Integrating Term Dependencies in IR

Jian-Yun Nie RALI, Dept. IRO Université de Montréal

Overview

Traditional models

- Assumption of term independence
 - A term is different from another in meaning (last lecture)
 - A term has a unique meaning (this lecture)
- Other implicit assumptions
 - The meaning of a term is independent from its context
- Possible solutions
 - Extend unigram model to bi-/tri-gram models
 - Use phrases
 - Use linguistic/statistical dependencies
 - Use term proximity
- Question
 - What problems remain?

Recall: n-grams

Uni-gram: $P(s) = \prod_{i=1}^{n} P(w_i)$ Bi-gram: $P(s) = \prod_{i=1}^{n} P(w_i \mid w_{i-1})$ Tri-gram: $P(s) = \prod_{i=1}^{n} P(w_i \mid w_{i-2}w_{i-1})$

i=1

Beyond uni-grams

Using Bi-grams [Song and Croft, 99]

 $P(w_i \mid w_{i-1}, D) = \lambda_1 P_{MLE}(w_i \mid w_{i-1}D) + \lambda_2 P_{MLE}(w_i \mid D) + \lambda_3 P_{MLE}(w_i \mid C)$

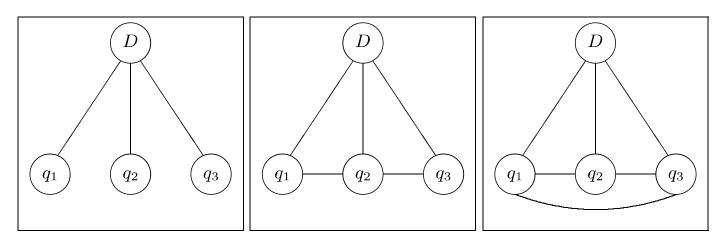
- Bi-term [Srikanth and Srihari, 02]
 - Do not consider word order in bi-grams

(analysis, data) – (data, analysis)

- Results:
 - Bi-gram model is slightly better than unigram model, but much more expensive
 - Bi-term model is slightly better than bi-gram model

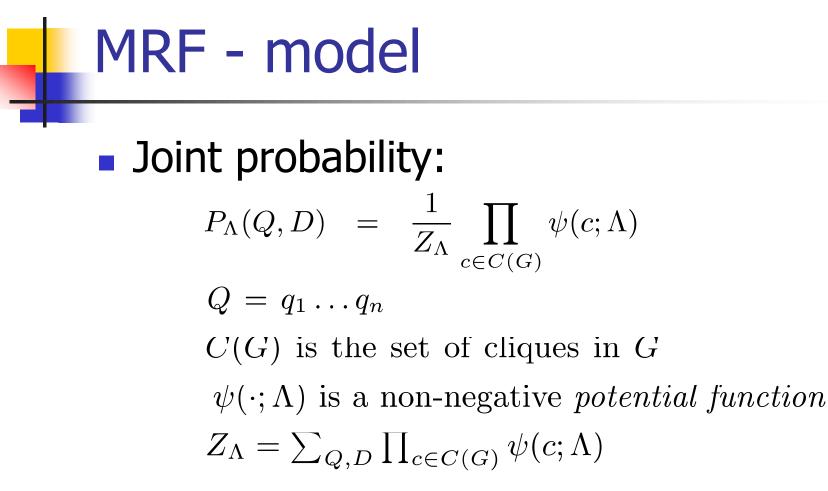
Markov Random Field Model

Consider connections between query terms



no connection sequential full

Model cliques



MRF - model Ranking function: $P_{\Lambda}(D|Q) = \frac{P_{\Lambda}(Q,D)}{P_{\Lambda}(Q)}$ $\stackrel{rank}{=} \log P_{\Lambda}(Q, D) - \log P_{\Lambda}(Q)$ $\stackrel{rank}{=} \quad \sum \ \log \psi(c;\Lambda)$ $c \in C(G)$ $\psi(c;\Lambda) = \exp[\lambda_c f(c)]$ f(c) is some real-valued feature function λ_c is the weight $P_{\Lambda}(D|Q) \stackrel{rank}{=} \sum \lambda_c f(c)$ $c \in C(G)$

7

MRF - features

Single term

$$\psi_T(c) = \lambda_T \log P(q_i | D)$$

= $\lambda_T \log \left[(1 - \alpha_D) \frac{t f_{q_i, D}}{|D|} + \alpha_D \frac{c f_{q_i}}{|C|} \right]$

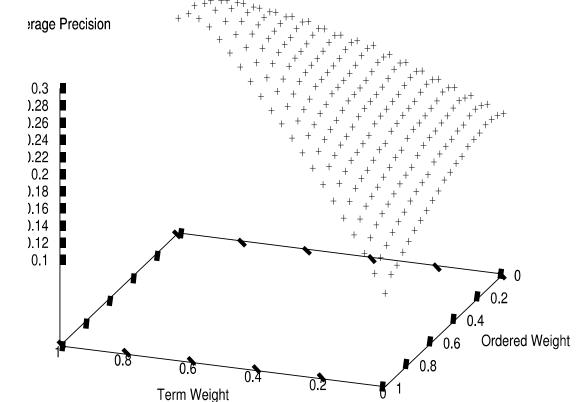
Group of terms

$$\begin{split} \psi_O(c) &= \lambda_O \log P(\#1(q_i, \dots, q_{i+k})|D) & \text{Exact phrase} \\ &= \lambda_O \log \left[(1 - \alpha_D) \frac{t f_{\#1(q_i \dots q_{i+k}), D}}{|D|} + \alpha_D \frac{c f_{\#1(q_i \dots q_{i+k})}}{|C|} \right] \\ \psi_U(c) &= \lambda_U \log P(\#\text{uwN}(q_i, \dots, q_j)|D) & \text{Within window} \\ &= \lambda_U \log \left[(1 - \alpha_D) \frac{t f_{\#\text{uwN}(q_i \dots q_j), D}}{|D|} + \alpha_D \frac{c f_{\#\text{uwN}(q_i \dots q_j)}}{|C|} \right] \end{split}$$

MRF - parameters

 Set parameters to maximize MAP on training collection

$$\lambda_T + \lambda_O + \lambda_U = 1$$



MRF - results

Unigram

	AP	WSJ	WT10g	$\mathrm{GOV2}$
AvgP	0.1775	0.2592	0.2032	0.2502
P @ 10	0.2912	0.4327	0.2866	0.4837
μ	3000	3500	4000	4000

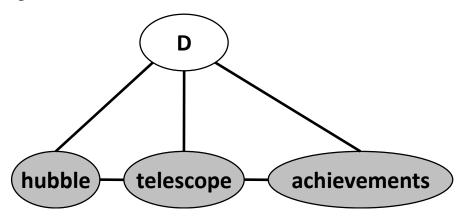
Sequential (different window sizes)

Length	AP	WSJ	WT10g	GOV2
2	0.1860	0.2776	0.2148	0.2697
8	0.1867	0.2763	0.2167	0.2832
50	0.1858	0.2766	0.2154	0.2817
Unlimited	0.1857	0.2759	0.2138	0.2714

Full: little change from Sequential

Discussions on MRF model

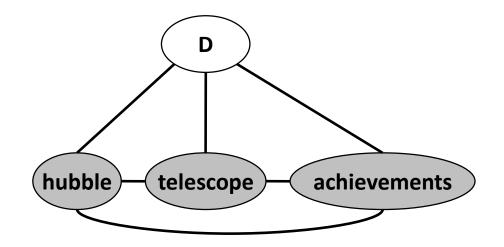
Sequential model: consider connections between adjacent terms. Is this reasonable?



How to extend to connections of longer distance?

Discussions on MRF model

Why isn't Full model better than Sequential model?



Beyond adjacent term dependencies

 Dependence LM (Gao et al. 04): Consider more distant dependencies

- Syntactic analysis
- Statistical analysis

 Only retain the most probable dependencies in the query

(how) (has) affirmative action affected (the) construction industry

Dependence model

Ranking function:

$$P(Q \mid D) = \sum_{L} P(Q, L \mid D) = \sum_{L} P(L \mid D) P(Q \mid L, D)$$

Use all the possible Linkages L (a linkage=a complete link graph)

• Approximation: Use the strongest linkage $P(Q \mid D) = P(L \mid D)P(Q \mid L, D)$

such that $L = \arg \max_{L} P(L|Q)$.

Choose the strongest linkage

• Choose the connections that maximize a global measure of dependency: $P(L|Q) = \prod_{l \in L} P(l|Q)$

- The connections obey some constraints:
 - acyclic and planar
 - Every term is connected
 - No cycle
 - No link crossing

Choose the strongest linkage

Weight of one link

 $F(R | q_i, q_j) = \frac{C(q_i, q_j, R)}{C(q_i, q_j)}$

The best linkage:

$$L = \underset{L}{\operatorname{arg\,max}} P(L | Q) = \underset{L}{\operatorname{arg\,max}} \prod_{(i,j) \in L} F(R | q_i, q_j)$$

Estimate the prob. of links (EM)

For a corpus C:

- 1. Initialization: link each pair of words with a window of 3 words
- 2. For each sentence in C:
 - Apply the link prob. to select the strongest links that cover the sentence
- 3. Re-estimate link prob.
- 4. Repeat 2 and 3

Result: prob. of link *a-b* in a language

Calculation of P(Q|D)

Determine the links in Q (the required links)

$$L = \arg \max_{L} P(L | Q) = \arg \max_{L} \prod_{(i,j) \in L} P_C(R | q_i, q_j)$$

2. Calculate the likelihood of Q (words and links) $P(Q \mid D) = P(L \mid D)P(Q \mid L, D)$

$$\begin{split} P(L \mid D) &= \prod_{i \in L} P(l \mid D) \\ P(Q \mid L, D) &= P(q_h \mid D) \prod_{(i,j) \in L} P(q_j \mid q_i, L, D) = \dots \\ &= \prod_{i=1...n} P(q_i \mid D) \prod_{(i,j) \in L} \frac{P(q_i, q_j \mid L, D)}{P(q_i \mid D)P(q_j \mid D)} \\ \log P(Q \mid D) &= \log P(L \mid D) + \sum_{i=1...m} \log P(q_i \mid D) \\ &+ \sum_{(i,j) \in L} MI(q_i, q_j \mid L, D) \end{split}$$

18

Extension to consider word relationships

- What [Gao et al. 04] tried to do:
 - Consider the constraints of words
 - Consider the constraints of linkage
- Extension of the bi-gram model
 - The pairs of terms are not always adjacent
- See experimental results in [Gao et al. 04]: Improvements

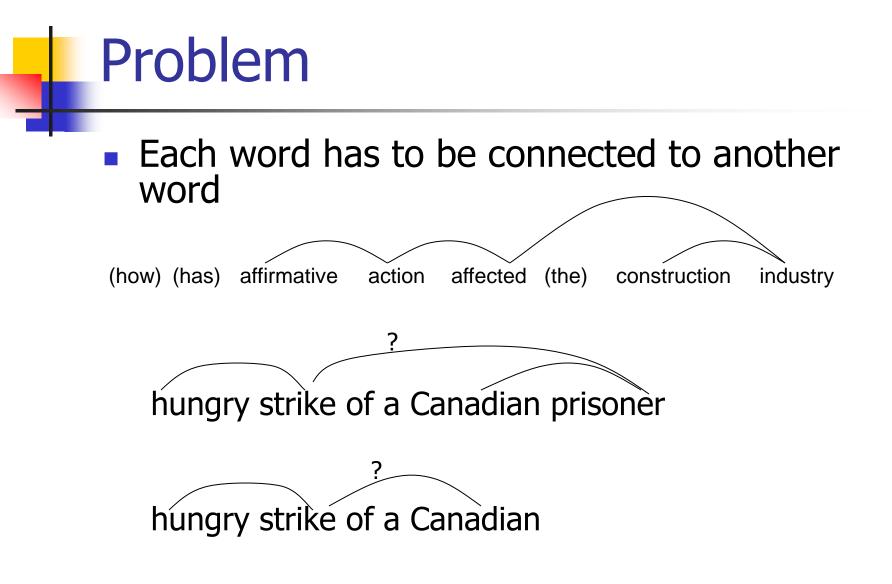
Experiments in [Gao et al. 04]

Models	WSJ			РАТ			FR		
	AvgP	% change over	% change over	AvgP	%change over	% change over	AvgP	% change over	% change over
		BM	UG		BM	UG		BM	UG
BM	22.30			26.34			15.96		
UG	17.91	-19.69**		25.47	-3.30		14.26	-10.65	
DM	22.41	+0.49	+25.13**	30.74	+16.70	+20.69	17.82	+11.65*	+24.96*
BG	21.46	-3.77	+19.82	29.36	+11.47	+15.27	15.65	-1.94	+9.75
BT1	21.67	-2.83	+20.99*	28.91	+9.76	+13.51	15.71	-1.57	+10.17
BT2	18.66	-16.32	+4.19	28.22	+7.14	+10.80	14.77	-7.46	+3.58

Table 2. Comparison results on **WSJ**, **PAT** and **FR** collections. * and ** indicate that the difference is statistically significant according to t-test (* indicates *p*-value < 0.05, ** indicates *p*-value < 0.02).

Models	SJM			AP			ZIFF		
	AvgP	% change over	% change over	AvgP	%change over	% change over	AvgP	% change over	% change over
		BM	UG		BM	UG		BM	UG
BM	19.14			25.34			15.36		
UG	20.68	+8.05		24.58	-3.00		16.47	+7.23	
DM	24.72	+29.15*	+19.54**	25.87	+2.09	+5.25**	18.18	+18.36*	+10.38**
BG	24.60	+28.53*	+18.96**	26.24	+3.55	+6.75*	17.17	+11.78	+4.25
BT1	23.29	+21.68	+12.62**	25.90	+2.21	+5.37	17.66	+14.97	+7.23
BT2	21.62	+12.96	+4.55	25.43	+0.36	+3.46	16.34	+6.38	-0.79

Table 3. Comparison results on **SJM**, **AP** and **ZIFF** collections. * and ** indicate that the difference is statistically significant according to t-test (* indicates *p*-value < 0.05, ** indicates *p*-value < 0.02).



Possible solution-1

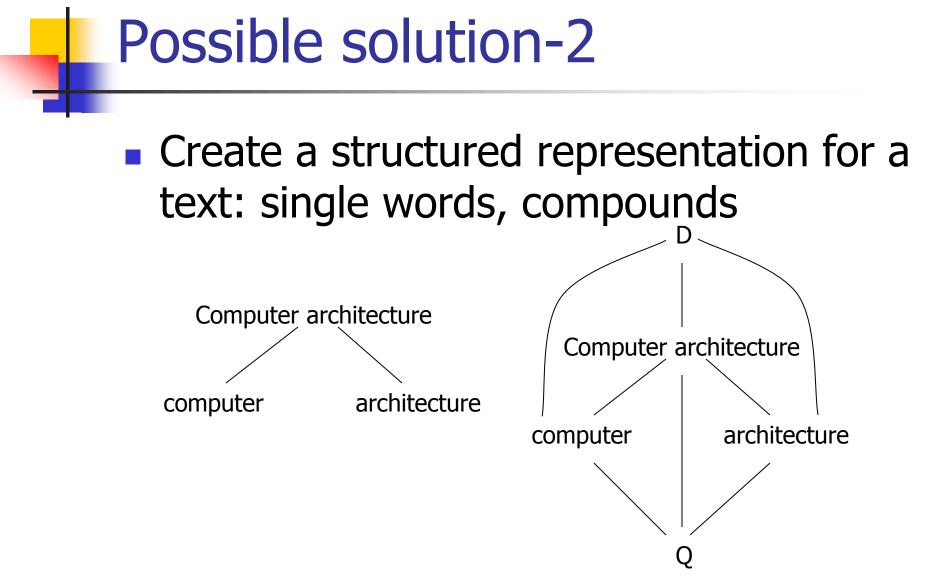
- Keep the dependencies that are strong enough
- Alternative: consider dependencies only within compound terms

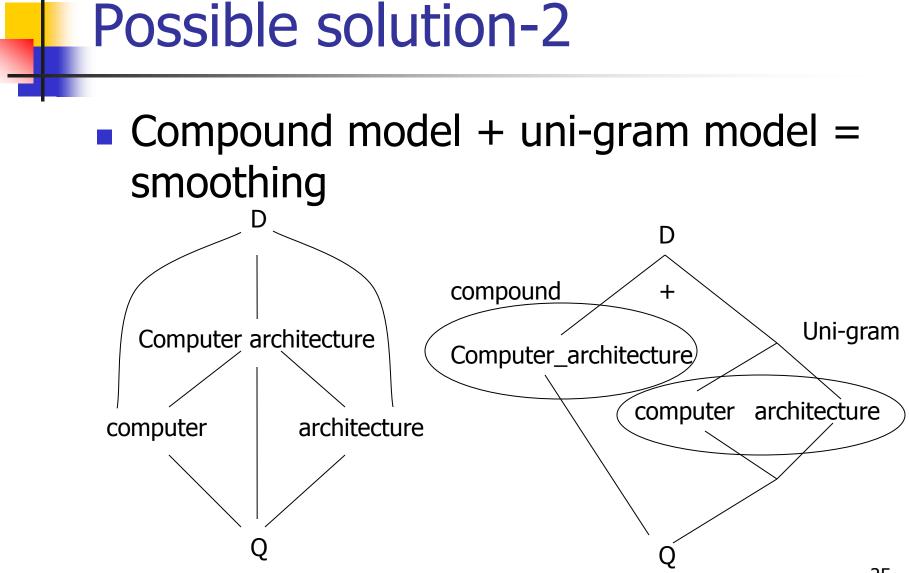
hungry strike of a Canadian

- Recognize compound terms
- Estimate dependencies

Using nouns phrases

- Detect noun phrases
 - Using a phrase dictionary
 - Using an NLP analysis (e.g. shallow parsing)
- Combining a phrase model with a word model score(Q, D) = / score_{phrase}(Q, D) + (1 - /) score_{word}(Q, D) score_{phrase}(Q, D) = å log P(C | D) ci Q
 score_{word}(Q, D) = å log P(q | D)
 The idea can also be used in other models (vector space model, ...)





Possible solution-2

 $P(computer \ architectu \ re \mid D)$ $= \lambda P(computer \ architectu \ re \mid D) +$

 $(1-\lambda)P(computer, architecture | D)$

- But what λ to set?
- Shout it be dependent on the phrase?
- Is this solution problematic?

A partial solution

- Allow different dependencies to have different weights
 - Weight = how useful the dependency is for IR
- Presentation of a paper of [Shi and Nie, AIRS'10]

Term proximity – a flexible dependence

- Assumption commonly used in search engines:
 - A document in which query terms appear closely is preferred
 - If the terms appear in order, it is preferred
- Attempts in IR research to confirm the assumption

An Exploration of Proximity Measures in Information Retrieval

Tao Tao, Microsoft Corp. ChengXiang Zhai, University of Illinois at Urbana-Champaign

Published in SIGIR'07

Motivation

Heuristics to measure proximity

Query: <space program>

Document 1

however, the first practical solar cell was not introduced until 1900 in response to the program of the space, this first solar photovoltaic cell were made of single crystal silicon and show about 50 percent efficiency

\bigcirc	
Document 2	
film have been determ from space charge l current measure.	
this paper summarizes result of a program the naval research laboratory	the initial at

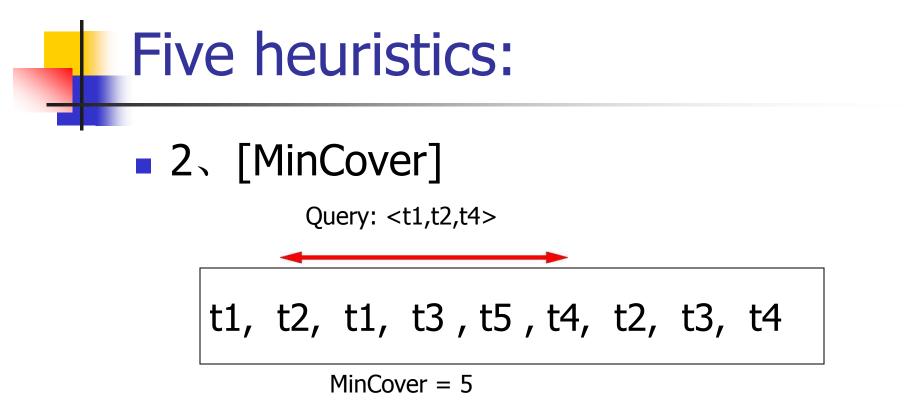
Document 1 is more relevant than document 2, since the two query words are closer to each other.

Measuring proximity : Five heuristics:

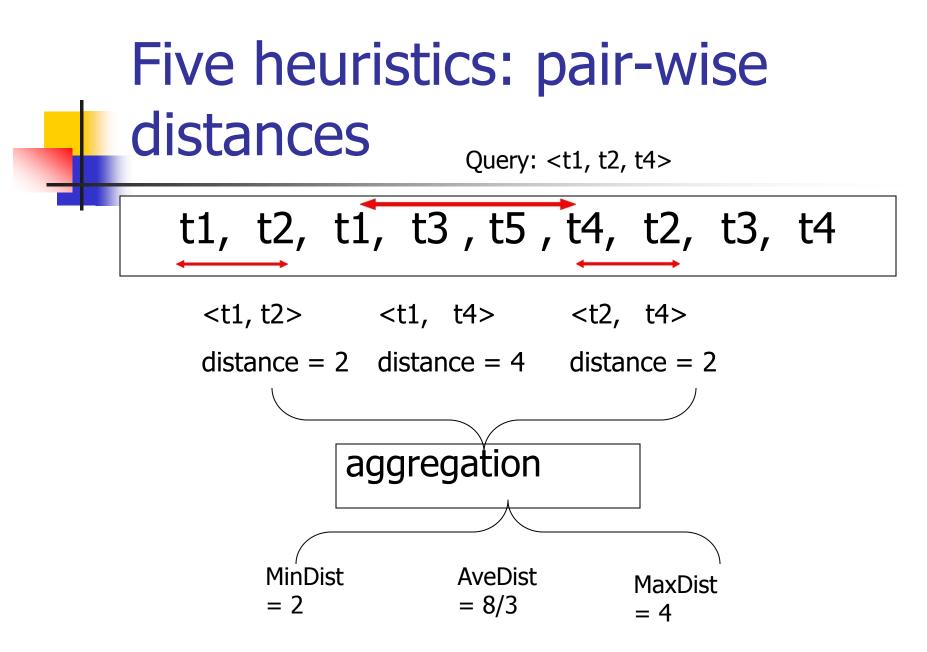
■ 1、[Span]

Query: <t1,t2>

[Span]: The length of the segment from the first query word to the last query word.

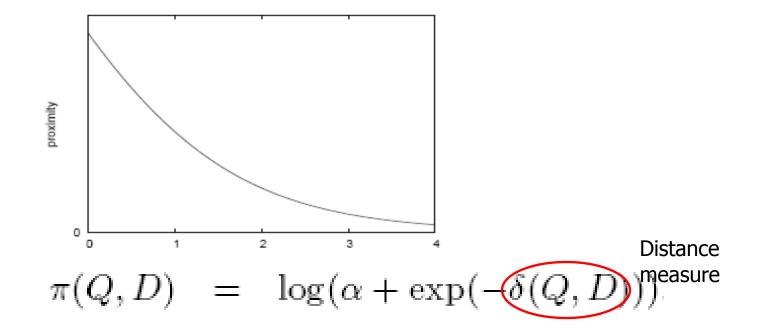


[MinCover]: The length of the minimum segment to cover all query words at least once.



Proximity retrieval models – distance-based score

The smaller the distance is, the larger the relevance is
 Drop quickly in the beginning, and go flat in the end



Proximity retrieval models

Incorporating proximities into other retrieval models

 $R_1(Q,D) = KL(Q,D) + \pi(Q,D)$ $R_2(Q,D) = BM25(Q,D) + \pi(Q,D)$

Experiment

-

	method/data	AP	DOE	FR	TREC8	WEB2g
	KL	0.2220	0.1803	0.2442	0.2509	0.3008
	Span	0.2203	0.1717	0.2436	0.2511	0.2992
R_1	MinCover	0.2200	0.1685	0.2659	0.2455	0.2947
	MinDist	0.2265*	0.2018*	0.2718	0.2573*	0.3276*
	AveDist	0.2244	0.1922	0.2683	0.2538	0.3079
	MaxDist	0.2247	0.1913	0.2687	0.2536	0.2966
	BM25	0.2302	0.1840	0.3089	0.2512	0.3094
	Span	0.2292	0.1808	0.3101	0.2468	0.3073
R_2	MinCover	0.2260	0.1815	0.2881	0.2260	0.2966
	MinDist	0.2368*	0.2023*	0.3135	0.2585*	0.3395*
	AveDist	0.2314	0.1960	0.3115	0.2506	0.3148
	MaxDist	0.2323	0.1942	0.3115	0.2492	0.3144

Positional model [Lv and Zhai, 09]

Idea

- A model at each position within a document:
 P(w|D,i)
- Count at a position is propagated to the positions around it according to some functions
- Score of a document at position *i*

$$S(Q,D,i) = -\sum_{w \in V} p(w|Q) \log \frac{p(w|Q)}{p(w|D,i)}$$

 Document score = combining scores at different positions

Positional LM

- *c*(*w*,*i*): the count of term *w* at position *i* in document *D*. If *w* occurs at position *i*, it is 1, otherwise 0.
- k(i, j): the propagated count to position *i* from a term at position *j* (i.e., w_j). Intuitively, given w_j , k(i, j) serves as a discounting factor and can be any non-increasing function of |i j|, that is, k(i, j) favors positions close to *j*.

Positional LM

- c'(w,i): the total propagated count of term *w* at position *i* from the occurrences of *w* in all the positions. That is, $c'(w,i) = \sum_{j=1}^{N} c(w,j)k(i,j)$.
- Based on term propagation, we have a term frequency vector $\langle c'(w_1,i),\ldots,c'(w_N,i) \rangle$ at position *i*, forming a virtual document D_i .
- Thus the language model of this virtual document can be estimated as:

$$p(w|D,i) = \frac{c'(w,i)}{\sum_{w' \in V} c'(w',i)}$$

where V is the vocabulary set. We call p(w|D,i) a Positional Language Model (PLM) at position i.

Smoothing

Dirichlet smoothing

$$p_{\mu}(w|D,i) = \frac{c'(w,i) + \mu p(w|C)}{Z_i + \mu}$$

Jelinek-Mercer smoothing

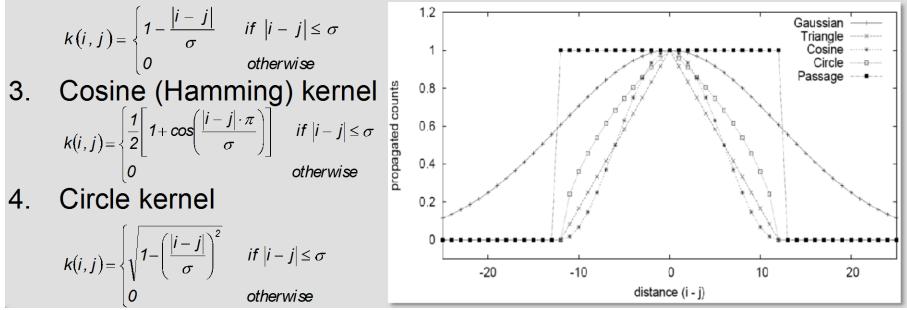
 $p_{\lambda}(w|D,i) = (1-\lambda)p(w|D,i) + \lambda p(w|C)$

Kernel functions (term count propagation)

1. Gaussian kernel

$$k(i,j) = \exp\left[\frac{-(i-j)^2}{2\sigma^2}\right]$$

2. Triangle kernel



Positional LM – document ranking

- 1. Best Position Strategy
 - The strategy is to simply score a document based on the score of its best matching position:

$$S(Q,D) = \max_{i \in [1,N]} \{S(Q,D,i)\}$$

- 2. Multi-Position Strategy
 - Particularly, we can take the average of the top-k scores to score a document:

$$S(Q,D) = \frac{1}{k} \sum_{i \in TopK} S(Q,D,i)$$

where *TopK* is the set of positions corresponding to the top-k highest scores of S(Q, D, i)

Positional LM – Document ranking

- 3. Multi- σ Strategy
 - we compute the best position scores for several different values, and then combine these scores together as the final score for a document.

•
$$S(Q,D) = \sum_{\sigma \in R} [\beta_{\sigma} \cdot max \{S_{\sigma}(Q,D,i)\}]$$

where \mathcal{R} is a predefined set of σ values, $S_{\sigma}(\cdot)$ is the score function for PLMs with parameter σ , β_{σ} is the weight on different σ ($\sum_{\sigma \in \mathcal{R}} \beta_{\sigma} = 1$).

• In particular, if $R = \{\sigma_0, \infty\}$, this strategy equals to an interpolation of the PLM and the regular document language model.

Trick of implementation

- Creating a model for each position is inefficient
- However, k(i,j) = k(j,i), i.e. the count propagated from a position is equal to that to that position
- Equivalent to fixed-length passage retrieval

Experiments with bestposition strategy

 We smooth an estimated PLM when computing retrieval scores. We test both Dirichlet prior smoothing (with parameter 1,000) and Jelinek-Mercer (with parameter 0.5).

Π		WT2G										
Π	$ ext{kernel} \setminus \sigma$	25	75	125	175	275						
Π	Gaussian	0.2989	0.3213	0.3286	0.3307	0.3285						
Π	Triangle	0.2661	0.3028	0.3149	0.3211	0.3288						
Π	Cosine	0.2621	0.3007	0.3128	0.3181	0.3243						
Π	Circle	0.2797	0.3140	0.3225	0.3273	0.3267						
Π			FF	ł								
Π	Gaussian 0.2913 0.2679 0.2895 0.2880 0.284											
Π	Triangle	0.2585	0.2898	0.2858	0.2682	0.2897						
Π	Cosine	0.2603	0.2910	0.3000	0.2948	0.2858						
	Circle	0.2685	0.2754	0.2673	0.2877	0.2873						

	TREC8									
kernel $\setminus \sigma$	25	75	125	175	275					
Gaussian	0.2364	0.2465	0.2503	0.2535	0.2550					
Triangle	0.2244	0.2379	0.2438	0.2475	0.2500					
Cosine	Cosine 0.2257 0.2390			0.2457	0.2486					
Circle	0.2315	0.2401	0.2464	0.2492	0.2523					
	ΛΡ88-89									
Gaussian	0.1926	0.2112	0.2162	0.2177	0.2198					
Triangle	0.1709	0.1987	0.2077	0.2117	0.2173					
Cosine	0.1682	0.1969	0.2063	0.2107	0.2144					
Circle	0.1801	0.2034	0.2093	0.2135	0.2159					

Dirichlet prior smoothing

	WT2G							TREC8						
kerne	l∖σ	25	75	125	175	275		kernel $\setminus \sigma$	25	75	125	175	275	
Gauss	sian	0.3024	0.3170	0.3133	0.3096	0.3010		Gaussian	0.2454	0.2510	0.2548	0.2575	0.2576	
Trian	ngle	0.2711	0.3057	0.3118	0.3170	0.3131		Triangle	0.2335	0.2477	0.2491	0.2506	0.2562	
Cosi	ine	0.2622	0.2855	0.2681	0.2452	0.2039	╢╟	Cosine	0.2335	0.2423	0.2356	0.2227	0.2058	
Circ	cle	0.2813	0.3130	0.3188	0.3179	0.3148		Circle	0.2369	0.2456	0.2498	0.2528	0.2555	
	FR							AP88-89						
Gauss	sian	0.2639	0.2606	0.2592	0.2827	0.2822		Gaussian	0.1892	0.2016	0.2054	0.2066	0.2049	
Trian	ngle	0.2458	0.2681	0.2607	0.2610	0.2834		Triangle	0.1718	0.1933	0.1968	0.2002	0.2051	
Cosi	ine	0.2463	0.2476	0.2424	0.2249	0.1593		Cosine	0.1701	0.1910	0.1815	0.1636	0.1349	
Circ	cle	0.2512	0.2557	0.2613	0.2591	0.2833	[Circle	0.1735	0.1933	0.1962	0.2010	0.2049	

Experiments – $multi_{\sigma}$ strategy

• To test this special case of Multi- σ strategy, we fix one value to ∞ , and vary the other one.

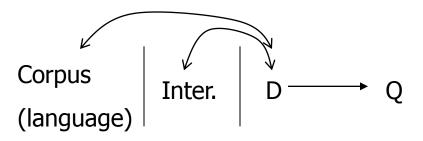
method\data	WT2G	TREC8	FR	AP88-89
KL	0.2931	0.2509	0.2697	0.2196
$\sigma = 25$	0.3247^{+}	0.2562^{+}	0.2936	$\boldsymbol{0.2237^+}$
$\sigma = 75$	0.3336^+	0.2553^{+}	0.2896^{+}	0.2227
$\sigma = 125$	0.3330^{+}	0.2559^{+}	0.2885	0.2201
$\sigma = 175$	0.3324^{+}	$\boldsymbol{0.2574^+}$	0.2858	0.2196
$\sigma = 275$	0.3255^{+}	0.2561^{+}	0.2852	0.2193

• It shows that, when interpolated with document language models, the PLM performs more robustly and effectively.

General discussions

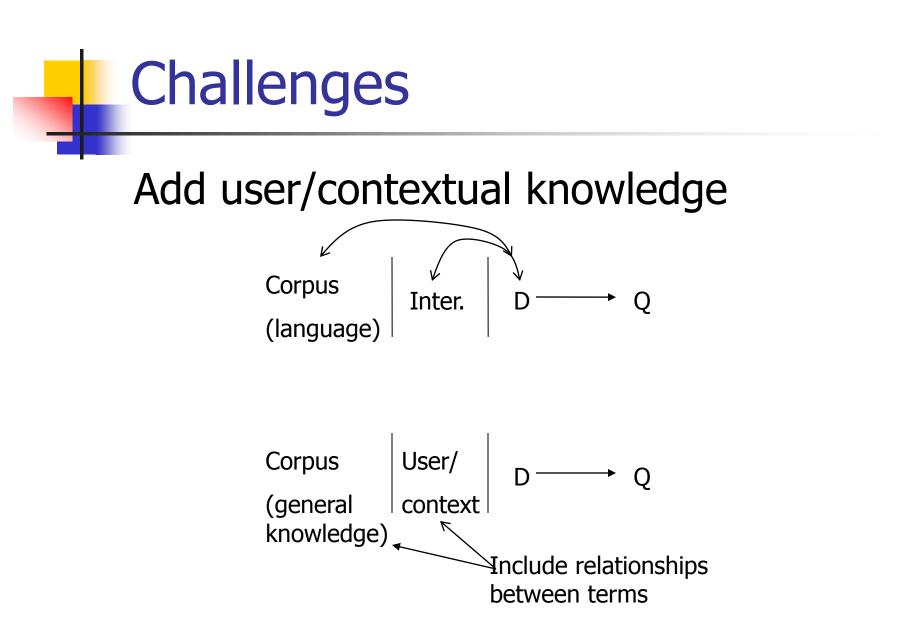
Basic IR models:

- term independence
- Document + corpus (smoothing, tf*idf)
- Construct an intermediate model between document and corpus
 - Pseudo-relevance feedback: query relevance model
 - Document cluster: larger document model



Questions

- The intermediate model only model ngram distribution
- Add more inference power (domain knowledge)?
 - algorithm → programming
 - P(programming | algorithm)
 - How?
 - Is this helpful?



Challenges

How to estimate

P(programming | algorithm) or

P(algorithm programming)?

- How to make it context-dependent?
 - Program \rightarrow computer not suitable in the context of TV, entertainment, ...
- How to integrate?
 - Translation model is insufficient because the translation words are considered independent

$$P(Q \mid D) = \prod_{j} \sum_{q'_{j}} P(q_{j} \mid q'_{j}) P(q'_{j} \mid D)$$

Some references

- Jianfeng Gao, Jian-Yun Nie, Guangyuan Wu and Guihong Cao. 2004. Dependence language model for information retrieval. In *SIGIR*.
- Yuanhua Lv and ChengXiang Zhai, <u>Positional Language Models for Information Retrieval</u>, in Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (SIGIR), 2009.
- Metzler, D. and Croft, W.B., "A Markov Random Field Model for Term Dependencies, » SIGIR 2005, pp. 472-479.
- Lixin Shi, Jian-Yun Nie, Modeling Variable Dependencies between Characters in Chinese Information Retrieval, *AIRS*, 2010, pp. 539-551
- F Song and W B Croft (1999). <u>"A General Language Model for Information Retrieval"</u>. *Research and Development in Information Retrieval*. pp. 279–280. <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.6467&rep=rep1&type=pdf</u>.
- Munirathnam Srikanth, Rohini Srihari, Biterm Language Models for Document Retrieval, SIGIR, 2002, pp.425-426
- Tao Tao, ChengXiang Zhai, An Exploration of Proximity Measures in Information Retrieval, SIGIR'07, pages 295-302.