 𝑥 ′

in let 𝑓 = cast [𝜆𝑥 ′𝑒 .(𝑥 ′𝑒 .1) → Vec (𝑥 ′𝑒 .1) (𝑥 ′𝑒 .2)] 𝑝 𝑓 ′

in 𝑓 𝑥

This is a variant of the convoy pattern [Chlipala 2013]: in order to change the type of an expression

at the same time as part of its context, we wrap this expression into a function taking the relevant

part of its context as an argument (we named this function 𝑓 ′ above), and once that function’s type
is changed (giving us the function 𝑓 ), we pass it the corresponding part of the context as argument.

But we cannot use this solution as-is because 𝑓 ′ is not a closed function. The convoy pattern

often relies crucially on non-closed functions, but we want to support it in our target language. For

this reason, our target language replaces the cast operation with a letcast construct which includes

the core element of the convoy pattern. It takes the following form:

letcast[𝑒𝑚, 𝑒=] 𝑥 = 𝑒1 in 𝑒2

It is equivalent to (cast [𝑒𝑚] 𝑒= (𝜆𝑥 .𝑒2)) 𝑒1 except that it avoids the temporary construction of a

𝜆-expression, and thus turns into a plain let after type erasure.

3.2 Taming universes
In the previous section, we just usedU as the universe of types, but in the context of a language

with a tower of universes, we need to qualify it with the corresponding level.

Let us consider the source function 𝑔 = 𝜆𝑥 .1 + 𝑓 (𝑥 − 1), of type Int → Int. Its type after closure
conversion becomes:

⟦Int → Int⟧ = ∃𝑡 :Uℓ .⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 : Int, 𝑝 : (𝑥𝑒 = env)⟩ → Int ⟩

Where the ℓ subscript in Uℓ is the universe level inhabited by the captured environment. This

existential type inhabits the universe U(𝑆 ℓ ) since it contains a type 𝑡 : Uℓ . But when building

the closure for 𝑔 = 𝜆𝑥.1 + 𝑓 (𝑥 − 1), the captured environment contains 𝑓 which is also of type

Int → Int and whose type after closure conversion should thus also be the type above. So we would

need to fit into the 𝑡 field of the existential above an existential type belonging to U(𝑆 ℓ ) , which is

clearly too large to fit into the Uℓ type of this field.

More specifically, we fundamentally need here some form of impredicativity such that our

closure’s existential quantification can quantify over a universe which includes its own. One

solution is to use a language like 𝜆∗ that collapses all the universes into a single U that belongs to

itself, but those languages are known to be inconsistent [Hurkens 1995]. All forms of impredicativity

known to be consistent are too weak to accommodate our needs. Bowman and Ahmed [2018] were

the first to provide a solution to this problem by circumventing it and introducing a custom-made

type construct for closures instead of relying on existential quantification.

While their solution only accommodates the Calculus of Constructions, it might be possible to

adapt it to a language with a tower of universes. Yet, we would prefer a solution that does not rely

on such custom constructs. Going back to the tuple type above, we can see another problem with

it: the universe level ℓ needed for the field 𝑡 of the tuple depends on the types of captured variables,

and hence leaks details of the captured variables. As in Sec. 2, we face the problem that the closure

conversion of two different closures of the same original type may end up having different types

depending on the set of captured variables, thus breaking again our dear type preservation property.
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Closure Converting the Universes 7

So we apply the same existential quantification trick, but this time quantifying over the universe

level:

⟦Int → Int⟧ = ∃𝑙 .∃𝑡 :U𝑙 .⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 : Int, 𝑝 : (𝑥𝑒 = env)⟩ → Int ⟩
This new existential construct ∃𝑙 .𝜏 is kept separate from the previous ∃𝑥 :𝜏1.𝜏2 because manipulating

universe levels as first class values is fraught with danger.

The typing rules will make sure that universe levels can be erased, so we do not need to close

over them, saving us from a lot of extra complications such as the need to manipulate proofs of

equality between universe levels. The introduction of universe level variables 𝑙 is accompanied

with a new construct ℓ1 ⊔ ℓ2 to get the maximum of two levels.

With this extra existential quantification, we recover the property that the converted type of a

function is always the same regardless of its free variables. But there still remains the question of

the universe to which this type should belong. Since it can hold values from arbitrary universe

levels, a predicative type theory such as Agda would put such a type in a special universe level 𝜔

beyond all other levels and over which ∃𝑙 .𝜏 cannot quantify. This of course would not satisfy our

impredicative needs.

A naïve impredicative choice would put this type in the bottom universe instead, but this would

immediately lead to an inconsistent type theory because we could then use dummy ∃𝑙 .𝜏 wrappers

to bring any type down to the bottom universe, making the language equivalent to 𝜆∗.
Taking a step back, rather than try and see in which universe we could place a type of the form

∃𝑙 .𝜏 , we decided to look at the level of the universe where we need to place our uses of ∃𝑙 .𝜏 in

order for our closure conversion to preserve types:

• Let us take a source function type (𝑥 :𝜏1) → 𝜏2 : Uℓ1 ⊔ ℓ2 , where 𝜏1 : Uℓ1 and 𝜏2 : Uℓ2 .

• In order for our closure conversion to preserve types, we need ⟦(𝑥 :𝜏1) → 𝜏2⟧ : ⟦Uℓ1 ⊔ ℓ2⟧.
Similarly, we need ⟦Uℓ⟧ = U⟦ℓ⟧ and ⟦𝑆 ℓ⟧ = 𝑆 ⟦ℓ⟧ and ⟦ℓ1 ⊔ ℓ2⟧ = ⟦ℓ1⟧ ⊔ ⟦ℓ2⟧.

• ⟦(𝑥 :𝜏1) → 𝜏2⟧ is ∃𝑙 .∃𝑡 :U𝑙 .⟨env :𝑡, code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧⟩.
• Since ⟦𝜏1⟧ : U⟦ℓ1⟧ and ⟦𝜏2⟧ : U⟦ℓ2⟧ and the rest fits into U𝑆 𝑙 , the inner ∃ has type

U(⟦ℓ1⟧ ⊔ ⟦ℓ2⟧ ⊔ 𝑆 𝑙 ) .
• So our closure conversion requires that given a type 𝜏 : U(⟦ℓ1⟧ ⊔ ⟦ℓ2⟧ ⊔ 𝑆 𝑙 ) , we must have

∃𝑙 .𝜏 : U⟦ℓ1⟧ ⊔ ⟦ℓ2⟧.

We adopt the rule that ∃𝑙 .𝜏 is given type Uℓ [0/𝑙 ] when 𝜏 has type Uℓ . Whether this choice is

sound is currently unknown: impredicativity is notoriously dangerous and this particular form of

impredicativity has not been investigated to any significant extent. We discuss in more details the

impact of this rule in Sec. 6.5.

3.3 Taming function equality
The final remaining problem is the preservation of equality for functions: for the closure conversion

to preserve types, we also need to make sure that closure conversion preserves equality between

types, and since types can contain arbitrary terms, we need to preserve equality between terms, i.e.

if 𝑒1 ≃ 𝑒2 then ⟦𝑒1⟧ ≃ ⟦𝑒2⟧.
But this is not the case with our current encoding: in our source language 𝜆𝑥.𝑥 + 7 is equivalent

to let 𝑦 = 7 in 𝜆𝑥.𝑥 + 𝑦 because let 𝑦 = 7 in 𝜆𝑥 .𝑥 + 𝑦 can be reduced to 𝜆𝑥 .𝑥 + 7. But after closure

conversion, these two functions are not equivalent any more. The first will be a closure capturing

an empty environment:

⟦𝜆𝑥 .𝑥 + 7⟧
= <1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.𝑥 + 7⟩>>
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8 Anon.

While the second will be a closure capturing an environment containing the value of 𝑦:

⟦let 𝑦 = 7 in 𝜆𝑥.𝑥 + 𝑦⟧
let 𝑦 = 7 in <1;<⟨𝑦 : Int⟩; ⟨⟨𝑦⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.𝑥 + 𝑥𝑒 .1⟩>>
{
<1;<⟨𝑦 : Int⟩; ⟨⟨7⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.𝑥 + 𝑥𝑒 .1⟩>>

These two closures are clearly different and it is difficult to adjust our language’s reduction rules so

as to allow them to treat those two objects as equivalent. The custom-made closure construct used

by Bowman and Ahmed [2018] to circumvent the problem of impredicativity saves them again

here, since it allows them to provide a specific 𝜂-equivalence rule for those objects. But with our

use of tuples, our hands are tied.

With an appropriate model, we could try to leverage parametricity to justify an ad-hoc 𝜂-

equivalence theorem for our closure objects, as done in [Bowman 2018], but instead we decided to

use quotient types, which do not depend so heavily on meta-theoretical properties of our language.

Although support for quotient types in programming languages goes back at least to the first

version of Miranda [Thompson 1990; Turner 1985], they are not nearly as common as existentials,

tuples, and equality proofs. There are different ways to add quotient types to a language, but to

a first approximation we can classify them into two groups: those which define a quotient via a

relation (and hence correspond most closely to the traditional mathematical presentation) such

as higher inductive types [The Univalent Foundations Program 2013], and those which define a

quotient via a normalization function that takes elements to their equivalence class [Courtieu

2001].
1
While the use of relations is arguably more standard and general, we opted to use quotient

types based on normalization functions, because they provide a stronger definitional equality,

which significantly simplifies our proof of type preservation because definitional equality is thus

also preserved by the conversion. More specifically, we add the following terms to our syntax:

(terms) 𝑒, 𝜏 ::= ... | Q 𝑒𝑓 | Qin[𝑒𝑓 ] 𝑒 | let[𝑒=] Qin 𝑥 = 𝑒1 in 𝑒2

Where Q 𝑒𝑓 is the quotient type defined by the normalization function 𝑒𝑓 of type 𝜏 → 𝜏 , where 𝜏

is the type that is quotiented by 𝑒𝑓 ; Qin[𝑒𝑓 ] 𝑒 is the constructor which projects values of type 𝜏

into Q 𝑒𝑓 ; and let[𝑒=] Qin 𝑥 = 𝑒1 in 𝑒2 is the elimination form where 𝑒= is the proof that we obey

the quotient’s equality, i.e. a proof that 𝑒2 ≃ 𝑒2 [𝑒𝑓 𝑥/𝑥]. There is no dedicated introduction form

for equality between quotiented values, because instead we strengthen the definitional equality so

Qin[𝑒𝑓 ] 𝑒1 ≃ Qin[𝑒𝑓 ] 𝑒2 when 𝑒𝑓 𝑒1 ≃ 𝑒𝑓 𝑒2.

So we can now quotient the encoding of our closures with a normalization function. We choose

as canonical representative or each equivalence class the closure object where the captured en-

vironment is empty. These representative closure objects have the property that their code is in
general not closed any more, and indeed they amount, in a sense, to turning the closures back into

their non-closed form, thereby recovering the original equality semantics:

⟦𝜏1 → 𝜏2⟧inner = ∃𝑙 .∃𝑡 :U𝑙 .⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧ ⟩)
⟦𝜏1 → 𝜏2⟧
= Q (𝜆<𝑙 ;<𝑡 ; ⟨env, code⟩>>.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.code ⟨env, 𝑥, refl⟩⟩>>

: ⟦𝜏1 → 𝜏2⟧inner → ⟦𝜏1 → 𝜏2⟧inner)
When we want to call a closure, we need to use the elimination form of the quotient let[𝑒=] Qin 𝑥 =

𝑒1 in 𝑒2 to which we have to provide the proof 𝑒= that we obey the quotient’s equality. For our uses,

1
With various options trying to provide a mix of the two, see for instance the quotient library by Cohen [2013], or the

Arend proof assistant.
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Closure Converting the Universes 9

this proof is simple since 𝑒2 is the code that calls the closure and it is very similar to the code of the

normalization function.

When defining quotient types using axioms, the quotient eliminator is typically defined to take

the quotiented object and a function representing the body of our let construct, but of course,
this would not work here because that function would usually not be closed. In other words, our

eliminator takes the shape of a let for the same reason we introduced letcast. This is a common

theme when working in a lower-level intermediate language.

3.4 Taming closedness
One more issue that keeps popping up is what exactly we should consider as “closed”: given a

source function 𝜆𝑥 :𝜏 .𝑥 𝑦, it is natural to consider that we should make a closure that captures 𝑦

and nothing else, but after closure conversion the code will usually want to refer to the types of

both 𝑥 and 𝑦, for example in the motives of the casts.
Also, dependencies can get in the way. Let’s say we have a source function 𝜆𝑥 .insert 𝑡 𝑥 𝑠 with a

typing environment that contains {..., 𝑡 : U1, 𝑜 : Ordering 𝑡, 𝑠 : BinarySet 𝑡 𝑜, ...}. If we close over
𝑡 and 𝑠 but not over 𝑜 , the closed code will not be properly typed because the type of 𝑠 will be

ill-formed since it will not refer to the same 𝑡 as the type of 𝑜 any more. For this reason, we need to

transitively close over all the variables that appear in the types of the free variables (as well as the

type of the function itself).

More problematic yet: in the previous section, the quotient’s normalization function includes

the non-closed function 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.code ⟨env, 𝑥, refl⟩. We cannot easily close this function without

reintroducing the problem it’s trying to address, nor can we hide it via some kind of let-like
construct.

For those reasons, we need to refine what we mean by closed: we need to distinguish those

elements needed only for typing purposes from those needed at run time: our closure conversion

does not require that all 𝜆-expressions be closed in the closure-converted code, but only that all

𝜆-expressions be closed after type erasure.

4 CLOSURE CONVERTING THE UNIVERSES
In this section we define the source and target languages for our closure conversion as well as the

algorithm itself.

4.1 Source language
The source language we intend to convert has the following syntax:

(levels) ℓ ::= 𝑆 0 | 𝑆 ℓ

(sorts) 𝑠 ::= Uℓ

(neutral terms) 𝑒, 𝜏, 𝑁 ::= 𝑥 | 𝑠 | (𝑀 : 𝜏) | (𝑥 :𝜏1) → 𝜏2 | 𝑁 𝑀

(normal terms) 𝑒,𝑀 ::= 𝑁 | 𝜆𝑥.𝑀

This is the same language as shown at the beginning of Section 2, except that the bottom universe

level 1 is now spelled 𝑆 0 and terms are split into neutral terms, for which types can be synthesized,

and normal terms, for which types have to be checked. We still use 𝑒 in most places except when

this distinction is important, and we use 𝜏 for terms that are intended to denote types. The use of

𝑆 0 for the bottom universe is there solely so as to keep the universe levels of the source language

aligned with those of the target language where we will need an additional “basement” universe 0.

The typing rules for this source language are shown in Figure 1. We show them in the bidirectional

style [Dunfield and Krishnaswami 2021], so as to try and reduce the type annotations in our code.

So the main judgment is split between Γ ⊢ 𝑒 ⇒ 𝜏 and Γ ⊢ 𝑒 ⇐ 𝜏 where the first synthesizes the
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10 Anon.

Γ ⊢ 𝑁 ⇒ 𝜏 and Γ ⊢ 𝑀 ⇐ 𝜏 The form has type 𝜏 in context Γ:

Γ ⊢ Uℓ ⇒ U(𝑆 ℓ )

𝜏1 {
∗ 𝜏2 Γ ⊢ 𝑒 ⇐ 𝜏2

Γ ⊢ 𝑒 ⇐ 𝜏1
(Red𝐶 )

Γ ⊢ 𝑒 ⇒ 𝜏1 𝜏1 {
∗ 𝜏2

Γ ⊢ 𝑒 ⇒ 𝜏2
(Red𝑆 )

Γ ⊢ 𝑁 ⇒ 𝜏1 𝜏1 ≃ 𝜏2

Γ ⊢ 𝑁 ⇐ 𝜏2
(Conv)

Γ ⊢ 𝜏 ⇒ 𝑠 Γ ⊢ 𝑀 ⇐ 𝜏

Γ ⊢ (𝑀 : 𝜏) ⇒ 𝜏
(Ann)

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 ⇒ 𝜏
(Var)

Γ ⊢ 𝜏1 ⇒ Uℓ1 Γ, 𝑥 :𝜏1 ⊢ 𝜏2 ⇒ Uℓ2 ℓ3 = max(ℓ1, ℓ2)
Γ ⊢ (𝑥 :𝜏1) → 𝜏2 ⇒ Uℓ3

(Pi)

Γ, 𝑥 :𝜏1 ⊢ 𝑒 ⇐ 𝜏2

Γ ⊢ 𝜆𝑥 .𝑒 ⇐ ((𝑥 :𝜏1) → 𝜏2)
(Lam)

Γ ⊢ 𝑒1 ⇒ (𝑥 :𝜏1) → 𝜏2 Γ ⊢ 𝑒2 ⇐ 𝜏1

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝜏2 [(𝑒2 :𝜏1)/𝑥]
(App)

Fig. 1. Typing rules of the source language.

𝑒1 ≃ 𝑒2 𝑒1 is definitionally equal to 𝑒2:

𝑒1 { 𝑒2 𝑒1 reduces to 𝑒2:

(𝑁 : 𝜏) { 𝑁 ((𝜆𝑥 .𝑒1) : (𝑥 :𝜏1) → 𝜏2) 𝑒2 { (𝑒1 : 𝜏2) [(𝑒2 : 𝜏1)/𝑥]

𝑒 { 𝑒′

𝐸 [𝑒] { 𝐸 [𝑒′]
𝑒1 {

∗ 𝑒3 𝑒2 {
∗ 𝑒3

𝑒1 ≃ 𝑒2

(eval contexts) 𝐸 ::= • | (𝐸 : 𝜏) | (𝑒 : 𝐸) | (𝑥 :𝐸) → 𝜏 | (𝑥 :𝜏) → 𝐸 | 𝐸 𝑒 | 𝑒 𝐸 | 𝜆𝑥 .𝐸

Fig. 2. Convertibility rules of our source language.

type 𝜏 from the context Γ and the term 𝑒 whereas the second just checks it. The rules presume that

Γ in the conclusion is well-formed, as is the type passed to the⇐ rule. The two Red rules allow

arbitrary reductions between typing steps, but the intention is to use them only when needed to

reduce to weak-head normal form. Our calculus does not use universe subsumption, which is why

in the Pi rule, we allow input and output types from different universes.

The convertibility rules 𝑒1 ≃ 𝑒2 and 𝑒1 { 𝑒2 are shown in Figure 2. The rules are untyped but

defined such that if input expressions are properly typed in the same context, then all the terms

used along the way are themselves properly typed. To that end, 𝑒1 ≃ 𝑒2 is defined on top of{∗

which is the transitive reflexive closure of small step reduction rule{. The only typing rule which

uses the convertibility rule, i.e. the Conv rule, indeed guarantees that 𝜏1 and 𝜏2 are well formed in

the same context, so in practice 𝑒1 ≃ 𝑒2 will always be invoked with well-formed terms. Similarly

𝑒1 { 𝑒2 is only ever used with a well typed 𝑒1.

Beside the details of presentation of conversion and type checking, this is a conventional depen-

dently typed 𝜆-calculus with a predicative tower of universes and without universe subsumption.

It enjoys a lot of nice meta-theoretical properties, but the only one that we will really need here is

subject reduction.
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Closure Converting the Universes 11

(levels) ℓ ::= 𝑙 | 0 | 𝑆 ℓ | ℓ1 ⊔ ℓ2
(sorts) 𝑠 ::= Uℓ

(index) 𝑖 ∈ N∗
Positions in tuples

(ctx) Γ ::= • | Γ, 𝑥 :𝜏
(neutral terms) 𝑒, 𝜏, 𝑁 ::= 𝑥 | 𝑠 Variables and sorts

| (𝑀 : 𝜏) Type annotation

| (𝑥 :𝜏1) → 𝜏2 Function type

| 𝑁 𝑀 Function application

| ⟨Γ⟩ Dependent tuple type

| 𝑁 .𝑖 𝑖th projection from a tuple

| ∃𝑥 :𝜏1 .𝜏2 Existential type

| let <𝑥1;𝑥2> = 𝑁1 in 𝑁2 Existential eliminator

| ∃𝑙 .𝜏 Existential universe type

| let <𝑙 ;𝑥> = 𝑁1 in 𝑁2 Existential universe eliminator

| Eq 𝑁 𝑀 Equality type

| letcast[𝑁𝑚, 𝑁=] 𝑥 = 𝑁 in𝑀 Eliminator of equality type

| Q 𝑁 Quotient type

| let[𝑀=] Qin 𝑥 = 𝑁1 in 𝑁2 Quotient eliminator

| Qin[𝑁𝑛] 𝑁 Constructor of quotient

| Qn[𝑁𝑛] 𝑁 Auxiliary constructor of quotient

(normal terms) 𝑒,𝑀 ::= 𝑁 Neutral term

| 𝜆𝑥.𝑀 Function constructor

| ⟨𝑀1, ..., 𝑀𝑛⟩ Tuple constructor

| <𝑀1;𝑀2> Existential constructor

| <ℓ ;𝑀> Existential universe constructor

| refl Equality constructor

Fig. 3. Syntax of the target language

Lemma 4.1 (Subject reduction).

Given a well-formed context Γ, if Γ ⊢ 𝑒1 ⇐ 𝜏 and 𝑒1 { 𝑒2 then Γ ⊢ 𝑒2 ⇐ 𝜏 .

Proof. By induction on the derivation of 𝑒1 { 𝑒2, using the usual substitution lemma. □

4.2 Target language syntax
Our target language is a superset of our source language. Its syntax is given in Figure 3. The

quantification over universe levels adds two new elements to the syntax of levels ℓ , one for level

variables 𝑙 , and another for the maximum of two levels ℓ1 ⊔ ℓ2. The sorts and contexts stay

unchanged, but we add many new elements to the terms:

• Dependent tuples: ⟨Γ⟩ is the type of dependent tuples where Γ describes the fields and

their types; ⟨𝑒1, ..., 𝑒𝑛⟩ is the corresponding term constructor; and 𝑒.𝑖 is the elimination form

which projects the 𝑖th field out of 𝑒 .

• Existential types: ∃𝑥 : 𝜏1.𝜏2 is the existential type that quantifies over 𝑥 ; <𝑒1; 𝑒2> is the

corresponding constructor; and let <𝑥1;𝑥2> = 𝑒1 in 𝑒2 is its elimination form, where 𝑥1 can

be used only in erasable positions, such as type annotations.

• Existential universe types: ∃𝑙 .𝜏 is the existential type that quantifies over universe level 𝑙 ;
<ℓ ; 𝑒> is the corresponding constructor; and let <𝑙 ;𝑥> = 𝑒1 in 𝑒2 is its elimination form.
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cast[𝑥𝑚] : Eq 𝑒1 𝑒2 → 𝑥𝑚 𝑒1 → 𝑥𝑚 𝑒2
cast[𝑥𝑚] 𝑥= 𝑒 = letcast[𝜆𝑥 .⟨•⟩ → 𝑥𝑚 𝑥, 𝑥=] ⟨⟩ = ⟨⟩ in 𝑒

call : ⟦(𝑥 :𝜏1) → 𝜏2⟧ → (𝑥 :⟦𝜏1⟧) → ⟦𝜏2⟧
call 𝑐 𝑥 = let <𝑙 ;<𝑡 ; ⟨env, code⟩>> = 𝑐 in code ⟨env, 𝑥, refl⟩
tfv(Γ, 𝑒) =

⋃
𝑥∈fv(𝑒 ) {𝑥} ∪ tfv(Γ, Γ(𝑥))

⟦(𝑥 :𝜏1) → 𝜏2⟧inner = ∃𝑙 .∃𝑡 :U𝑙 .⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧ ⟩
⟦(𝑥 :𝜏1) → 𝜏2⟧norm = (𝜆𝑐.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.call 𝑐 𝑥⟩>>

: ⟦(𝑥 :𝜏1) → 𝜏2⟧inner → ⟦(𝑥 :𝜏1) → 𝜏2⟧inner)
⟦𝑥⟧ = 𝑥

⟦Uℓ⟧ = Uℓ

⟦(𝑒 : 𝜏)⟧ = (⟦𝑒⟧ : ⟦𝜏⟧)
⟦(𝑥 :𝜏1) → 𝜏2⟧ = Q ⟦(𝑥 :𝜏1) → 𝜏2⟧norm
⟦𝑒1 𝑒2⟧ = let[refl] Qin 𝑐 = ⟦𝑒1⟧ in call 𝑐 ⟦𝑒2⟧
⟦𝜆𝑥𝑎 .𝑒⟧ = Qin[⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧norm]

(<ℓ ;<⟨⟦Γ′⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>> : ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner)
where Γ ⊢ 𝜆𝑥𝑎 .𝑒 ⇐ (𝑥𝑎 :𝜏𝑎) → 𝜏𝑟 Extract the type information

®𝑥 𝑓 = tfv(Γ, 𝜆𝑥𝑎 .𝑒) ∪
tfv(Γ, (𝑥𝑎 :𝜏𝑎) → 𝜏𝑟 )

Find the free variables

Γ′ = Γ | ®𝑥𝑓
= ®𝑥 : ®𝜏 Get their type and order them

Γ ⊢ ⟨Γ′⟩ ⇒ Uℓ Compute the universe level ℓ

𝑓𝑚 = 𝜆⟨®𝑥⟩.(𝑥𝑎 :⟦𝜏𝑎⟧) → ⟦𝜏𝑟⟧ The motive of the cast
body = letcast[𝑓𝑚, 𝑥=] 𝑥𝑎 = 𝑥 ′𝑎 in

let ⟨®𝑥⟩ = 𝑥𝑒 in ⟦𝑒⟧

Fig. 4. The closure conversion itself

• Equality types: Eq 𝑒1 𝑒2 is the type of proofs that 𝑒1 and 𝑒2 are equal; refl is the corresponding
constructor of the proof by reflexivity; and letcast[𝑒𝑚, 𝑒=] 𝑥 = 𝑒1 in 𝑒2 is the elimination

form which takes a proof 𝑒= : Eq 𝑒𝑖 𝑒𝑜 , a motive 𝑒𝑚 , and behaves like let 𝑥 = 𝑒1 in 𝑒2 except

that 𝑒2 is typed in a context where some 𝑒𝑜 are replaced by 𝑒𝑖 , according to 𝑒𝑚 .

• Quotient types:Q 𝑒 is the quotient type where 𝑒 is the normalization function;Qin[𝑒𝑛] 𝑒 is its
main constructor where 𝑒𝑛 is again the normalization function; and let[𝑒=] Qin 𝑥 = 𝑒1 in 𝑒2
is its elimination form where 𝑒= is the proof that it obeys the quotient’s equality. We follow

the design of normalizable types [Monnier 2024] and thus need a secondary constructor

Qn[𝑒𝑛] 𝑒 used only internally in the typing and reduction rules to keep track of the fact

that 𝑒 has already been normalized.

As is customary for bidirectional typing, all the types and eliminators are neutral terms, and most

of the constructors are normal terms. Qin is nevertheless an exception to this rule: we could make

it a normal term of the form Qin 𝑒 and determine 𝑒𝑛 from its expected return type, but we need 𝑒𝑛
in the reduction rules of Qin, so we opted to include 𝑒𝑛 in the syntax Qin[𝑒𝑛] 𝑒 in order to avoid

the need for a typed conversion rule. The same argument does not apply to Qn, but we kept it as a
neutral term simply to minimize the difference with Qin.
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Closure Converting the Universes 13

4.3 Closure conversion
We can now show the actual closure conversion itself, denoted ⟦·⟧, which is in Figure 4. In that

figure, we use an abuse of notation: while we write ⟦𝑒⟧, the conversion algorithm does not take a

mere term 𝑒 as argument but it really operates on a typing derivation of 𝑒 because it needs more

type information than is readily provided in 𝑒 itself. We use this notational abuse in the hope

to make the code more readable. In contrast, ⟦·⟧ does return a mere term and not a full typing

derivation. While we like to think of it as a conversion from intrinsically typed terms to intrinsically

typed terms, we prefer to return a mere term so that we can separately state and prove that it does

indeed preserve typing.

We use the following auxiliary definitions:

• cast[𝑥𝑚] 𝑥= 𝑒: The “usual” equality type elimination, defined on top of letcast.
• call 𝑐 𝑥 : The code of a call to the non-quotiented closure 𝑐 with argument 𝑥 .

• tfv(Γ, 𝑒): The set of transitively free variables, which includes the free variables of the types

of the free variables.

• ⟦(𝑥 :𝜏1) → 𝜏2⟧inner: The non-quotiented type of a closure, for a source type (𝑥 :𝜏1) → 𝜏2.

• ⟦(𝑥 :𝜏1) → 𝜏2⟧norm: The normalization function for the quotient type used on functions of

source type (𝑥 :𝜏1) → 𝜏2. This returns the function fully annotated with its type since it

will be used in places where we need to be able to synthesize the type.

The first three cases of the closure conversion itself are of no interest. The first interesting case

is the one for (𝑥 :𝜏1) → 𝜏2 where we state the type of a closure to be fundamentally a quotiented

4-tuple made of (in reverse order) a closed function we denote as code, a captured environment env,
its type 𝑡 , and its universe level 𝑙 .

The case for 𝑒1 𝑒2 takes such a closure object and calls it: it first looks inside the quotiented object

and then uses call to perform the actual function invocation which proceeds by unpacking the

4-tuple to then invoke the code with the env, the actual argument, and the trivial refl proof that
the first argument is indeed env. The proof that this obeys the quotient’s equality is provided by

another refl because call (⟦...⟧
norm

𝑐) 𝑒 simply reduces to call 𝑐 𝑒: all the constructors introduced
by ⟦...⟧

norm
find their corresponding elimination forms in call.

The hard work is all concentrated in the case for 𝜆𝑥𝑎 .𝑒 : there we actually build the closure object,

made of its quotiented existential nested tuples, as well as the closed code:

• 𝑥𝑒 is the formal variable that will hold the tuple of captured variables.

• 𝑥𝑎 is the function’s formal argument. In the source code its type is defined in the ambient

context Γ of the function, obviously. But in the converted code, this is not so simple because

from the outside of the closure we also want the type to refer to elements of the ambient

context Γ, but the body of the code cannot and has to refer to those same elements via the

argument 𝑥𝑒 instead, which will contain the captured environment. For this reason, in the

converted code, the source 𝑥𝑎 ends up split into 𝑥 ′𝑎 with the “outside” type and 𝑥𝑎 with the

“inside” type.

• ®𝑥 𝑓 is the set of captured variables, in no particular order. We compute it using tfv which
gives us the set of transitively free variables.

• ®𝑥 is this same set but properly ordered according to the order in which they appear in the

environment, so that dependencies between them are obeyed.

• ⟨⟦Γ′⟧⟩, also known as ⟨®𝑥 : ⟦®𝜏⟧⟩, is the type of the env tuple holding the captured variables.

• ℓ is the universe level of ⟨⟦Γ′⟧⟩.
• The closed function then just takes its three arguments 𝑥𝑒 , 𝑥

′
𝑎 , and 𝑥= (seen on the 2

nd
line of

the code), after which body unpacks the environment 𝑥𝑒 with a let which (re)reintroduces

all the free variables expected by the original body of the function and then evaluates the
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(level contexts) 𝐿 ::= • | 𝑆 𝐿 | 𝐿 ⊔ ℓ | ℓ ⊔ 𝐿

(eval contexts) 𝐸 ::= ... | U𝐿

Γ ⊢ 𝜏1 ⇒ Uℓ1 Γ, 𝑥 :𝜏1 ⊢ 𝜏2 ⇒ Uℓ2

Γ ⊢ (𝑥 :𝜏1) → 𝜏2 ⇒ U(𝑙1 ⊔ ℓ2 )
(Pi)

0 ⊔ ℓ { ℓ ℓ ⊔ 0 { ℓ ℓ ⊔ ℓ { ℓ

(𝑆 ℓ1) ⊔ (𝑆 𝑙2) { 𝑆 (𝑙1 ⊔ 𝑙2)

|𝑒 | Type erasure of 𝑒:

|𝑥 | = 𝑥

|Uℓ | = U
|(𝑒 : 𝜏) | = |𝑒 |
| (𝑥 :𝜏1) → 𝜏2 | = →
|𝑒1 𝑒2 | = |𝑒1 | |𝑒2 |
|𝜆𝑥 .𝑒 | = 𝜆𝑥.|𝑒 |

Fig. 5. Differences with source language for the core target language.

closure converted body ⟦𝑒⟧, while carefully using 𝑥= to mediate between the “inside” types

and the “outside” types.

4.4 Target language
We have already shown the syntax of the target language, but we present here its actual definition

in the form of its typing and conversion rules.

Since our target language is a superset of our source language, the core elements are the same

and basically share the same rules, except for changes to the universe levels. Figure 5 shows the

parts of the rules that changed, fundamentally due to the fact that the max(ℓ1, ℓ2) computation

that used to be performed at the metalevel is now internalized as 𝑙1 ⊔ ℓ2, which in turn requires

new conversion rules to define the semantics of this operation. Another change is the fact that the

base universe level is now really called 0, so it sits one level below the base universe of the source

language.

In addition to those changes, the target language has a notion of type erasure denoted |𝑒 | whose
definition for the base elements of the language is shown in that same figure, where we can see

that it simply traverses the terms and removes the explicit type annotations and the universe levels.

We will see soon that it has further effects on other constructs.

4.4.1 Dependent tuples. Figure 6 shows the rules governing the dependent tuples. There is nothing
novel here. The main complexity lies in the rules Proj and Tup which need to take into account

the possible dependencies between the fields, which requires applying substitutions to replace

references to previous fields with those fields’ values when returning the type of fields. Notice

also the Σ rule which computes the maximum level of universe in the tuples’ members in order to

decide in which universe to put the tuple type.

4.4.2 Existential types. Figure 7 shows the rules that govern existential types. The first thing to

note here is in the top right corner, we see that type erasure throws away the left hand side of

those existential packages. For this to make sense, the Open rule makes sure the 𝑥1 variable is not

used in a way that is computationally relevant, by enforcing that it does not occur as a free variable

in the type erasure of the body of the let. This is the only place where the type erasure is used in

the typing rules.

In most other respects, this is otherwise a simplified version of the rules we use for dependent

tuples, where the simplification comes from the fact that we only handle pairs here, instead of

arbitrary number of elements, and the fact that the let elimination term does not allow the return

type to depend on the pair. Regarding this Open rule, the Γ ⊢ 𝜏 ⇒ 𝑠 premise may seem redundant
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(terms) 𝑒, 𝜏 ::= ... | ⟨Γ⟩ | ⟨𝑒1, .., 𝑒𝑛⟩ | 𝑒.𝑖
(eval ctxts) 𝐸 ::= ... | ⟨Γ1, 𝑥 : 𝐸, Γ2⟩ | ⟨ ®𝑒𝑏, 𝐸, ®𝑒𝑎⟩ | 𝐸.𝑖

|⟨Γ⟩| = ⟨•⟩
|⟨𝑒1, .., 𝑒𝑛⟩| = ⟨|𝑒1 |, .., |𝑒𝑛 |⟩
|𝑒.𝑖 | = |𝑒 |.𝑖

Γ ⊢ ⟨•⟩ ⇒ U1

Γ ⊢ ⟨Γ′⟩ ⇒ Uℓ1 Γ, Γ′ ⊢ 𝜏 ⇒ Uℓ2

Γ ⊢ ⟨Γ′, 𝑥 :𝜏⟩ ⇒ Uℓ1 ⊔ ℓ2

(Σ)

Γ ⊢ ⟨⟩ ⇒ ⟨•⟩
Γ ⊢ ⟨®𝑒⟩ ⇐ ⟨Γ′⟩ Γ′ = ®𝑥 : ®𝜏 Γ ⊢ 𝑒 ⇐ 𝜏 [®𝑒/®𝑥]

Γ ⊢ ⟨®𝑒, 𝑒⟩ ⇐ ⟨Γ′, 𝑥 :𝜏⟩
(Tup)

Γ ⊢ 𝑒 ⇒ ⟨Γ′⟩ Γ′ = ®𝑥 : ®𝜏
Γ ⊢ 𝑒.𝑖 ⇒ 𝜏𝑖 [𝑒.1/𝑥1, ..., 𝑒 .(𝑖 − 1)/𝑥𝑖−𝑖 ]

(Proj)

(⟨®𝑒⟩ : ⟨®𝑥 : ®𝜏⟩).𝑖 { (𝑒𝑖 : 𝜏𝑖 [(𝑒1 : 𝜏1)/𝑥1, ..., (𝑒𝑖−1 : 𝜏𝑖−1)/𝑥𝑖−1])

Fig. 6. Dependent tuples.

(terms) 𝑒, 𝜏 ::= ... | ∃𝑥 :𝜏1.𝜏2 | <𝑒1; 𝑒2>

| let <𝑥1;𝑥2> = 𝑒1 in 𝑒2
(eval ctxts) 𝐸 ::= ... | ∃𝑥 :𝐸.𝜏 | ∃𝑥 :𝜏 .𝐸

| <𝐸; 𝑒> | <𝑒;𝐸>

| let <𝑥1;𝑥2> = 𝐸 in 𝑒

| let <𝑥1;𝑥2> = 𝑒 in 𝐸

|∃𝑥 :𝜏1.𝜏2 | = ∃
|<𝑒1; 𝑒2> | = |𝑒2 |
|let <𝑥1;𝑥2> = 𝑒1 in 𝑒2 |

= let 𝑥2 = |𝑒1 | in |𝑒2 |

Γ ⊢ 𝜏1 ⇒ Uℓ1 Γ, 𝑥 :𝜏1 ⊢ 𝜏2 ⇒ Uℓ2

Γ ⊢ ∃𝑥 :𝜏1 .𝜏2 ⇒ Uℓ1 ⊔ ℓ2

(∃)

Γ ⊢ 𝑒1 ⇐ 𝜏1 Γ ⊢ 𝑒2 ⇐ 𝜏2 [(𝑒1 : 𝜏1)/𝑥]
Γ ⊢ <𝑒1; 𝑒2> ⇐ ∃𝑥 :𝜏1 .𝜏2

(Pack)

Γ ⊢ 𝑒1 ⇒ ∃𝑥1 :𝜏1 .𝜏2 𝑥1 ∉ fv( |𝑒2 |) Γ, 𝑥1 :𝜏1, 𝑥2 :𝜏2 ⊢ 𝑒2 ⇒ 𝜏 Γ ⊢ 𝜏 ⇒ 𝑠

Γ ⊢ let <𝑥1;𝑥2> = 𝑒1 in 𝑒2 ⇒ 𝜏
(Open)

let <𝑥1;𝑥2> = (<𝑒1; 𝑒2> : ∃𝑥1 :𝜏1.𝜏2) in 𝑒𝑏 { 𝑒𝑏 [(𝑒1 : 𝜏1)/𝑥1, (𝑒2 : 𝜏2 [(𝑒1 : 𝜏1)/𝑥1])/𝑥2]

Fig. 7. Existential types.

since we already know that 𝜏 is a well-formed type and we don’t use 𝑠 elsewhere, but its purpose is

to verify that 𝜏 is closed w.r.t. 𝑥1 and 𝑥2.

These rules can be seen as a subset of those proposed by Bernardo [2009] for the Σ type of ICC
∗
Σ.

Our ∃𝑥 :𝜏1.𝜏2 corresponds in that work to Σ[𝑥 :𝜏1] .𝜏2, i.e. a pair whose first field is erased, except

that we use a weaker rule for the eliminator: the eliminator for ICC
∗
Σ is dependent, in the sense that

it allows the return type to depend on the pair, whereas we use a simpler non-dependent eliminator.
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16 Anon.

(terms) 𝑒, 𝜏 ::= ... | ∃𝑙 .𝜏 | <ℓ ; 𝑒>

| let <𝑙 ;𝑥> = 𝑒1 in 𝑒2
(eval ctxts) 𝐸 ::= ... | ∃𝑙 .𝐸 | <𝐿; 𝑒> | <ℓ ;𝐸>

| let <𝑙 ;𝑥> = 𝐸 in 𝑒

| let <𝑙 ;𝑥> = 𝑒 in 𝐸

|∃𝑙 .𝜏 | = ∃
|<ℓ ; 𝑒> | = |𝑒 |
|let <𝑙 ;𝑥> = 𝑒1 in 𝑒2 |

= let 𝑥 = |𝑒1 | in |𝑒2 |

Γ ⊢ 𝜏 ⇒ Uℓ 𝑙 ∉ fv(Γ)
Γ ⊢ ∃𝑙 .𝜏 ⇒ Uℓ [0/𝑙 ]

(U-∃)
Γ ⊢ 𝑒 ⇐ 𝜏 [ℓ/𝑙]

Γ ⊢ <ℓ ; 𝑒> ⇐ ∃𝑙 .𝜏
(U-Pack)

Γ ⊢ 𝑒1 ⇒ ∃𝑙 .𝜏1 𝑙 ∉ fv(Γ) ∪ fv(𝜏) Γ, 𝑥 :𝜏1 ⊢ 𝑒2 ⇒ 𝜏 Γ ⊢ 𝜏 ⇒ 𝑠

Γ ⊢ let <𝑙 ;𝑥> = 𝑒1 in 𝑒2 ⇒ 𝜏
(U-Open)

let <𝑙 ;𝑥> = (<ℓ ; 𝑒1> : ∃𝑙 .𝜏) in 𝑒2 { 𝑒2 [ℓ/𝑙, (𝑒1 : 𝜏 [ℓ/𝑙])/𝑥]

Fig. 8. Existential universe types.

4.4.3 Existential universe types. Figure 8 shows the rules that govern existential quantification

over universe levels. We see that the type erasure for existential universe types follow basically the

same rules as for existential types. But note that U-Open does not need to check that 𝑙 is not used in

the erasure of 𝑒2 because we know it by construction: erasure erases all universe level annotations

anyway.

Our typing judgment does not include any context listing the set of universe level variables 𝑙

that are currently in scope. There is no deep technical reason for that, we simply decided to go for

a presentation that does without it, as is done sometimes for the set of type variables in System-F.

This was done to avoid having to carry around another context in all the typing rules, so as to make

the rules easier on the eyes, but it is otherwise of no particular significance. It does require extra

care in the typing rules to avoid variable captures since we cannot rely on the usual Barendregt

convention. This manifests itself in the tests that 𝑙 is not free in Γ or 𝜏 in the U-∃ and U-Open rules.

More importantly we see in the U-∃ rule the crucial impredicativity where we return the type

Uℓ [0/𝑙 ] , which corresponds to the infimum inf𝑙 ℓ whereas the predicative choice would be to use

the supremum sup𝑙 ℓ which would result in something likeU𝜔 , as used in Agda. This is the only

part of our target language that is fundamentally unique; most of the rest are minor variations of

well understood constructs found in other languages.

It makes our language impredicative but in a way that is qualitatively different from the traditional

notion of impredicative universes like Prop: on the one hand, the notion impredicativity introduced

here affects all universes rather than only specific ones, and on the other hand it is less direct:

one cannot directly quantify over a larger universe as we do for quantification in Prop, instead
one is restricted to quantify over a universe which is itself quantified over all levels: so while that

universe may be larger it is not guaranteed to be larger.

Another detail to note is that in practice ∃𝑙 .𝜏 will almost always belong to a universe above

U0 because, in order to be of any use 𝜏 will inevitably contain something like ∃𝑡 :U𝑙 .𝜏
′
, so 𝜏 will

belong to a universe U𝑆 𝑙 or larger. This applies in particular to our closures. For this reason in

our closure conversion, we keep the universe level 0 basically unused. This is also why we use the

universe level 1 as our base level in the source language. Of course, we could use 0 as the base level

in both languages and map source code from universe level ℓ to target code in universe level 𝑆 ℓ ,

i.e. ⟦Uℓ⟧ = U𝑆 ℓ .
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(terms) 𝑒, 𝜏 ::= ... | Eq 𝑒1 𝑒2 | refl
| letcast[𝑒𝑚, 𝑒=] 𝑥 = 𝑒1 in 𝑒2

(eval ctxts) 𝐸 ::= ... | Eq 𝐸 𝑒 | Eq 𝑒 𝐸
| letcast[𝑒𝑚, 𝑒=] 𝑥 = 𝐸 in 𝑒2
| letcast[𝑒𝑚, 𝑒=] 𝑥 = 𝑒1 in 𝐸

| letcast[𝐸, 𝑒=] 𝑥 = 𝑒1 in 𝑒2
| letcast[𝑒𝑚, 𝐸] 𝑥 = 𝑒1 in 𝑒2

|Eq 𝑒1 𝑒2 | = Eq
|refl| = refl
|letcast[𝑒𝑚, 𝑒=] 𝑥 = 𝑒1 in 𝑒2 |

= let 𝑥 = |𝑒1 | in |𝑒2 |

Γ ⊢ 𝑒1 ⇒ 𝜏 Γ ⊢ 𝑒2 ⇐ 𝜏 Γ ⊢ 𝜏 ⇒ 𝑠

Γ ⊢ Eq 𝑒1 𝑒2 ⇒ 𝑠
(Eq)

𝑒1 ≃ 𝑒2

Γ ⊢ refl ⇐ Eq 𝑒1 𝑒2
(Refl)

Γ ⊢ 𝑒= ⇒ Eq 𝑒1 𝑒2
Γ ⊢ 𝑒𝑚 𝑒1 ⇒ 𝑠

𝑒𝑚 𝑒1 {
∗ (𝑥 :𝜏𝑎1) → 𝜏𝑟1

𝑒𝑚 𝑒2 {
∗ (𝑥 :𝜏𝑎2) → 𝜏𝑟2

Γ, 𝑥 :𝜏𝑎1 ⊢ 𝑒𝑟 ⇐ 𝜏𝑟1
Γ ⊢ 𝑒𝑎 ⇐ 𝜏𝑎2

Γ ⊢ letcast[𝑒𝑚, 𝑒=] 𝑥 = 𝑒𝑎 in 𝑒𝑟 ⇒ 𝜏𝑟2 [𝑒𝑎/𝑥]

𝑒𝑚 𝑒1 ≃ (𝑥 :𝜏𝑎) → 𝜏𝑟

letcast[𝑒𝑚, (refl : Eq 𝑒1 𝑒2)] 𝑥 = 𝑒𝑎 in 𝑒𝑟 { (𝑒𝑟 : 𝜏𝑟 ) [𝑒𝑎/𝑥]

Fig. 9. Typing rules for the identity type.

4.4.4 Equality types. Figure 9 shows the rules governing the equality (also called identity) type.

The Eq and Refl rules are fairly standard, and while the letcast primitive is non-standard due to

the need to accommodate the constraint that we need to be able to write our code such that all

𝜆-expressions are closed, it is more verbose than complex: its rule simply encodes what a standard

elimination rule like 𝐽 would provide when combined with the convoy pattern [Chlipala 2013].

Similarly the reduction rule is made more complex by the needs to compute the type annotation in

the result. Since the reduction rules are actually untyped, an actual implementation could strip all

type annotations while performing conversion checks.

More importantly, we see in the erasure rules that the letcast is converted to a plain let, since
the equality proof 𝑒= and the elimination motive 𝑒𝑚 are not needed at run time.

4.4.5 Quotient types. Figure 10 shows the rules for our quotient types, which follow the design of

normalizable types [Monnier 2024]. The type erasure rules again turn the elimination into a plain

let, and they also simple erase the two constructors, so we see that all the existential packages, all

the quotienting and its normalization functions, and all the equality proofs disappear after type

erasure as one would expect.

A type Q 𝑒𝑛 is the type of values of type 𝜏1 quotiented by the normalization function 𝑒𝑛 which

returns the canonical representative of each equivalence class. Qin[𝑒𝑛] 𝑒𝑣 is the normal constructor

and behaves a bit like a “smart” constructor in that it comes with a reduction rule which immediately

normalizes it to Qn[𝑒𝑛] (𝑒𝑛 𝑒𝑣). If we consider only the typing rules, such quotients may seem

useless: we could just replace Qin[𝑒𝑛] 𝑒𝑣 with 𝑒𝑛 𝑒𝑣 and do away with all the Q and Qn, and the

code would still type-check. The benefit of our quotient types is elsewhere: since the erasure of

Qin[𝑒𝑛] 𝑒𝑣 is just |𝑒𝑣 |, the normalization does not take place during run-time.

This distinction is crucial for us because our normalization functions return closure objects

containing a non-closed function, so using them at run-time would be simply impossible (or at

least it would defeat the purpose of the closure conversion).
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18 Anon.

(terms) 𝑒, 𝜏 ::= ... | Q 𝑒𝑛 | Qin[𝑒𝑛] 𝑒𝑣 | Qn[𝑒𝑛] 𝑒𝑣
| let[𝑒=] Qin 𝑥 = 𝑒1 in 𝑒2

(eval ctxts) 𝐸 ::= ... | Q 𝐸 | Qn[𝐸] 𝑒 | Qn[𝑒] 𝐸
| let[𝐸] Qin 𝑥 = 𝑒1 in 𝑒2
| let[𝑒=] Qin 𝑥 = 𝐸 in 𝑒2
| let[𝑒=] Qin 𝑥 = 𝑒1 in 𝐸

|Q 𝑒𝑛 | = Q
|Qin[𝑒𝑛] 𝑒𝑣 | = |𝑒𝑣 |
|Qn[𝑒𝑛] 𝑒𝑣 | = |𝑒𝑣 |
|let[𝑒=] Qin 𝑥 = 𝑒1 in 𝑒2 |

= let 𝑥 = |𝑒1 | in |𝑒2 |

Γ ⊢ 𝑒𝑛 ⇒ 𝜏 → 𝜏 Γ ⊢ 𝜏 ⇒ 𝑠

Γ ⊢ Q 𝑒𝑛 ⇒ 𝑠
(Q)

Γ ⊢ 𝑒𝑛 ⇒ 𝜏 → 𝜏 Γ ⊢ 𝑒𝑣 ⇐ 𝜏

Γ ⊢ Qin[𝑒𝑛] 𝑒𝑣 ⇒ Q 𝑒𝑛
(Qin)

Γ ⊢ 𝑒𝑛 ⇒ 𝜏 → 𝜏 Γ ⊢ 𝑒𝑣 ⇐ 𝜏

Γ ⊢ Qn[𝑒𝑛] 𝑒𝑣 ⇒ Q 𝑒𝑛
(Qn)

Γ ⊢ 𝑒1 ⇒ Q 𝑒𝑛
Γ ⊢ 𝑒𝑛 ⇒ 𝜏1 → 𝜏1 Γ, 𝑥 :𝜏1 ⊢ 𝑒2 ⇒ 𝜏2 Γ, 𝑥 :𝜏1 ⊢ 𝑒= ⇐ Eq 𝑒2 (𝑒2 [𝑒𝑛 𝑥/𝑥])

Γ ⊢ let[𝑒=] Qin 𝑥 = 𝑒1 in 𝑒2 ⇒ 𝜏2
(Qout)

Qin[𝑒𝑛] 𝑒 { Qn[𝑒𝑛] (𝑒𝑛 𝑒) let[𝑒=] Qin 𝑥 = Qn[𝑒𝑛] 𝑒𝑣 in 𝑒𝑏 { 𝑒𝑏 [𝑒𝑣/𝑥]

Fig. 10. Quotient types.

The rule Qout first checks that 𝑒1 is well typed, which also returns the type Q 𝑒𝑛 from which

we can extract 𝜏1 which we need to typecheck the body 𝑒2. Finally we check 𝑒= which should

guarantee that 𝑒2 will not expose the differences between quotiented values that belong to the same

equivalence class. We do that by requiring 𝑒= to prove that 𝑒2 returns the same answer whether or

not normalization has been performed, which is the property we need to justify why normalization

is performed during type checking but not during run-time.

In return for this promise not to observe the differences hidden by the quotient, we get a stronger

conversion rule thanks to the eager normalization performed by the reduction of Qin.

4.5 Properties
4.5.1 Properties of our target language. Some of the basic metatheoretic properties of the target

language are easy to establish:

Lemma 4.2 (Term substitution).

Given a well-formed context Γ = Γ1, 𝑥 :𝜏2, Γ2 and Γ1 ⊢ 𝑒2 ⇒ 𝜏2:
If Γ ⊢ 𝑒1 ⇒ 𝜏1 then Γ1, Γ2 ⊢ 𝑒1 [𝑒2/𝑥] ⇒ 𝜏1 [𝑒2/𝑥] and
If Γ ⊢ 𝑒1 ⇐ 𝜏1 then Γ1, Γ2 ⊢ 𝑒1 [𝑒2/𝑥] ⇐ 𝜏1 [𝑒2/𝑥].

Proof. By induction on the typing derivation of 𝑒1. □

Lemma 4.3 (Level substitution).

Given a well-formed context Γ:
If Γ ⊢ 𝑒 ⇒ 𝜏 then Γ [ℓ/𝑙] ⊢ 𝑒 [ℓ/𝑙] ⇒ 𝜏 [ℓ/𝑙] and
If Γ ⊢ 𝑒 ⇐ 𝜏 then Γ [ℓ/𝑙] ⊢ 𝑒 [ℓ/𝑙] ⇐ 𝜏 [ℓ/𝑙]

Proof. By induction on the typing derivation of 𝑒 . □
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(eterms) 𝑒 ::= 𝑥 | 𝜆𝑥.𝑒 | 𝑒1 𝑒2 | ⟨𝑒1, ..., 𝑒𝑛⟩ | 𝑒.𝑖 | let 𝑥 = 𝑒1 in 𝑒2
| U | → | ⟨•⟩ | ∃ | Eq | Q | refl

(econtexts) 𝐸 ::= • | 𝐸1 𝑒2 | 𝑒1 𝐸2 | ⟨ ®𝑒𝑏, 𝐸, ®𝑒𝑎⟩ | 𝐸.𝑖 | let 𝑥 = 𝐸1 in 𝑒2

𝑒1 { 𝑒2 𝑒1 reduces to 𝑒2:

(𝜆𝑥.𝑒1) 𝑒2 { 𝑒1 [𝑒2/𝑥] ⟨𝑒1, ..., 𝑒𝑛⟩.𝑖 { 𝑒𝑖

let 𝑥 = 𝑒1 in 𝑒2 { 𝑒2 [𝑒1/𝑥]
𝑒 { 𝑒′

𝐸 [𝑒] { 𝐸 [𝑒′]

Fig. 11. The type-erased language

Lemma 4.4 (Subject reduction).

Given a well-formed context Γ, if Γ ⊢ 𝑒1 ⇐ 𝜏 and 𝑒1 { 𝑒2, then Γ ⊢ 𝑒2 ⇐ 𝜏 .

Proof. By induction on 𝑒1 { 𝑒2. □

Whether the target language is strongly normalizing is currently unknown. Almost all the

constructs in the language are sufficiently well-understood that we can confidently say that they

do not threaten strong normalization, with the single exception of the U-∃ rule whose soundness

has not been seriously investigated. We discuss this in more detail in Section 6.5.

Type checking can be shown easily to be decidable, since all the rules are designed to represent

an algorithm, with the notable exception of the Red rules which are not syntax directed. Of course,

the proof can only succeed under the assumption that the language is strongly normalizing.

Fig. 11 shows the language used as the target of the erasure operation | · |. The first line of

the terms shows this is simply an untyped lambda calculus with tuples and the rest are simply

constants representing the type constructors of our target language.

Lemma 4.5 (Erasure soundness).

If • ⊢ 𝑒1 ⇐ 𝜏 and |𝑒1 | { 𝑒2, then
there exists an 𝑒3 such that • ⊢ 𝑒3 ⇐ 𝜏 and 𝑒1 ≃ 𝑒3 and |𝑒3 | = 𝑒2.

Proof. By induction on |𝑒1 | { 𝑒2 and • ⊢ 𝑒1 ⇐ 𝜏 . The proof follows the same steps as

in [Monnier 2024]: The crucial ingredient is that we consider only expressions in the empty context.

We rely on canonical forms lemmas to show that if 𝑒1 is one of the elimination forms that get erased

to a let, then the argument has to be reducible to the matching constructor so we can apply the

corresponding reduction rule.

We rely on the same canonical forms lemma in a more subtle form when 𝑒1 is of the form

let[𝑒=] Qin 𝑥 = Qin[𝑒𝑛] 𝑒1 in 𝑒2 which before erasure reduces in two steps to 𝑒2 [𝑒𝑛 𝑒1/𝑥] whereas
after erasure this reduces in one step to |𝑒2 | [ |𝑒1 |/𝑥]: The 𝑒= annotation gives us a proof that

𝑒2 [𝑒𝑛 𝑒1/𝑥] is propositionally equal to 𝑒2 [𝑒1/𝑥] and we use the canonical forms lemma to show

that 𝑒= has to be reducible to refl which means that the two expressions are not just propositionally

but definitionally equal. □

4.5.2 Properties of the closure conversion. Our closure conversion algorithm is designed like a

syntactic model, following the approach advocated in [Boulier et al. 2017].

Lemma 4.6 (substitution commutes).

Given a well-formed source context Γ = Γ1, 𝑥 :𝜏1, Γ2 and Γ1 ⊢ 𝑒2 ⇒ 𝜏1:
If Γ ⊢ 𝑒1 ⇒ 𝜏1 or Γ ⊢ 𝜏1 ⇒ 𝑠 and Γ ⊢ 𝑒1 ⇐ 𝜏1 then ⟦𝑒1 [𝑒2/𝑥]⟧ ≃ ⟦𝑒1⟧ [⟦𝑒2⟧ /𝑥].
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Proof. By induction on 𝑒1. When 𝑒1 is not a lambda expression, the induction is straightforward.

For the lambda case, the closure conversion of the lambda before and after substitution results

in a quite different result since the set of free variables is changed. The proof hinges on the use

of the Qed rule of the quotient type. It starts by using the induction hypothesis to show that

both conversions will return quotients of the same type and hence using the same normalization

function, and then applies on both sides the shared normalization function, which ends up undoing

the closure conversion. □

Lemma 4.7 (Computational soundness).

Given a well-formed source context Γ, if Γ ⊢ 𝑒1 ⇒ 𝜏 and Γ ⊢ 𝑒2 ⇒ 𝜏 and 𝑒1 ≃ 𝑒2,
then ⟦𝑒1⟧ ≃ ⟦𝑒2⟧.

Proof. By induction on the derivation of 𝑒1 ≃ 𝑒2. The non-trivial case is the 𝛽-reduction rule,

where we see again that the various introduction forms used by the encoding of the 𝜆-expression

are all canceled by the corresponding elimination forms of the encoding of the application. □

Lemma 4.8 (Typing soundness).

Given a well-formed source context Γ, if Γ ⊢ 𝑒 ⇒ 𝜏 , then ⟦Γ⟧ ⊢ ⟦𝑒⟧ ⇒ ⟦𝜏⟧.

Proof. This first requires proving that the premises imply that Γ ⊢ 𝜏 ⇒ 𝑠 , without which one

cannot talk about ⟦𝜏⟧. This is a trivial side lemma proved by induction on the typing derivation. The

rest of the proof is by induction on the typing derivation. It is follows the same general structure as

the usual proof of type preservation of closure conversion, such as found in [Savary-Bélanger et al.

2015]. □

Lemma 4.9 (Closedness).

Given a well-formed source context Γ, if Γ ⊢ 𝑒 ⇒ 𝜏 , for all 𝜆-expressions 𝜆𝑥.𝑒′ in | ⟦𝑒⟧ | we have
that fv(𝜆𝑥.𝑒′) = ∅.

Proof. By induction on the typing derivation. Most of the 𝜆𝑥.𝑒 that can occur in the converted

code appear in type annotations and get stripped away by the type erasure, such as the ⟦·⟧
norm

used in the quotient type of functions. The only 𝜆𝑥.𝑒 that still appears in after erasure are the main

ones, which gets stashed on the code slot of the closure, and these are indeed closed thanks to the

let and letcast placed around the body to rebind its free variables. □

5 CLOSURE CONVERTING A BIGGER LANGUAGE
Our source language was purposefully very limited, so that we could focus on the important

elements, but of course we want to be able to scale this to a more realistic language. Luckily, this

source language also hit the most problematic spots of closure conversion, so it is straightforward

to extend our result to a more general source language.

To get started, we can extend our source language with (dependent) tuples, using the same syntax

and rules as we used in our target language. Extending the conversion function to handle these

constructs is simply:

⟦⟨Γ⟩⟧ = ⟨⟦Γ⟧⟩
⟦⟨®𝑒⟩⟧ = ⟨⟦®𝑒⟧⟩
⟦𝑒.𝑖⟧ = ⟦𝑒⟧.𝑖

Adding support for existential types is similarly simple:

⟦∃𝑥 :𝜏1.𝜏2⟧ = ∃𝑥 :⟦𝜏1⟧ . ⟦𝜏2⟧
⟦<𝑒1; 𝑒2>⟧ = < ⟦𝑒1⟧ ; ⟦𝑒2⟧>
⟦let <𝑥1;𝑥2> = 𝑒1 in 𝑒2⟧ = let <𝑥1;𝑥2> = ⟦𝑒1⟧ in ⟦𝑒2⟧
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5.1 Closing the loop
The main motivations for this work is to replace the custom constructs used until now for closure

conversion with more generic ones. Of course, by their generic nature, it is desirable to support

them also in the source language. And indeed we can!

We can easily extend our source language with the same ∃ quantification over universe levels as

we have in our target language. Universe levels are second class citizens which can be erased, just

like types in System-F, so our closures do not need to close over universe level variables, which

means we can use the same simple approach as was used in [Morrisett et al. 1998]:

⟦∃𝑙 .𝜏⟧ = ∃𝑙 . ⟦𝜏⟧
⟦<ℓ ; 𝑒>⟧ = <ℓ ; ⟦𝑒⟧>
⟦let <𝑙 ;𝑥> = 𝑒1 in 𝑒2⟧ = let <𝑙 ;𝑥> = ⟦𝑒1⟧ in ⟦𝑒2⟧

Not shown here: in order for this to work correctly, one has to be careful to define fv(𝑒) such that

it only considers term variables 𝑥 and ignores universe level variables 𝑙 . This can be just as easily

extended with ∀ quantification over universe levels.

Finally, we can extend our source language to be the same as our target language by adding the

remaining equality and quotient types. But this hits a minor hurdle: some of the new constructs

such as letcast or Q take arguments which are expected to be functions so when closure converting

them we have to be careful not to convert their function arguments into closures. There are various

ways to circumvent the problem, but the simplest is to 𝜂-expand them:

⟦Eq 𝑒1 𝑒2⟧ = Eq ⟦𝑒1⟧ ⟦𝑒2⟧
⟦refl⟧ = refl
⟦letcast[𝑒𝑚, 𝑒=] 𝑥 = 𝑒1 in 𝑒2 ⟧ = letcast[𝜆𝑦. ⟦𝑒𝑚 𝑦⟧ , ⟦𝑒=⟧] 𝑥 = ⟦𝑒1⟧ in ⟦𝑒2⟧
⟦Q 𝑒𝑛⟧ = Q (𝜆𝑥. ⟦𝑒𝑛 𝑥⟧)
⟦Qin[𝑒𝑛] 𝑒𝑣⟧ = Qin[𝜆𝑥 . ⟦𝑒𝑛 𝑥⟧] ⟦𝑒𝑣⟧
⟦let[𝑒=] Qin 𝑥 = 𝑒1 in 𝑒2⟧ = let[𝜆𝑥1.𝜆𝑥2.𝜆𝑥= . ⟦𝑒= 𝑥1 𝑥2 𝑥=⟧] Qin 𝑥 = ⟦𝑒1⟧ in ⟦𝑒2⟧

Note that this works only because those places where we need to keep using actual functions

are all erased anyway, so it does not matter if the lambda-expression we generate for them are

not closed. For constructs that take function arguments and whose arguments are not erased, we
would need to find other solutions, like we did with letcast.

With these extensions, our closure conversion algorithm accepts the same input language as its

output language.

6 DISCUSSION
Our aim was to cover a fairly realistic source language and to use a target language that is as

“generic” as we can. Here we discuss several design decisions as well as the limits of our current

work.

6.1 Other attempts
There are very few attempts to implement a type preserving closure conversion of a dependently

typed language in the literature.

The oldest mention we could find is in Monnier and Haguenauer [2010] where the authors do

not actually present a closure conversion, but instead present a conversion from a dependently

typed language to a language where the dependencies are encoded as singleton types, after which

they argue that a more or less standard closure conversion can be used. It is not clear if that would

really work.
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The other one is the work by Bowman and Ahmed [2018], which shows not only the closure

conversion algorithm but also proves that the target language is consistent.

In the vicinity, Bowman et al. [2018] shows how to perform a CPS conversion for a dependently

typed language. It does not rely on custom constructs but does not support a universe hierarchy

and relies on a Prop-style impredicativity which limits it to a single universe.

More recently Koronkevich et al. [2022] attacked the related problem of a conversion to A-normal

form for a dependently typed language. As expected, this proves an easier target and they manage to

handle a language with the full universe tower and without requiring any form of impredicativity.

6.2 Source language features
While our source language does not cover all of the features of a real language like Idris or Agda,

we do cover a significant part. The main missing functionality would be things like inductive types,

coinductive types, a Prop universe, erasable arguments, and linearity.

Based on past experience with type-preserving closure conversion in non-dependent settings,

we do not expect any significant difficulty adding support for inductive types: we already support

dependent tuples and equality types, so fundamentally all that is missing is sum types and recursive

types, neither of which usually interacts in any way with closure conversion, where the type

preservation proof proceeds directly by applying the induction hypothesis. We can of course expect

some superficial obstacles like those that forced us to replace cast with letcast, and clearly there

could be additional complications linked to the usual syntactic termination checks which will likely

tend to get confused by the layers of tuples and letcast added by the closure conversion. At the same

time, the range of difficulties introduced by dependent types during closure conversion cannot be

overstated, so it is of course possible that some nasty surprises may be lurking there, despite our

optimistic expectations. The same should hold for coinductive types.

In contrast, it is very much unclear how an impredicative Prop universe would interact with the

rest of this language. Maybe the fact that terms from the Prop universe can be erased could save

us from having to figure it out. It is also unclear how the impredicativity already provided by our

language compares to that of Prop.
Adding support for erasable arguments and linearity seems to fall in-between. It is not imme-

diately obvious, but it might be feasible: adding those features to the language itself should not

pose any specific difficulty; the main difficulty would be performing closure conversion without

changing the erasability/linearity of variables.

6.3 Efficiency
Performing closure conversion correctly is a good first step, but generating efficient code is also

important. The current closure conversion is not satisfactory in this regard and solving some of

those issues may not be straightforward.

• The main issue with our conversion is that after type erasure, our closures are represented

as pairs of the captured environment and the code. While this is the “official” definition

of a closure, in practice closures are more often implemented by merging the inner tuple

representing the environment with the outer pair, resulting in a single tuple that contains the

code in one field and the free variables in the other fields. Furthermore, the code receives as

argument not just the environment, but the whole closure (since they do not exist separately

any more), requiring a non-trivial form of self-application.

• A more subtle aspect is that it is common to place the code in the first field and the captured

variables afterwards, whereas our encoding requires fundamentally the environment to

come first because the type of the code must refer to the environment. Dependent type
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system always assume a kind of left-to-right ordering of dependencies, but sometimes

practical concerns may require fields to be layed out differently. At the lower level these

ordering issues should not matter, so it would be good to find a way to encode dependencies

separately from the ordering, but how to allow that without breaking the logic is again

unclear.

• Compilation time could also prove to be an issue: our representation of closures before

type erasure is fairly verbose with many layers of wrapping which are meant to be erased

but still cost resources during compilation up until the time we can perform the erasure.

Whether this would prove significant in a real compiler is unclear at this stage, as are the

mitigating measures one could take if needed.

• Another serious limitation of our conversion is that our closures capture the whole set of

transitively free variables, even though at run time only the truly free variables are required.

It should be possible to solve this problem by marking some of the fields in the tuples as

erasable, but we have not investigated this yet.

On the other hand, it should be possible to adapt our conversion algorithm to other non-flat closure

representations such as that of Shao [1997] without changing our target language. This kind of

flexibility is one of the benefits of representing closure objects as normal tuples rather than custom

constructs.

6.4 Quotient types
Our approach is not necessarily tied to the specific choice of quotient type we decided to use,

but the more common presentations of higher inductive types and quotient types do not offer

a strengthened definitional equality, making it necessary to manipulate propositional proofs of

equality between closures. This is turn would require the same kind of efforts as required to convert

code from ETT to ITT [Winterhalter et al. [n. d.]]. We see no reason to think it cannot be made to

work, but we have not tried to work out the details.

Similarly, we have not really tried to make our approach work with other quotient types like

those of Cohen [2013] or Courtieu [2001] which are also based on normalization functions but they

do not seem to be directly usable because they presume that the normalization function will also

be used at run-time, which we cannot afford.

6.5 Impredicative UniverseQuantification
The majority of the features we add to our target language to support closure conversion can be

argued to be not only generic, in the sense that they can have many other uses, but also fairly

standard in the sense that they, or variants of them, are already studied in several other languages.

There is one major exception: the rule we use to type our existential universe types.

While languages like Agda support universe polymorphism as well as existential quantification

over universe levels, they do it in a predicative way, typically placing such a quantified type as ∃𝑙 .𝜏
into a universe over which they cannot quantify, such as U𝜔 , regardless of 𝜏 . There is a fair bit

of recent research around universe polymorphism, such as by Bezem et al. [2022] and Hou et al.

[2023], but they stay within a clearly predicative world or at most accommodate a single Prop-style
impredicative universe, whereas closure conversion cannot preserve types without some form of

impredicativity in all universes.

In contrast to Agda, we place such a type into the universe Uℓ [0/𝑙 ] , making it impredicative. As

explained in Section 3.2, this rule is the one that our closure conversion “suggested”.
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6.5.1 Threats to consistency. While our minimal source language is known to be sound, the logical

consistency of our target language is a big question mark because of its reliance on this novel

notion of impredicativity introduced by more aggressive rules for universe polymorphism.

Whether it makes sense, is an open question. Impredicativity is a well known source of incon-

sistency, which is even the original motivation for the invention of types by Bertrand Russell. So

requiring a new form of impredicativity is potentially problematic. We have not yet been able to

prove the relative consistency of this kind of impredicativity. It is even far from obvious how to go

about doing it.

As mentioned in Section 4.4.3, this is a qualitatively different kind of impredicativity than the

traditional one seen in Prop. In our calculus, the bottom universe 0 is no less predicative than the

others.
2
More importantly, this is not about specific universes being impredicative or not. To some

extent it can be compared to known forms of impredicativity, as was shown by Monnier and Bos

[2019] who prove that a similar impredicative universe quantification rule, applied to ∀ rather than

∃, is able to encode System-F.

6.5.2 Alternatives. We do not know that our calculus is consistent but we can’t see how to type

closure converted code of a source language with a tower of universes without using something

similar to the rules we propose: in a sense, the rules we use arise naturally in our encoding. Of

course, there is always the emergency escape hatch of resorting to custom-made constructs like

the one used in [Bowman and Ahmed 2018].

Our hope is that even if it proves unsound, there might still be a more restrictive version of it

which is sound and which at the same time covers the very specific use we make of it. For example,

our encoding could make do with a simpler construct ∃𝑡 .𝜏 which would be equivalent to ∃𝑙 .∃𝑡 :U𝑙 .𝜏

but without giving access to 𝑙 .

While the rule we use may ultimately prove dangerous in general, we do believe it to give the

correct result for the specific case where the existential type is the form we use because those

existential types are equivalent to the closures they represent from our source language, which is

known to be consistent and does not involve any impredicativity: since the 𝑙 of an object of type

∃𝑙 .𝜏 is erasable, we cannot extract 𝑙 out of it, nor can we extract from it any type that belongs to

U𝑙 (such as the 𝑡 of the inner existential), nor for that matter any value whose type belongs to U𝑙

(such as the field env) or contains an element that belongs to U𝑙 (such as the field code), so really,

the only thing we can do with those closure objects is to call them.

6.5.3 Signs of consistency. In the specific way the ∃ quantification is used here, the rules proposed

seem eminently reasonable: they place the closure objects right in the exact same universe level

that their original 𝜆-expression occupied in the source code. Sadly, that does not guarantee that

they are sound in general.

This said, we have attempted to encode known paradoxes such as that of Hurkens [1995] in

our target language system, and so far those attempts have not borne fruits. To give an example,

some of those paradoxes begin by defining something like an ordering, represented by a type of

the form ⟨𝑡 :Uℓ , < : 𝑡 → 𝑡 → U, ...⟩ and then want to define the ordering of all orderings, which

requires some form of impredicativity. To make use of our impredicativity the natural choice is to

use a type like ∃𝑙 .⟨𝑡 :U𝑙 , < : 𝑡 → 𝑡 → U, ...⟩, but then we aren’t able to define an ordering between

elements of this type because we cannot extract much useful information out of it, for the same

reasons as mentioned above: since universe levels are second class we cannot project them out of

the existential, which then prevents us from projecting the field 𝑡 because its type would require

2
Actually, one could argue that our U0 is “more predicative” since, as we noted in that same section, ∃𝑙 .𝜏 can belong to

universe 0 only in trivial cases.
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projecting 𝑙 , and this in turn also prevents us from projecting anything that mentions 𝑙 or 𝑡 out of

this structure. So while it is not known to be consistent, it is currently not known to be inconsistent

either. Of course it might be just a reflection of our inexperience.

Our intuition as for why impredicative universe quantification may not be completely crazy

is that the second-class status of universe levels makes universe polymorphic definitions enjoy

a strong form of parametricity. Agda’s position says that ∀𝑙 .𝜏 can be modeled as a set theoretic

function which for every level 𝑙 returns the corresponding 𝜏 , so this function is clearly very large

since it includes all the possible 𝜏 one can get for all the possible levels with which we can instantiate

it. For this reason, if Γ ⊢ 𝜏 : Uℓ Agda places ∀𝑙 .𝜏 in the universe sup𝑙 ℓ which they represent as 𝜔 .

Our typing rules basically take the opposite position, considering that the type ∀𝑙 .𝜏 is arguably

smaller than any given instantiation of 𝜏 since it only holds those rare functions which can be used

at any universe level (just like the type ∀𝑡 .𝑡 → 𝑡 is so small that it only contains a single element),

so it places it in the universe inf𝑙 ℓ , hence ℓ [0/𝑙].

7 CONCLUSION
We have shown a target language together with a closure conversion algorithm that is able to

handle a source language with dependent types, a tower of universes, and all that without resorting

to the use of custom-made constructs. We also sketched how to extend it with tuples and all the

other features supported by the target language, including universe polymorphism.

The main ingredients to get that novel result are quotient types and impredicative universe

polymorphism, the latter of which is an as-yet poorly understood feature that will require further

study to find out if it is consistent, and if not, whether some weaker form can be found that preserves

consistency while still allowing uses such as closure conversion.
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A PROOFS
Lemma 4.6 (substitution commutes).

Given a well-formed source context Γ = Γ1, 𝑥 :𝜏1, Γ2 and Γ1 ⊢ 𝑒2 ⇒ 𝜏1:
If Γ ⊢ 𝑒1 ⇒ 𝜏1 or Γ ⊢ 𝜏1 ⇒ 𝑠 and Γ ⊢ 𝑒1 ⇐ 𝜏1 then ⟦𝑒1 [𝑒2/𝑥]⟧ ≃ ⟦𝑒1⟧[⟦𝑒2⟧/𝑥].

Proof. By induction on the typing derivation of 𝑒1.

• Case 𝑒1 = 𝑥𝑣 :

if 𝑥 ≠ 𝑥𝑣 then ⟦𝑥𝑣⟧ [⟦𝑒2⟧/𝑥] = 𝑥𝑣 [⟦𝑒2⟧/𝑥] = 𝑥𝑣 = ⟦𝑥𝑣⟧ = ⟦𝑥𝑣 [𝑒2/𝑥]⟧
otherwise ⟦𝑥⟧ [⟦𝑒2⟧/𝑥] = 𝑥 [⟦𝑒2⟧/𝑥] = ⟦𝑒2⟧ = ⟦𝑥 [𝑒2/𝑥]⟧

• Case 𝑒1 = Uℓ , trivial: ⟦Uℓ⟧ [⟦𝑒2⟧/𝑥] = Uℓ [⟦𝑒2⟧/𝑥] = Uℓ = ⟦Uℓ⟧ = ⟦Uℓ [𝑒2/𝑥]⟧

• Case 𝑒1 = (𝑀 : 𝜏1), more specifically:

Γ ⊢ 𝜏1 ⇒ 𝑠 Γ ⊢ 𝑀 ⇐ 𝜏

Γ ⊢ (𝑀 : 𝜏1) ⇒ 𝜏1

By induction we have

⟦𝑀 [𝑒2/𝑥]⟧ ≃ ⟦𝑀⟧[⟦𝑒2⟧/𝑥]
and

⟦𝜏1 [𝑒2/𝑥]⟧ ≃ ⟦𝜏1⟧[⟦𝑒2⟧/𝑥]
And thus

⟦𝑀 [𝑒2/𝑥]⟧ ≃ ⟦𝑀⟧[⟦𝑒2⟧/𝑥] ⟦𝜏1 [𝑒2/𝑥]⟧ ≃ ⟦𝜏1⟧[⟦𝑒2⟧/𝑥]
(⟦𝑀 [𝑒2/𝑥]⟧ : ⟦𝜏1 [𝑒2/𝑥]⟧) ≃ (⟦𝑀⟧[⟦𝑒2⟧/𝑥] : ⟦𝜏1⟧[⟦𝑒2⟧/𝑥])

⟦(𝑀 [𝑒2/𝑥] : 𝜏1 [𝑒2/𝑥])⟧ ≃ (⟦𝑀⟧ : ⟦𝜏1⟧)[⟦𝑒2⟧/𝑥]
⟦(𝑀 : 𝜏1) [𝑒2/𝑥]⟧ ≃ ⟦(𝑀 : 𝜏1)⟧[⟦𝑒2⟧/𝑥]

• Case 𝑒1 = 𝑒𝑓 𝑒𝑎 , more specifically:

Γ ⊢ 𝑒𝑓 ⇒ (𝑥 :𝜏𝑎) → 𝜏𝑟 Γ ⊢ 𝑒𝑎 ⇐ 𝜏𝑎

Γ ⊢ 𝑒𝑓 𝑒𝑎 ⇒ 𝜏𝑟 [(𝑒𝑎 :𝜏𝑎)/𝑥]

By induction we have �
𝑒𝑓 [𝑒2/𝑥]

�
≃
�
𝑒𝑓
�
[⟦𝑒2⟧/𝑥]

and

⟦𝑒𝑎 [𝑒2/𝑥]⟧ ≃ ⟦𝑒𝑎⟧[⟦𝑒2⟧/𝑥]
And thus

�
𝑒𝑓 [𝑒2/𝑥]

�
≃
�
𝑒𝑓
�
[⟦𝑒2⟧/𝑥] ⟦𝑒𝑎 [𝑒2/𝑥]⟧ ≃ ⟦𝑒𝑎⟧[⟦𝑒2⟧/𝑥]

(let[refl] Qin 𝑐 =
�
𝑒𝑓 [𝑒2/𝑥]

�
in call 𝑐 ⟦𝑒𝑎 [𝑒2/𝑥]⟧) ≃ (let[refl] Qin 𝑐 =

�
𝑒𝑓
�
[⟦𝑒2⟧/𝑥] in call 𝑐 ⟦𝑒𝑎⟧[⟦𝑒2⟧/𝑥])�

(𝑒𝑓 [𝑒2/𝑥] 𝑒𝑎 [𝑒2/𝑥])
�
≃ (let[refl] Qin 𝑐 =

�
𝑒𝑓
�
in call 𝑐 ⟦𝑒𝑎⟧)[⟦𝑒2⟧/𝑥]�

(𝑒𝑓 𝑒𝑎) [𝑒2/𝑥]
�
≃
�
𝑒𝑓 𝑒𝑎

�
[⟦𝑒2⟧/𝑥]
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28 Anon.

We assume here that 𝑐 is appropriately renamed to avoid name capture.

• Case 𝑒1 = 𝜆𝑥𝑎 .𝑒 , more specifically:

Γ, 𝑥𝑎 :𝜏𝑎 ⊢ 𝑒 ⇐ 𝜏𝑟

Γ ⊢ 𝜆𝑥𝑎 .𝑒 ⇐ ((𝑥𝑎 :𝜏𝑎) → 𝜏𝑟 )

We also know that

Γ ⊢ 𝜏𝑎 ⇒ Uℓ𝑎 Γ, 𝑥𝑎 :𝜏𝑎 ⊢ 𝜏𝑟 ⇒ Uℓ𝑟 ℓ = max(ℓ𝑎, ℓ𝑟 )
Γ ⊢ (𝑥𝑎 :𝜏𝑎) → 𝜏𝑟 ⇒ Uℓ

and thus

Γ1, Γ2, 𝑥𝑎 :𝜏𝑎 [⟦𝑒2⟧/𝑥] ⊢ 𝑒 [⟦𝑒2⟧/𝑥] ⇐ 𝜏𝑟 [⟦𝑒2⟧/𝑥]
Γ1, Γ2 ⊢ 𝜆𝑥𝑎 .𝑒 [⟦𝑒2⟧/𝑥] ⇐ ((𝑥𝑎 :𝜏𝑎 [⟦𝑒2⟧/𝑥]) → 𝜏𝑟 [⟦𝑒2⟧/𝑥])

By induction we have

⟦𝑒 [𝑒2/𝑥]⟧ ≃ ⟦𝑒⟧[⟦𝑒2⟧/𝑥]

and

⟦𝜏𝑎 [𝑒2/𝑥]⟧ ≃ ⟦𝜏𝑎⟧[⟦𝑒2⟧/𝑥]

and

⟦𝜏𝑟 [𝑒2/𝑥]⟧ ≃ ⟦𝜏𝑟⟧[⟦𝑒2⟧/𝑥]

and

⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧ ≃ ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧[⟦𝑒2⟧/𝑥]

We’re trying to prove ⟦𝜆𝑥𝑎 .𝑒 [𝑒2/𝑥]⟧ ≃ ⟦𝜆𝑥𝑎 .𝑒⟧[⟦𝑒2⟧/𝑥].
For simplicity, in the closure conversion we presume that tfv just returns all the vars, so Γ′ = Γ and

®𝑥 = Dom(Γ).
⟦𝜆𝑥𝑎 .𝑒 [𝑒2/𝑥]⟧ expands to:

Qin[⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧norm]
(<ℓ ;<⟨⟦Γ1, Γ2⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>> : ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner)

where Γ1, Γ2 ⊢ ⟨Γ1, Γ2⟩ ⇒ Uℓ Compute the universe level ℓ

®𝑥 = Dom(Γ1, Γ2)
𝑓𝑚 = 𝜆⟨®𝑥⟩.(𝑥𝑎 :⟦𝜏𝑎 [𝑒2/𝑥]⟧) → ⟦𝜏𝑟 [𝑒2/𝑥]⟧ The motive of the cast
body = letcast[𝑓𝑚, 𝑥=] 𝑥𝑎 = 𝑥 ′𝑎 in

let ⟨®𝑥⟩ = 𝑥𝑒 in ⟦𝑒 [𝑒2/𝑥]⟧

The normalization argument passed to Qin reduces to:

cnorm
= ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧norm
= (𝜆𝑐.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.call 𝑐 𝑥𝑎⟩>>

: ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner → ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner)
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so the whole Qin reduces to:

Qin[cnorm]
(<ℓ ;<⟨⟦Γ1, Γ2⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>> : ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner)

= { Reduce Qin to Qn }
Qn[cnorm]

((𝜆𝑐.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.call 𝑐 𝑥𝑎⟩>>)
(<ℓ ;<⟨⟦Γ1, Γ2⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>> : ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner))

= { 𝛽-reduce }
Qn[cnorm]

(<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.call
(
<ℓ ;<⟨⟦Γ1, Γ2⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>>
: ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner

)
𝑥𝑎⟩>>)

= { Inline+reduce: call 𝑐 𝑥 = let <𝑙 ;<𝑡 ; ⟨env, code⟩>> = 𝑐 in code ⟨env, 𝑥, refl⟩ }
Qn[cnorm] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.((𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body) ⟨⟨®𝑥⟩, 𝑥𝑎, refl⟩)⟩>>)
= { Reduce further }
Qn[cnorm] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.(body [⟨®𝑥⟩/𝑥𝑒 , 𝑥𝑎/𝑥 ′𝑎, refl/𝑥=])⟩>>)
= { Expose body }
Qn[cnorm]

(<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.(
(
letcast[𝑓𝑚, 𝑥=] 𝑥𝑎 = 𝑥 ′𝑎 in
let ⟨®𝑥⟩ = 𝑥𝑒 in ⟦𝑒 [𝑒2/𝑥]⟧

)
[⟨®𝑥⟩/𝑥𝑒 , 𝑥𝑎/𝑥 ′𝑎, refl/𝑥=])⟩>>)

= { Substitute into body }

Qn[cnorm] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.
(
letcast[𝑓𝑚, refl] 𝑥𝑎 = 𝑥𝑎 in
let ⟨®𝑥⟩ = ⟨®𝑥⟩ in ⟦𝑒 [𝑒2/𝑥]⟧

)
⟩>>)

= { Reduce }
Qn[cnorm] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩. ⟦𝑒 [𝑒2/𝑥]⟧⟩>>)

Now for ⟦𝜆𝑥𝑎 .𝑒⟧[⟦𝑒2⟧/𝑥], it expands to:

(Qin[⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧norm]
(<ℓ ;<⟨⟦Γ⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>> : ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner)) [⟦𝑒2⟧/𝑥]

where Γ ⊢ ⟨Γ⟩ ⇒ Uℓ Compute the universe level ℓ

®𝑥 = Dom(Γ)
𝑓𝑚 = 𝜆⟨®𝑥⟩.(𝑥𝑎 :⟦𝜏𝑎⟧) → ⟦𝜏𝑟⟧ The motive of the cast
body = letcast[𝑓𝑚, 𝑥=] 𝑥𝑎 = 𝑥 ′𝑎 in

let ⟨®𝑥⟩ = 𝑥𝑒 in ⟦𝑒⟧

After distributing the substitution to both arguments of Qin, the normalization argument passed to

Qin reduces to:

cnorm′

= ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧norm [⟦𝑒2⟧/𝑥]
= (𝜆𝑐.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.call 𝑐 𝑥𝑎⟩>>

: (⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner → ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner) [⟦𝑒2⟧/𝑥])
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30 Anon.

The whole Qin reduces as follows:

Qin[cnorm′]
(<ℓ ;<⟨⟦Γ⟧⟩; ⟨⟨®𝑥⟩[⟦𝑒2⟧/𝑥], 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body [⟦𝑒2⟧/𝑥]⟩>> : ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner [⟦𝑒2⟧/𝑥])

= { Reduce Qin to Qn }
Qn[cnorm′]

((𝜆𝑐.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.call 𝑐 𝑥𝑎⟩>>)
(<ℓ ;<⟨⟦Γ⟧⟩; ⟨⟨®𝑥⟩[⟦𝑒2⟧/𝑥], 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body [⟦𝑒2⟧/𝑥]⟩>> : ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner [⟦𝑒2⟧/𝑥]))

= { 𝛽-reduce }
Qn[cnorm′]

(<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.call
(
<ℓ ;<⟨⟦Γ⟧⟩; ⟨⟨®𝑥⟩[⟦𝑒2⟧/𝑥], 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body [⟦𝑒2⟧/𝑥]⟩>>

)
𝑥𝑎⟩>>)

= { Inline+reduce: call 𝑐 𝑥 = let <𝑙 ;<𝑡 ; ⟨env, code⟩>> = 𝑐 in code ⟨env, 𝑥, refl⟩ }
Qn[cnorm′] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.((𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body [⟦𝑒2⟧/𝑥]) ⟨⟨®𝑥⟩[⟦𝑒2⟧/𝑥], 𝑥𝑎, refl⟩)⟩>>)
= { Reduce further }
Qn[cnorm′] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.(body [⟦𝑒2⟧/𝑥] [⟨®𝑥⟩[⟦𝑒2⟧/𝑥]/𝑥𝑒 , 𝑥𝑎/𝑥 ′𝑎, refl/𝑥=])⟩>>)
= { Swap the two substitutions }
Qn[cnorm′] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.(body [⟨®𝑥⟩/𝑥𝑒 , 𝑥𝑎/𝑥 ′𝑎, refl/𝑥=] [⟦𝑒2⟧/𝑥])⟩>>)
= { Expose body }
Qn[cnorm′]

(<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.(
(
letcast[𝑓𝑚, 𝑥=] 𝑥𝑎 = 𝑥 ′𝑎 in
let ⟨®𝑥⟩ = 𝑥𝑒 in ⟦𝑒⟧

)
[⟨®𝑥⟩/𝑥𝑒 , 𝑥𝑎/𝑥 ′𝑎, refl/𝑥=] [⟦𝑒2⟧/𝑥])⟩>>)

= { Substitute into body }

Qn[cnorm′] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.
(
letcast[𝑓𝑚, refl] 𝑥𝑎 = 𝑥𝑎 in
let ⟨®𝑥⟩ = ⟨®𝑥⟩ in ⟦𝑒⟧

)
[⟦𝑒2⟧/𝑥]⟩>>)

= { Reduce }
Qn[cnorm′] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.⟦𝑒⟧[⟦𝑒2⟧/𝑥]⟩>>)

Note that the ®𝑥 of captured variables in the two developments are not identical: in one it includes 𝑥

and in the other it doesn’t, but the Qin normalization successfully hides the difference.

So, now we need to show:

Qn[cnorm′] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.⟦𝑒⟧[⟦𝑒2⟧/𝑥]⟩>>)
≃
Qn[cnorm] (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩. ⟦𝑒 [𝑒2/𝑥]⟧⟩>>)

We already know that ⟦𝑒⟧[⟦𝑒2⟧/𝑥] ≃ ⟦𝑒 [𝑒2/𝑥]⟧, so we only need to show cnorm ≃ cnorm′
:

cnorm = (𝜆𝑐.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.call 𝑐 𝑥𝑎⟩>>
: ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner → ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner)

cnorm′ = (𝜆𝑐.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.call 𝑐 𝑥𝑎⟩>>
: (⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner → ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner) [⟦𝑒2⟧/𝑥])
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so we just need to show ⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner ≃ (⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner) [⟦𝑒2⟧/𝑥]:

⟦(𝑥𝑎 :𝜏𝑎 [𝑒2/𝑥]) → 𝜏𝑟 [𝑒2/𝑥]⟧inner
= { by definition }
∃𝑙 .∃𝑡 :U𝑙 .⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏𝑎 [𝑒2/𝑥]⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏𝑟 [𝑒2/𝑥]⟧ ⟩
≃ { by induction }
∃𝑙 .∃𝑡 :U𝑙 .⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏𝑎⟧ [⟦𝑒2⟧/𝑥], 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏𝑟⟧ [⟦𝑒2⟧/𝑥] ⟩
= { by hoisting&consolidating the substitutions }
(∃𝑙 .∃𝑡 :U𝑙 .⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏𝑎⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏𝑟⟧ ⟩) [⟦𝑒2⟧/𝑥]
= { by definition }
(⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner) [⟦𝑒2⟧/𝑥]

• Case 𝑒1 = (𝑥𝑎 :𝜏𝑎) → 𝜏𝑟 . This was already done as a subproblem of the lambda case.

□

Lemma 4.7 (Computational soundness).

Given a well-formed source context Γ, if Γ ⊢ 𝑒1 ⇒ 𝜏 and Γ ⊢ 𝑒2 ⇒ 𝜏 and 𝑒1 ≃ 𝑒2,
then ⟦𝑒1⟧ ≃ ⟦𝑒2⟧.

Proof. Since 𝑒1 ≃ 𝑒2 is defined in terms of{, the proof is really performed by proving that if

Γ ⊢ 𝑒1 ⇒ 𝜏 and Γ ⊢ 𝑒2 ⇒ 𝜏 and 𝑒1 { 𝑒2, then ⟦𝑒1⟧ ≃ ⟦𝑒2⟧, which proceeds by induction on the

derivation of 𝑒1 { 𝑒2.

• Case (𝑁 : 𝜏) { 𝑁 : trivial.

• Case 𝐸 [𝑒] { 𝐸 [𝑒′]: By induction hypothesis, because inspection reveals that for all the possible

source evaluation contexts 𝐸, the ⟦𝐸 [𝑒]⟧ conversion always generates code of the form 𝐸′ [⟦𝑒⟧]
for some target evaluation context 𝐸′

.

• Case ((𝜆𝑥 .𝑒1) : (𝑥 :𝜏1) → 𝜏2) 𝑒2 { (𝑒1 : 𝜏2) [(𝑒2 : 𝜏1)/𝑥]:
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32 Anon.

We need to show ⟦((𝜆𝑥𝑎 .𝑒1) : (𝑥 :𝜏𝑎) → 𝜏𝑟 ) 𝑒2⟧ ≃ ⟦(𝑒1 : 𝜏𝑟 ) [(𝑒2 : 𝜏𝑎)/𝑥𝑎]⟧:

⟦((𝜆𝑥𝑎 .𝑒1) : (𝑥 :𝜏𝑎) → 𝜏𝑟 ) 𝑒2⟧
= {By definition of ⟦·⟧ for applications}
let[refl] Qin 𝑐 = ⟦((𝜆𝑥𝑎 .𝑒1) : (𝑥 :𝜏𝑎) → 𝜏𝑟 )⟧ in call 𝑐 ⟦𝑒2⟧
= {By definition of ⟦·⟧ for type annotations}
let[refl] Qin 𝑐 = (⟦𝜆𝑥𝑎 .𝑒1⟧ : ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧) in call 𝑐 ⟦𝑒2⟧
= { By definition of ⟦·⟧ for 𝜆}
let[refl] Qin 𝑐 = (Qin[⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧norm]

(<ℓ ;<⟨⟦Γ′⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>>
: ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner)

: ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧)
in call 𝑐 ⟦𝑒2⟧
{∗ { Reduce Qin to Qn }
let[refl] Qin 𝑐 = (Qn[⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧norm]

((𝜆𝑐.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.call 𝑐 𝑥𝑎⟩>>)
<ℓ ;<⟨⟦Γ′⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>>
: ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner)

: ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧)
in call 𝑐 ⟦𝑒2⟧
{∗ { 𝛽-reduce, then inline+reduce call }
let[refl] Qin 𝑐 = (Qn[⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧norm]

(<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.(𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body) ⟨⟨®𝑥⟩, 𝑥𝑎, refl⟩⟩>>
: ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner)

: ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧)
in call 𝑐 ⟦𝑒2⟧
{∗ { Reduce the quotient then inline call }
let <𝑙 ;<𝑡 ; ⟨env, code⟩>> = (<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.(𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body) ⟨⟨®𝑥⟩, 𝑥𝑎, refl⟩⟩>>

: ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner)
in code ⟨env, ⟦𝑒2⟧ , refl⟩
{∗ { Reduce }
(𝜆⟨𝑥𝑒 , 𝑥𝑎, 𝑝⟩.(𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body) ⟨⟨®𝑥⟩, 𝑥𝑎, refl⟩) ⟨⟨⟩, ⟦𝑒2⟧ , refl⟩
{∗ { Reduce }
(𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body) ⟨⟨®𝑥⟩, ⟦𝑒2⟧ , refl⟩
{∗ { Expand body, 𝛽-reduce, and (re)display the type annotations }
letcast[𝑓𝑚, refl] 𝑥𝑎 = (⟦𝑒2⟧ : ⟦𝜏𝑎⟧) in
let ⟨®𝑥⟩ = ⟨®𝑥⟩ in ⟦𝑒1⟧
{∗ { Expand fm }
letcast[(𝜆⟨®𝑥⟩.(𝑥𝑎 :⟦𝜏𝑎⟧) → ⟦𝜏𝑟⟧), refl] 𝑥𝑎 = (⟦𝑒2⟧ : ⟦𝜏𝑎⟧) in
let ⟨®𝑥⟩ = ⟨®𝑥⟩ in ⟦𝑒1⟧
{∗ { Reduce the lets }
(⟦𝑒1⟧ : ⟦𝜏𝑟⟧)[(⟦𝑒2⟧ : ⟦𝜏𝑎⟧)/𝑥𝑎]
= { By definition of ⟦·⟧ for type annotations }
⟦(𝑒1 : 𝜏𝑟 )⟧ [⟦(𝑒2 : 𝜏𝑎)⟧ /𝑥𝑎]
≃ { By lemma 4.6 }
⟦(𝑒1 : 𝜏𝑟 ) [(𝑒2 : 𝜏𝑎)/𝑥𝑎]⟧

□
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Lemma 4.8 (Typing soundness).

Given a well-formed source context Γ, if Γ ⊢ 𝑒 ⇒ 𝜏 , then ⟦Γ⟧ ⊢ ⟦𝑒⟧ ⇒ ⟦𝜏⟧.

Proof. The proof proceeds by induction on the typing derivation, with a strengthen induction

where we also have Γ ⊢ 𝑒 ⇐ 𝜏 , then ⟦Γ⟧ ⊢ ⟦𝑒⟧ ⇐ ⟦𝜏⟧.

• Case 𝑥 , more specifically:

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 ⇒ 𝜏

The proof is trivial:

⟦Γ⟧ (𝑥) = ⟦𝜏⟧
⟦Γ⟧ ⊢ 𝑥 ⇒ ⟦𝜏⟧

⟦Γ⟧ ⊢ ⟦𝑥⟧ ⇒ ⟦𝜏⟧

• Case 𝑒1 𝑒2, more specifically:

Γ ⊢ 𝑒1 ⇒ (𝑥 :𝜏1) → 𝜏2 Γ ⊢ 𝑒2 ⇐ 𝜏1

Γ ⊢ 𝑒1 𝑒2 ⇒ 𝜏2 [(𝑒2 :𝜏1)/𝑥]
By induction we have

⟦Γ⟧ ⊢ ⟦𝑒1⟧ ⇒ ⟦(𝑥 :𝜏1) → 𝜏2⟧
and

⟦Γ⟧ ⊢ ⟦𝑒2⟧ ⇐ ⟦𝜏1⟧
First we can show that call 𝑐 ⟦𝑒2⟧ : ⟦𝜏2⟧:

⟦Γ⟧ ⊢ ⟦𝑒2⟧ ⇐ ⟦𝜏1⟧
⟦Γ⟧ , 𝑐 :⟦(𝑥 :𝜏1) → 𝜏2⟧inner , 𝑡 :U𝑙 , env :𝑡, code : ... ⊢ ⟦𝑒2⟧ ⇐ ⟦𝜏1⟧

⟦Γ⟧ , 𝑐 : ..., 𝑡 :U𝑙 , env :𝑡, code : ... ⊢ ⟨env, ⟦𝑒2⟧ , refl⟩ ⇐ ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩
⟦Γ⟧ , 𝑐 : ..., 𝑡 :U𝑙 , ..., env :𝑡, code : ... ⊢ code ⟨env, ⟦𝑒2⟧ , refl⟩ ⇐ ⟦𝜏2⟧ [(⟦𝑒2⟧ : ⟦𝜏1⟧)/𝑥]

⟦Γ⟧ , 𝑐 : ..., 𝑡 :U𝑙 , 𝑐2 : ... ⊢ let ⟨env, code⟩ = 𝑐2 in code ⟨env, ⟦𝑒2⟧ , refl⟩ ⇐ ⟦𝜏2⟧ [(⟦𝑒2⟧ : ⟦𝜏1⟧)/𝑥]
⟦Γ⟧ , 𝑐 : ..., 𝑐1 : ... ⊢ let <𝑡 ; ⟨env, code⟩> = 𝑐1 in code ⟨env, ⟦𝑒2⟧ , refl⟩ ⇐ ⟦𝜏2⟧ [(⟦𝑒2⟧ : ⟦𝜏1⟧)/𝑥]
⟦Γ⟧ , 𝑐 : ... ⊢ let <𝑙 ;<𝑡 ; ⟨env, code⟩>> = 𝑐1 in code ⟨env, ⟦𝑒2⟧ , refl⟩ ⇐ ⟦𝜏2⟧ [(⟦𝑒2⟧ : ⟦𝜏1⟧)/𝑥]

⟦Γ⟧ , 𝑐 :⟦(𝑥 :𝜏1) → 𝜏2⟧inner ⊢ call 𝑐 ⟦𝑒2⟧ ⇐ ⟦𝜏2⟧ [(⟦𝑒2⟧ : ⟦𝜏1⟧)/𝑥]

Then we can show refl : Eq (call 𝑐 ⟦𝑒2⟧) (call 𝑐 ⟦𝑒2⟧ [⟦(𝑥 :𝜏1) → 𝜏2⟧norm 𝑐/𝑐]) which we will need
below in the code which extracts the closure from the quotient. The proof is not shown because it

follows the same pattern as the reductions we’ve seen in the proof of lemma 4.7.

With that, we can conclude:

⟦Γ⟧ , 𝑐 :⟦(𝑥 :𝜏1) → 𝜏2⟧inner ⊢ call 𝑐 ⟦𝑒2⟧ ⇐ ⟦𝜏2⟧ [(⟦𝑒2⟧ : ⟦𝜏1⟧)/𝑥]
⟦Γ⟧ ⊢ ⟦𝑒1⟧ ⇒ ⟦(𝑥 :𝜏1) → 𝜏2⟧

⟦Γ⟧ ⊢ ⟦𝑒1⟧ ⇒ Q ⟦(𝑥 :𝜏1) → 𝜏2⟧norm
⟦Γ⟧ ⊢ let[refl] Qin 𝑐 = ⟦𝑒1⟧ in call 𝑐 ⟦𝑒2⟧ ⇒ ⟦𝜏2⟧ [(⟦𝑒2⟧ : ⟦𝜏1⟧)/𝑥]

⟦Γ⟧ ⊢ ⟦𝑒1 𝑒2⟧ ⇒ ⟦𝜏2⟧ [(⟦𝑒2⟧ : ⟦𝜏1⟧)/𝑥]
⟦Γ⟧ ⊢ ⟦𝑒1 𝑒2⟧ ⇒ ⟦𝜏2⟧ [⟦(𝑒2 : 𝜏1)⟧ /𝑥]
⟦Γ⟧ ⊢ ⟦𝑒1 𝑒2⟧ ⇒ ⟦𝜏2 [(𝑒2 : 𝜏1)/𝑥]⟧
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34 Anon.

• Case (𝑥 :𝜏1) → 𝜏2, more specifically:

Γ ⊢ 𝜏1 ⇒ Uℓ1 Γ, 𝑥 :𝜏1 ⊢ 𝜏2 ⇒ Uℓ2 ℓ3 = max(ℓ1, ℓ2)
Γ ⊢ (𝑥 :𝜏1) → 𝜏2 ⇒ Uℓ3

By the induction hypothesis we have:

⟦Γ⟧ ⊢ ⟦𝜏1⟧ ⇒ ⟦Uℓ1⟧

and

⟦Γ, 𝑥 :𝜏1⟧ ⊢ ⟦𝜏2⟧ ⇒ ⟦Uℓ2⟧

We start by checking the type of ⟦(𝑥 :𝜏1) → 𝜏2⟧inner:

⟦Γ⟧ ⊢ ⟦𝜏1⟧ ⇒ ⟦Uℓ1⟧
⟦Γ⟧ , 𝑡 :U𝑙 , env :𝑡 ⊢ ⟦𝜏1⟧ ⇒ Uℓ1

⟦Γ⟧ , 𝑡 :U𝑙 , env :𝑡 ⊢ ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ ⇒ U( (1 ⊔ 𝑙 ) ⊔ ℓ1 ) ⊔ 𝑙

⟦Γ, 𝑥 :𝜏1⟧ ⊢ ⟦𝜏2⟧ ⇒ ⟦Uℓ2⟧
⟦Γ⟧ , ..., 𝑥 :⟦𝜏1⟧ ⊢ ⟦𝜏2⟧ ⇒ Uℓ2

⟦Γ⟧ , 𝑡 :U𝑙 , env :𝑡 ⊢ ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧ ⇒ U( ( (1 ⊔ 𝑙 ) ⊔ ℓ1 ) ⊔ 𝑙 ) ⊔ ℓ2

⟦Γ⟧ , 𝑡 :U𝑙 ⊢ ⟨env :𝑡, code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧⟩ ⇒ U𝑙 ⊔ ( ( ( (1 ⊔ 𝑙 ) ⊔ ℓ1 ) ⊔ 𝑙 ) ⊔ ℓ2 )

⟦Γ⟧ ⊢ ∃𝑡 :U𝑙 .⟨env : 𝑡, code : ...⟩ ⇒ U(𝑆 𝑙 ) ⊔ (𝑙 ⊔ ( ( ( (1 ⊔ 𝑙 ) ⊔ ℓ1 ) ⊔ 𝑙 ) ⊔ ℓ2 ) )

⟦Γ⟧ ⊢ ∃𝑙 .∃𝑡 :U𝑙 .⟨env :𝑡, code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧⟩ ⇒ Uℓ3

⟦Γ⟧ ⊢ ⟦(𝑥 :𝜏1) → 𝜏2⟧inner ⇒ Uℓ3

The non-obvious step above is when the universe levels turn into ℓ3 when the impredicative universe

rule replaces 𝑙 by 0, because:

(𝑆 𝑙) ⊔ (𝑙 ⊔ ((((1 ⊔ 𝑙) ⊔ ℓ1) ⊔ 𝑙) ⊔ ℓ2)) [0/𝑙]
=

(𝑆 0) ⊔ (0 ⊔ ((((1 ⊔ 0) ⊔ ℓ1) ⊔ 0) ⊔ ℓ2))
{∗

1 ⊔ ((1 ⊔ ℓ1) ⊔ ℓ2)
{∗ { ℓ1 and ℓ2 are constants ≥ 1 }
max(ℓ1, ℓ2)
=

ℓ3

Finally we check the quotiented type:
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⟦Γ⟧ , 𝑐 : ..., ..., 𝑥 :⟦𝜏1⟧ , ..., 𝑡 :U𝑙 , ..., 𝑐2 : ⟨env :𝑡, code : ...⟩ ⊢ ⟨𝑐2.1, 𝑥, refl⟩ ⇐ ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩
⟦Γ⟧ , 𝑐 : ..., ..., 𝑡 :U𝑙 , ..., 𝑐2 : ⟨env :𝑡, code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧⟩ ⊢ 𝑐2.2 ⟨𝑐2 .1, 𝑥, refl⟩ ⇒ ⟦𝜏2⟧

⟦Γ⟧ , 𝑐 : ..., ..., 𝑡 :U𝑙 , 𝑐2 : ⟨env :𝑡, code : ...⟩ ⊢ let ⟨env, code⟩ = 𝑐2 in code ⟨env, 𝑥, refl⟩ ⇒ ⟦𝜏2⟧
⟦Γ⟧ , 𝑐 : ..., ..., 𝑐1 :∃𝑡 :U𝑙 .⟨env :𝑡, code : ...⟩ ⊢ let <𝑡 ; ⟨env, code⟩> = 𝑐1 in code ⟨env, 𝑥, refl⟩ ⇒ ⟦𝜏2⟧
⟦Γ⟧ , 𝑐 :∃𝑙 .∃𝑡 :U𝑙 .⟨env :𝑡, code : ...⟩, ... ⊢ let <𝑙 ;<𝑡 ; ⟨env, code⟩>> = 𝑐 in code ⟨env, 𝑥, refl⟩ ⇒ ⟦𝜏2⟧

⟦Γ⟧ , 𝑐 :⟦(𝑥 :𝜏1) → 𝜏2⟧inner , ... ⊢ let <𝑙 ;<𝑡 ; ⟨env, code⟩>> = 𝑐 in code ⟨env, 𝑥, refl⟩ ⇒ ⟦𝜏2⟧
⟦Γ⟧ , 𝑐 : ..., 𝑡 :U1, env : ⟨•⟩, 𝑥𝑒 : ⟨•⟩, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env) ⊢ call 𝑐 𝑥 ⇒ ⟦𝜏2⟧

⟦Γ⟧ , 𝑐 : ..., 𝑡 :U1, env : ⟨•⟩ ⊢ 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.call 𝑐 𝑥 ⇐ ⟨𝑥𝑒 : ⟨•⟩, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧
⟦Γ⟧ , 𝑐 : ..., 𝑡 :U1 ⊢ ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.call 𝑐 𝑥⟩ ⇐ ⟨env : ⟨•⟩, code : ⟨𝑥𝑒 : ⟨•⟩, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧⟩

⟦Γ⟧ , 𝑐 : ... ⊢ <⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.call 𝑐 𝑥⟩> ⇐ ∃𝑡 :U1.⟨env :𝑡, code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏1⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏2⟧⟩
⟦Γ⟧ , 𝑐 :⟦(𝑥 :𝜏1) → 𝜏2⟧inner ⊢ <1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.call 𝑐 𝑥⟩>> ⇐ ∃𝑙 .∃𝑡 :U𝑙 .⟨env :𝑡, code : ...⟩

⟦Γ⟧ , 𝑐 :⟦(𝑥 :𝜏1) → 𝜏2⟧inner ⊢ <1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.call 𝑐 𝑥⟩>> ⇐ ⟦(𝑥 :𝜏1) → 𝜏2⟧inner
⟦Γ⟧ ⊢ 𝜆𝑐.<1;<⟨•⟩; ⟨⟨⟩, 𝜆⟨𝑥𝑒 , 𝑥, 𝑝⟩.call 𝑐 𝑥⟩>> ⇐ ⟦(𝑥 :𝜏1) → 𝜏2⟧inner → ⟦(𝑥 :𝜏1) → 𝜏2⟧inner

⟦Γ⟧ ⊢ ⟦(𝑥 :𝜏1) → 𝜏2⟧norm ⇒ ⟦(𝑥 :𝜏1) → 𝜏2⟧inner → ⟦(𝑥 :𝜏1) → 𝜏2⟧inner
⟦Γ⟧ ⊢ Q ⟦(𝑥 :𝜏1) → 𝜏2⟧norm ⇒ Uℓ3

⟦Γ⟧ ⊢ ⟦(𝑥 :𝜏1) → 𝜏2⟧ ⇒ ⟦Uℓ3⟧

• Case 𝜆𝑥𝑎 .𝑒 , more specifically:

Γ, 𝑥𝑎 :𝜏𝑎 ⊢ 𝑒 ⇐ 𝜏𝑟

Γ ⊢ 𝜆𝑥𝑎 .𝑒 ⇐ ((𝑥𝑎 :𝜏𝑎) → 𝜏𝑟 )
By induction hypothesis we have:

⟦Γ⟧ , 𝑥𝑎 :⟦𝜏1⟧ ⊢ ⟦𝑒⟧ ⇐ ⟦𝜏2⟧
We already confirmed in the previous case that ⟦(𝑥 :𝜏1) → 𝜏2⟧norm is properly typed, so we don’t

check that again.

The main part is to check the body:

...

⟦Γ⟧ , 𝑥𝑒 : ⟨⟦Γ′⟧⟩, 𝑥 ′𝑎 :⟦𝜏𝑎⟧ , 𝑥= : (𝑥𝑒 = ⟨®𝑥⟩) ⊢ letcast[𝑓𝑚, 𝑥=] 𝑥𝑎 = 𝑥 ′𝑎 in
let ⟨®𝑥⟩ = 𝑥𝑒 in ⟦𝑒⟧ ⇐ ⟦𝜏𝑟⟧

⟦Γ⟧ , 𝑥𝑒 : ⟨⟦Γ′⟧⟩, 𝑥 ′𝑎 :⟦𝜏𝑎⟧ , 𝑥= : (𝑥𝑒 = ⟨®𝑥⟩) ⊢ body ⇐ ⟦𝜏𝑟⟧

So we need to check all the premises of the letcast typing rule. We have:

• ⟦Γ⟧ , ..., 𝑥= : (𝑥𝑒 = ⟨®𝑥⟩) ⊢ 𝑥= ⇒ Eq 𝑒1 𝑒2
Trivially true. This tells us that 𝑒1 is 𝑥𝑒 and 𝑒2 is ⟨®𝑥⟩ in those premises.

• ⟦Γ⟧ , ... ⊢ 𝑓𝑚 𝑥𝑒 ⇒ 𝑠

This check that 𝑓𝑚 is a properly typed function returning a type. Since 𝑓𝑚 is 𝜆⟨®𝑥⟩.(𝑥𝑎 :

⟦𝜏𝑎⟧) → ⟦𝜏𝑟⟧, we need ⟦Γ⟧ , ..., ⟦Γ⟧ ⊢ (𝑥𝑎 :⟦𝜏𝑎⟧) → ⟦𝜏𝑟⟧ ⇒ 𝑠 which we know already

from the induction hypothesis.

• 𝑓𝑚 𝑥𝑒 {
∗ (𝑥 :𝜏𝑎1) → 𝜏𝑟1

This tells us that 𝜏𝑎1 is ⟦𝜏𝑎⟧[𝑥𝑒 .1/𝑥1, ...𝑥𝑒 .𝑛/𝑥𝑛] and 𝜏𝑟1 is similarly ⟦𝜏𝑟⟧[𝑥𝑒 .1/𝑥1, ...𝑥𝑒 .𝑛/𝑥𝑛].
• 𝑓𝑚 env {∗ (𝑥 :𝜏𝑎2) → 𝜏𝑟2
This tells us that𝜏𝑎2 is ⟦𝜏𝑎⟧[⟨®𝑥⟩.1/𝑥1, ...⟨®𝑥⟩.𝑛/𝑥𝑛], which is just ⟦𝜏𝑎⟧, and𝜏𝑟2 is ⟦𝜏𝑟⟧[𝑣𝑒𝑐𝑥/𝑣𝑒𝑐𝑥],
thus ⟦𝜏𝑟⟧.
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36 Anon.

• ⟦Γ⟧ , ... ⊢ 𝑥 ′𝑎 ⇐ ⟦𝜏𝑎⟧
Trivially true from the context.

• ⟦Γ⟧ , ..., 𝑥𝑎 :⟦𝜏𝑎⟧[𝑥𝑒 .1/𝑥1, ...𝑥𝑒 .𝑛/𝑥𝑛] ⊢ let ⟨®𝑥⟩ = 𝑥𝑒 in ⟦𝑒⟧ ⇐ ⟦𝜏𝑟⟧[𝑥𝑒 .1/𝑥1, ...𝑥𝑒 .𝑛/𝑥𝑛]
Let’s get rid of the syntactic sugar:

⟦Γ⟧ , 𝑥𝑒 : ⟨⟦Γ′⟧⟩, ..., 𝑥𝑎 :⟦𝜏𝑎⟧[𝑥𝑒 .1/𝑥1, ...𝑥𝑒 .𝑛/𝑥𝑛] ⊢ ⟦𝑒⟧[𝑥𝑒 .1/𝑥1, ...𝑥𝑒 .𝑛/𝑥𝑛] ⇐ ⟦𝜏𝑟⟧[𝑥𝑒 .1/𝑥1, ...𝑥𝑒 .𝑛/𝑥𝑛]
This holds because we know by construction of Γ′ that 𝑥𝑒 .𝑛 has the same type as 𝑥𝑛 , and

by induction we know that ⟦Γ⟧ , 𝑥𝑎 :⟦𝜏1⟧ ⊢ ⟦𝑒⟧ ⇐ ⟦𝜏2⟧, and then we get the above by

repeated application of the substitution lemma.

Then we conclude by checking the overall code:

By construction of ®𝑥
⟦Γ⟧ ⊢ ⟨®𝑥⟩ ⇐ ⟨⟦Γ′⟧⟩

⟦Γ⟧ , 𝑥𝑒 : ⟨⟦Γ′⟧⟩, 𝑥 ′𝑎 :⟦𝜏𝑎⟧ , 𝑥= : (𝑥𝑒 = ⟨®𝑥⟩) ⊢ body ⇐ ⟦𝜏𝑟⟧
⟦Γ⟧ ⊢ 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body ⇐ ⟨𝑥𝑒 : ⟨⟦Γ′⟧⟩, 𝑥 :⟦𝜏𝑎⟧ , 𝑝 : (𝑥𝑒 = ⟨®𝑥⟩)⟩ → ⟦𝜏𝑟⟧

⟦Γ⟧ ⊢ ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩ ⇐ ⟨env : ⟨⟦Γ′⟧⟩, code : ⟨𝑥𝑒 : ⟨⟦Γ′⟧⟩, 𝑥 :⟦𝜏𝑎⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏𝑟⟧⟩
⟦Γ⟧ ⊢ <⟨⟦Γ′⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩> ⇐ ∃𝑡 :Uℓ .⟨env :𝑡, code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏𝑎⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏𝑟⟧⟩

⟦Γ⟧ ⊢ <ℓ ;<⟨⟦Γ′⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>> ⇐ ∃𝑙 .∃𝑡 :U𝑙 .⟨ env : 𝑡,

code : ⟨𝑥𝑒 :𝑡, 𝑥 :⟦𝜏𝑎⟧ , 𝑝 : (𝑥𝑒 = env)⟩ → ⟦𝜏𝑟⟧ ⟩
⟦Γ⟧ ⊢ <ℓ ;<⟨⟦Γ′⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>> ⇐ ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner

⟦Γ⟧ ⊢ Qin[⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧norm]
(<ℓ ;<⟨⟦Γ′⟧⟩; ⟨⟨®𝑥⟩, 𝜆⟨𝑥𝑒 , 𝑥 ′𝑎, 𝑥=⟩.body⟩>> : ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧inner)

⇒ Q ⟦(𝑥 :𝜏𝑎) → 𝜏𝑟⟧norm

⟦Γ⟧ ⊢ ⟦𝜆𝑥𝑎 .𝑒⟧ ⇒ ⟦(𝑥𝑎 :𝜏𝑎) → 𝜏𝑟⟧

• Case Conv, Red𝐶 , 𝑜𝑟Red𝑆 : For these cases, the closure conversion does not generate any code,

and it is easy to see that it preserves typing by using the induction hypothesis together with the

Computational soundness lemma 4.7. □
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