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i Basics: Eigenvector, Eigenvalue

s Ref: http://en.wikipedia.org/wiki/Eigenvector
= For a square matrix A:
AX = AX
where X is a vector (eigenvector), and A a

scalar (eigenvalue)
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http://en.wikipedia.org/wiki/Eigenvector

i Why using eigenvector?

= Linear algebra: Ax =5

A X

D

R —p

= Eigenvector: Ax =Ax




i Why using eigenvector

= Eigenvectors are orthogonal (seen as
being independent)

= Eigenvector represents the basis of the
original vector A

= Useful for
= Solving linear equations
= Determine the natural frequency of bridge



i Latent Semantic Indexing (LSI)

- LSI: a technique projects queries and docs into a
space with “latent” semantic dimensions

- Co-occurring terms are projected onto the same
dimensions

— In the latent semantic space (with fewer dimensions),
a query and doc can have high cosine similarity even
If they do not share any terms

— Dimensions of the reduced space correspond to the
axes of greatest variation
+ Closely related to Principal Component Analysis (PCA)



- SVD (in LSI)

‘L Latent Semantic Analysis
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‘L LSI

— Singular Value Decomposition (SVD) used for the
word-document matrix

* A least-squares method for dimension reduction

| Term1 Term 2 lerm3 Term4
Query | user interface _ -
Document 1 | user interface HCI interaction
Document 2 HCI interaction



‘L Classic LSI Example (Deerwester)
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i LSI, SVD, & Eigenvectors

= SVD decomposes:

= Term X Document matrix X as
= X=UZVT
Where U,V left and right singular vector matrices, and
> Is a diagonal matrix of singular values
= Corresponds to eigenvector-eigenvalue decompostion:
Y=VLVT
Where V is orthonormal and L is diagonal
= U: matrix of eigenvectors of Y=XXT
= V: matrix of eigenvectors of Y=XTX
= X : diagonal matrix L of eigenvalues
XXT
XTX

(USVIWUSVT)T = (UsVTYVTTSTUT) = USVIVESTUT = UssTUT
(USVTT(USVT) = (VITSTUTWUSVT) = VSUTUSYT = VETsyT



SVD: Dimensionality Reduction

« Singular Value Decomposition (SVD)
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Cutting the dimensions with the
least singular values

- SVD (in LSI)
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Computing Similarity in LSI

« Fundamental comparisons based on SVD
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« compare two terms — dot product of two rows of A

— or an entry in AAT

+ compare two docs — dot product of two columns of A

—oranentryin ATA

— The new word-document matrix (A’)
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i LSI and PLSI

s LSI: find the k-dimensions that
Minimizes the Frobenius norm of A-A’.

= Frobenius norm of A:
mi -[ ﬂ-]-

A% = ZZM |? = trace(A*A4) = Z o?

i=1 j=1

= pLSI: defines one’s own objective
function to minimize (maximize)



pLSI — a generative model

What is a generative probabilistic model?

Has roughly the following procedure

@ Assume the data we see is generated by some parameterized random
process.

® Learn the parameters that best explain the data.

® Use the model to predict (infer) new data, based on data seen so far.

Benefits compared to non-generative models

e Assumptions and model are explicit.

e For the inference and learning step we can use well-known
algorithms (e.g. EM, Markov Chain Monte Carlo).



PLSI — a probabillistic approach

e Models each word in a document as a sample from a mixture model.

k k
p(w) = p(z)p(wlz) st _Zp(z,-)él

e Introduces the concept of a topic.

maths

ed by different topics.

e Problems: (1) not well-defined on documents level, (2) overfitting
(kV + kM parameters).



pLSI

= Assume a multinomial distribution

i K
Pidi,w;) = Pld;)Plw; |d;), Flw;|d;)= ZP[“’J‘ |zp ) Pz | d;).

= Distribution of topics (2)

E=1

K
Pidi,wj) =Y P(zz)P(d; | z) P(w; | z2).
k=]

(a)
Pid,

(b)

n;;.Jl
P,z Pw Iz,

Question: How to determine z?



Using EM

o leellhood
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Relation with LSI

= Relation
P = UxWV
P(d,w)=> P(z)P(d|z)P(w]2)

yA=VA

U=(Pi(d|ze))ip % =diag(P(ze)r V = (Plw;|ze)) ik

s Difference:

= LSI: minimize Frobenius (L-2) norm ~ additive Gaussian
noise assumption on counts

= pLSI: log-likelihood of training data ~ cross-entropy / KL-
divergence



Mixture of Unigrams (traditional)

W) ) W)

Mixture of Unigrams Model (this is just Naive Bayes)

For each of M documents,
O Choose a topic z.

O Choose N words by drawing each one independently from a
multinomial conditioned on z.

In the Mixture of Unigrams model, we can only have one topic per
document!



The pl.SI Model

d

For each word of document d in
the training set,

O Choose a topic z according to a

multinomial conditioned on the
@ @ @ @ Index d.

O Generate the word by drawing
from a multinomial conditioned

@ @ @ @ on z.

Probabilistic Latent Semantic In pLSI, documents can have
Indexing (pLS!) Model multiple topics.



i Problem of pLSl

= |t IS not a proper generative model for
document:

= Document is generated from a mixture of
topics

= The number of topics may grow linearly
with the size of the corpus

= Difficult to generate a new document



i Dirichlet Distributions

In the LDA model, we would like to say that the topic
mixture proportions for each document are drawn from

some distribution.

So, we want to put a distribution on multinomials. That
IS, k-tuples of non-negative numbers that sum to one.

The space is of all of these multinomials has a nice
geometric interpretation as a (k-1)-simplex, which is
just a generalization of a triangle to (k-1) dimensions.
Criteria for selecting our prior:

= It needs to be defined for a (k-1)-simplex.

= Algebraically speaking, we would like it to play nice with
the multinomial distribution.



Dirichlet Distributions

I—(Z az) —1
p(fla) = e, r( H

s Useful Facts:

= This distribution is defined over a (k-1)-simplex. That
IS, It takes k non-negative arguments which sum to one.
Consequently it is a natural distribution to use over
multinomial distributions.

= In fact, the Dirichlet distribution is the conjugate prior to
the multinomial distribution. (This means that if our
likelihood is multinomial with a Dirichlet prior, then the
posterior is also Dirichlet!)

» The Dirichlet parameter o; can be thought of as a prior
count of the it class.



The .LDA Model

= For each document,
= Choose 6—Dirichlet(a)
= For each of the N words wn:
= Choose a topic z,» Multinomial(6)

= Choose a word w, from p(w,|z,,8), a multinomial
probability conditioned on the topic z,.



The .LDA Model
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For each document,
= Choose 0» Dirichlet(a)
= For each of the N words w,,:
= Choose a topic z,» Multinomial(0)

= Choose a word w, from p(w,|z,,B), a multinomial
probability conditioned on the topic z,,.



LDA (Latent Dirichlet Allocation)

= Document = mixture of topics (as in pLSI), but

according to a Dirichlet prior
= When we use a uniform Dirichlet prior, pLSI=LDA

= A word is also generated according to another
variable B: PBij=pw =1|7=1)

Q p[_‘ﬁ,'ll‘_‘,LB_]=fp|E||l‘lJ(]_[Zp| |E||p|un BJ)
AN
p(Dla.B) = priﬂd | o) (]_[ > P(Zan|9a) P(Wan |:dn~13_]) d8,.
da=1 fi=1 Zgn



http://upload.wikimedia.org/wikipedia/commons/d/d3/Latent_Dirichlet_allocation.svg

LDA: The algorithm (2/2)

N
M
0.35 0.2 0 0
comp sc. | 0.23 0.17 0.35 0 0.25
wine 0 0 0.1 0.75 0.15

e o is a k-vector. Tells us how much Dirichlet prior scatters around
the different topics.



Inference: The problem

To which topics does a given document belong to? Thus want to
compute the posterior distribution of the hidden variables given a

document: (6 0. 5)
_ p 7Z7w a?
P(e, Z‘Wa&aﬁ) - P(W‘Od,ﬁ)
where
N
p(0,2,wla, 8) = p(6]a) | | p(210)p(wnlzn, B)
n=1
and
[(Ci0) (1T p0-1) [ TTS=TT/0 21w
) = =" 07 9,’ i) do.

This not only looks awkward, but is as well computationally intractable in
general. Coupling between 6 and §;;. Solution: Approximations.



i Variational Inference

In variational inference, we consider a simplified graphical
model with variational parameters y, ¢ and minimize the KL

Divergence between the variational and posterior
distributions.

('Y*, ¢*> = arg min(fy’¢) KL(Q(Ha Zh/a ¢)||p(97 Z|w7 o2 6))



Variational inference

e Replace the graphical model of LDA by a simpler one.

Q

O

ghtest
lower bound.

e Problematic coupling between 6 and 3 not present in simpler
graphical model.



How LDA performs on Reuters data (1/2)

About the experiments

e 100-topic LDA trained on a 16'000 documents corpus of news
articles by Reuters (the news agency).

e Some standard stop words removed.

Top words from some of the p(w|z)

“Arts” “Budgets”  “Children”

new million children school
film tax women students
show program people schools
music budget child education
movie billion years teachers
play federal families high

musical year work public



How LDA performs on Reuters data (2/2)

Inference on a held-out document
Again: “Arts”, “Budgets”, “Children”,

The Randolph Hearst Foundation will give $1.25 million to
Lincoln Center, Metropolitan Opera Co., New York Philharmonic and
Juilliard . "Our board felt that we had a real opportunity to make

a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health,
medical research, and the social services,” Hearst Foundation
President Randolph A. Hearst said in announcing the grants.



i Use of LDA

= A widely used topic model
= Complexity Is an issue
= Use in IR:

= Interpolate a topic model with traditional LM

= Improvements over traditional LM,

= But no improvement over Relevance model (Wel
and Croft, SIGIR 06)
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