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Basics: Eigenvector, Eigenvalue 

 Ref: http://en.wikipedia.org/wiki/Eigenvector 
 For a square matrix A: 
  Ax = λx  
 where x is a vector (eigenvector), and λ a 

scalar (eigenvalue) 
 E.g. 
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http://en.wikipedia.org/wiki/Eigenvector


Why using eigenvector? 

 Linear algebra: A x = b 
 
 
 
 
 

 Eigenvector: A x = λ x 
 

  

 
                                                                                                                    



Why using eigenvector 

 Eigenvectors are orthogonal (seen as 
being independent) 

 Eigenvector represents the basis of the 
original vector A 

 Useful for 
 Solving linear equations 
 Determine the natural frequency of bridge 
 … 



Latent Semantic Indexing (LSI) 



Latent Semantic Analysis  



LSI 



Classic LSI Example (Deerwester) 



LSI, SVD, & Eigenvectors 
 SVD decomposes: 

 Term x Document matrix X as 
 X=UΣVT 

 Where U,V left and right singular vector matrices, and 
 Σ is a diagonal matrix of singular values  

 Corresponds to eigenvector-eigenvalue decompostion: 
Y=VLVT 

 Where V is orthonormal and L is diagonal 
 U: matrix of eigenvectors of Y=XXT 
 V: matrix of eigenvectors of Y=XTX 
 Σ : diagonal matrix L of eigenvalues 

 



SVD: Dimensionality Reduction 



Cutting the dimensions with the 
least singular values 



Computing Similarity in LSI 



LSI and PLSI 

 LSI: find the k-dimensions that 
Minimizes the Frobenius norm of A-A’. 
 Frobenius norm of A: 

 

 
 pLSI: defines one’s own objective 

function to minimize (maximize) 
 



pLSI – a generative model 



pLSI – a probabilistic approach 



pLSI 
 Assume a multinomial distribution 
 

 
 Distribution of topics (z) 
 
 
 
 
Question: How to determine z ? 



Using EM 
 Likelihood 

 
 
 

 E-step 
 
 

 M-step 
 



Relation with LSI 
 Relation 
  
 
 

 
 
 
 

 Difference: 
 LSI: minimize Frobenius (L-2) norm ~ additive Gaussian 

noise assumption on counts 
 pLSI: log-likelihood of training data ~ cross-entropy / KL-

divergence 
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Mixture of Unigrams (traditional) 

Mixture of Unigrams Model (this is just Naïve Bayes) 

 For each of M documents, 
 Choose a topic z. 
 Choose N words by drawing each one independently from a 

multinomial conditioned on z. 

 
In the Mixture of Unigrams model, we can only have one topic per 

document! 
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The pLSI Model 

Probabilistic Latent Semantic 
Indexing (pLSI) Model 

For each word of document d in 
the training set, 

 Choose a topic z according to a 
multinomial conditioned on the 
index d. 

 Generate the word by drawing 
from a multinomial conditioned 
on z. 

 
In pLSI, documents can have 

multiple topics. 

d 

zd4 zd3 zd2 zd1 

wd4 wd3 wd2 wd1 



Problem of pLSI 

 It is not a proper generative model for 
document: 
 Document is generated from a mixture of 

topics 

 The number of topics may grow linearly 
with the size of the corpus 

 Difficult to generate a new document 



Dirichlet Distributions 
 In the LDA model, we would like to say that the topic 

mixture proportions for each document are drawn from 
some distribution. 

 So, we want to put a distribution on multinomials.  That 
is, k-tuples of non-negative numbers that sum to one. 

 The space is of all of these multinomials has a nice 
geometric interpretation as a (k-1)-simplex, which is 
just a generalization of a triangle to (k-1) dimensions. 

 Criteria for selecting our prior: 
 It needs to be defined for a (k-1)-simplex. 
 Algebraically speaking, we would like it to play nice with 

the multinomial distribution.  
 



Dirichlet Distributions 

 Useful Facts: 
 This distribution is defined over a (k-1)-simplex.  That 

is, it takes k non-negative arguments which sum to one.  
Consequently it is a natural distribution to use over 
multinomial distributions. 

 In fact, the Dirichlet distribution is the conjugate prior to 
the multinomial distribution.  (This means that if our 
likelihood is multinomial with a Dirichlet prior, then the 
posterior is also Dirichlet!) 

 The Dirichlet parameter αi can be thought of as a prior 
count of the ith class. 



The LDA Model 
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 For each document, 
 Choose θ~Dirichlet(α) 
 For each of the N words wn: 

 Choose a topic zn» Multinomial(θ) 
 Choose a word wn from p(wn|zn,β), a multinomial 

probability conditioned on the topic zn. 



The LDA Model 

For each document, 
 Choose θ» Dirichlet(α) 
 For each of the N words wn: 

 Choose a topic zn» Multinomial(θ) 
 Choose a word wn from p(wn|zn,β), a multinomial 

probability conditioned on the topic zn. 



LDA (Latent Dirichlet Allocation) 

 Document = mixture of topics (as in pLSI), but 
according to a Dirichlet prior 
 When we use a uniform Dirichlet prior, pLSI=LDA 

 A word is also generated according to another 
variable β:  

 
 

http://upload.wikimedia.org/wikipedia/commons/d/d3/Latent_Dirichlet_allocation.svg




  



Variational Inference 

 •In variational inference, we consider a simplified graphical 
model with variational parameters γ, φ and minimize the KL 
Divergence between the variational and posterior 
distributions. 

 

 









Use of LDA 

 A widely used topic model 
 Complexity is an issue 
 Use in IR:  

 Interpolate a topic model with traditional LM 
 Improvements over traditional LM, 
 But no improvement over Relevance model (Wei 

and Croft, SIGIR 06) 
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 Also see Wikipedia articles on LSI, pLSI and LDA 

http://www.cs.brown.edu/%7Eth/papers/Hofmann-SIGIR99.pdf
http://en.wikipedia.org/wiki/Special_Interest_Group_on_Information_Retrieval
http://en.wikipedia.org/wiki/Information_Retrieval
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