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Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which
is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which
stems from linear algebra and performs a Singular Value Decomposition of co-occurrence tables, the proposed
technique uses a generative latent class model to perform a probabilistic mixture decomposition. This results
in a more principled approach with a solid foundation in statistical inference. More precisely, we propose to
make use of a temperature controlled version of the Expectation Maximization algorithm for model fitting, which
has shown excellent performance in practice. Probabilistic Latent Semantic Analysis has many applications, most
prominently in information retrieval, natural language processing, machine learning from text, and in related areas.
The paper presents perplexity results for different types of text and linguistic data collections and discusses an
application in automated document indexing. The experiments indicate substantial and consistent improvements
of the probabilistic method over standard Latent Semantic Analysis.
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1. Introduction

The development of algorithms that enable computers to automatically process text and
natural language has always been one of the great challenges in Artificial Intelligence.
In recent years, this research direction has increasingly gained importance, last not least
due to the advent of the World Wide Web, which has amplified the need for intelligent
text and language processing. The demand for computer systems that manage, filter and
search through huge repositories of text documents has created a whole new industry,
as has the demand for smart and personalized interfaces. Consequently, any substantial
progress in this domain will have a strong impact on numerous applications ranging from
information retrieval, information filtering, and intelligent agents, to speech recognition,
machine translation, and human-machine interaction.

There are two schools of thought: On one side, there is the traditional linguistics school,
which assumes that linguistic theory and logic can instruct computers to “learn” a language.
On the other side, there is a statistically-oriented community, which believes that machines
can learn (about) natural language from training data such as document collections and text
corpora. This paper follows the latter approach and presents a novel method for learning



178 T. HOFMANN

themeaningof words in a purely data-driven fashion. The proposed unsupervised learning
technique calledProbabilistic Latent Semantic Analysis(PLSA) aims at identifying and
distinguishing between differentcontexts of word usagewithout recourse to a dictionary or
thesaurus. This has at least two important implications: Firstly, it allows us to disambiguate
polysems, i.e., words with multiple meanings, and essentially every word is polysemous.
Secondly, it reveals topical similarities by grouping together words that are part of a common
context. As a special case this includessynonyms, i.e., words with identical or almost
identical meaning.

As the name PLSA indicates, our approach has been largely inspired and influenced by
Latent Semantic Analysis(LSA) (Deerwester et al., 1990), although there are also notable
differences. The key idea in LSA is to map high-dimensional count vectors, such as term-
frequency (tf) vectors arising in the vector space representation of text documents (Salton
& McGill, 1983), to a lower dimensional representation in a so-calledlatent semantic
space. In doing so, LSA aims at finding a data mapping which provides information beyond
the lexical level of word occurrences. The ultimate goal is to represent semantic relations
between words and/or documents in terms of their proximity in the semantic space. Due to
its generality, LSA has proven to be a valuable analysis tool for many different problems
in practice and thus has a wide range of possible applications (e.g., Deerwester et al.,
1990; Foltz & Dumais, 1992; Landauer & Dumais, 1997; Wolfe et al., 1998; Bellegarda,
1998).

Despite its success, there are a number of shortcomings of LSA. First of all, the method-
ological foundation remains to a large extent unsatisfactory and incomplete. The origi-
nal motivation for LSA stems from linear algebra and is based on aL2-optimal approx-
imation of matrices of word counts based on aSingular Value Decomposition(SVD)
(Berry, Dumais, & Obrien, 1995). While SVD by itself is a well-understood and prin-
cipled method (Golub & Van Loan, 1996), its application to count data in LSA remains
somewhatad hoc. From a statistical point of view, the utilization of aL2-norm approxi-
mation principle is reminiscent of a Gaussian noise assumption which is hard to justify in
the context of count variables. On a deeper, conceptual level the representation obtained
by LSA is unable to handle polysemy. For example, it is easy to show that in LSA the
coordinates of a word in the latent space can be written as a linear superposition of the
coordinates of the documents that contain the word. The superposition principle, how-
ever, is unable to explicitly capture multiple senses of a word, nor does it take into ac-
count that every word occurrence is typically intended to refer to only one meaning at a
time.

Probabilistic Latent Semantics Analysis(PLSA) stems from a statistical view of LSA.
In contrast to standard LSA, PLSA defines a proper generative data model. This has
several advantages: On the most general level it implies that standard techniques from
statistics can be applied for model fitting, model selection and complexity control. For
example, one can assess the quality of a PLSA model by measuring its predictive perfor-
mance, e.g., with the help of cross-validation. More specifically, PLSA associates a latent
context variable with each word occurrence, which explicitly accounts for polysemy. A
more technical discussion of the differences between LSA and PLSA can be found in
Section 3.3.
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2. Latent semantic analysis

2.1. Count data and co-occurrence tables

LSA can be applied to any type of count data over a discrete dyadic domain, so-calledtwo-
mode data(Hofmann, Puzicha & Jordan, 1999). Yet, since the most prominent application
of LSA is in the analysis and retrieval of text documents, we focus on this setting. Suppose
therefore that we have given a collection of text documentsD = {d1, . . . ,dN} with terms
from a vocabularyW = {w1, . . . , wM}. By ignoring the sequential order in which words
occur in a document, one may summarize the data in a rectangularN × M co–occurrence
tableof countsN = (n(di , w j )

)
i j

, wheren(di , w j ) denotes the number of times the termw j

occurred in documentdi . In this particular case,N is also called the term-document matrix
and the rows/columns ofN are referred to as document/term vectors, respectively. The key
assumption is that the simplified ‘bag-of-words’ or vector-space representation (Salton &
McGill, 1983) of documents will in many cases preserve most of the relevant information,
e.g., for tasks like text retrieval based on keywords.

The co-occurrence table representation immediately reveals the problem ofdata sparse-
ness(Katz, 1987), also known as thezero-frequency problem(Witten & Bell, 1991). A
typical term-document matrix derived from short articles, text summaries or abstracts may
only have a small fraction of non-zero entries (typically well below 1%), which reflects
the fact that only very few of the words in the vocabulary are actually used in any single
document. This has consequences, for example, in applications that are based on matching
queries with documents or evaluating similarities between documents by comparing com-
mon terms. The likelihood to find many common terms even in closely related articles may
be small, just because they might not useexactlythe same terms.

For example, most of the matching functions utilized in this context are based on similarity
functions that rely on inner products between pairs of document vectors. The encountered
problems are two-fold: On one hand, one has to account for synonyms in order not to
underestimate the true similarity of documents. On the other hand, one has to deal with pol-
ysems to avoid overestimating the true similarity between documents by counting common
terms that are used in different meanings. Both problems may lead to inappropriate lexical
matching scores which may not reflect the ‘true’ similarity hidden in the semantics of words.

2.2. Latent semantic analysis by singular value decomposition

As mentioned in the introduction, the key idea of LSA is to map documents—and by sym-
metry terms—to a vector space of reduced dimensionality, thelatent semantic space, which
in a typical application in document indexing is chosen to have of the order≈100−300
dimensions (Deerwester et al., 1990; Dumais, 1995). The mapping of the given docu-
ment/term vectors to its latent space representatives is restricted to be linear and is based
on a decomposition of the co-occurrence matrix by SVD. One thus starts with the standard
SVD given by

N = U6Vt , (1)
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whereU andV are matrices with orthonormal columnsUtU=VtV= I and the diagonal
matrix6 contains the singular values ofN. The LSA approximation ofN is computed by
thresholding all but the largestK singular values in6 to zero (=6̃), which is rankK optimal
in the sense of theL2-matrix or Frobenius norm as is well-known from linear algebra, i.e.,
one obtains the approximation

Ñ = U6̃Vt ≈ U6Vt = N. (2)

Notice that if we want to compute the document-to-document inner products based on
(2), we would get̃NÑt = U6̃2Ut and hence one might think of the rows ofU6̃ as defining
coordinates for documents in the latent space. While the original high-dimensional vectors
are sparse, the corresponding low-dimensional latent vectors will typically not be sparse.
This implies that it is possible to compute meaningful association values between pairs of
documents, even if the documents do not have any terms in common. The hope is that terms
having a common meaning are roughly mapped to the same direction in the latent space.

3. Probabilistic latent semantic analysis

3.1. The aspect model

The starting point for our novelProbabilistic Latent Semantic Analysisis a statistical model
which has been called theaspect model(Hofmann, Puzicha, & Jordan, 1999). The aspect
model has independently been proposed by Saul and Peveira (1997) in the context of
language modeling, where it is referred to asaggregate Markov model. In the statistical lit-
erature similar models have been discussed for the analysis of contingency tables (cf. Gilula
& Haberman, 1986). Another closely related technique called non-negative matrix decom-
position has been investigated in Lee and Seung (1999).

The aspect model is a latent variable model for co-occurrence data which associates an
unobserved class variablezk ∈ {z1, . . . , zK }with each observation, an observation being the
occurrence of a word in a particular document. Let us introduce the following probabilities:
P(di ) is used to denote the probability that a word occurrence will be observed in a par-
ticular documentdi , P(w j | zk) denotes the class-conditional probability of a specific word
conditioned on the unobserved class variablezk, and finallyP(zk | di ) denotes a document-
specific probability distribution over the latent variable space. Using these definitions, one
may define a generative model for word/document co-occurrences by the following scheme:

1. select a documentdi with probability P(di ),
2. pick a latent classzk with probability P(zk | di ),
3. generate a wordw j with probability P(w j | zk).

As a result one obtains an observation pair(di , w j ), while the latent class variablezk is
discarded. Translating the data generation process into a joint probability model results in
the expression

P(di , w j ) = P(di )P(w j | di ), P(w j | di ) =
K∑

k= 1

P(w j | zk)P(zk | di ). (3)
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Essentially, to obtain (3) one has to sum over the possible choices ofzk by which an ob-
servation could have been generated. Like virtually all statistical latent variable models
the aspect model introduces a conditional independence assumption, namely thatdi and
w j are independent conditioned on the state of the associated latent variable. A very in-
tuitive interpretation for the aspect model can be obtained by a closer examination of the
conditional distributionsP(w j | di ) which are seen to be convex combinations of theK
class-conditionals oraspects P(w j | zk). Loosely speaking, the modeling goal is to identify
conditional probability mass functionsP(w j | zk) such that the document-specific word
distributions are as faithfully as possible approximated by convex combinations of these
aspects. More formally, one can use a maximum likelihood formulation of the learning
problem, i.e., one has to maximize

L =
N∑

i = 1

M∑
j = 1

n(di , w j ) log P(di , w j ) (4)

=
N∑

i = 1

n(di )

[
log P(di )+

M∑
j = 1

n(di , w j )

n(di )
log

K∑
k=1

P(w j | zk)P(zk | di )

]
,

with respect to all probability mass functions. Here,n(di ) =
∑

j n(di , w j ) refers to the
document length. A representation of the aspect model in terms of a graphical model is
depicted in Figure 1(a). Since the cardinality of the latent variables is typically smaller
than the number of documents (and terms) in the collection,K ¿ min{N,M}, it acts as a
bottleneck variable in predicting words.

It is worth noticing that an equivalent parameterization of the model can be obtained by
reversing the arc betweenD and Z in the graphical model representation (cf. Figure 1(a)
and (b)) resulting in the equivalent parameterization of the joint probability in (3) by

P(di , w j ) =
K∑

k=1

P(zk)P(di | zk)P(w j | zk), (5)

which is perfectly symmetric in both entities, documents and words.

3.2. Model fitting with the EM algorithm

The standard procedure for maximum likelihood estimation in latent variable models is
the Expectation Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). EM

Figure 1. Graphical model representation of the aspect model in the asymmetric (a) and symmetric
(b) parameterization.
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alternates two steps: (i) an expectation (E) step where posterior probabilities are computed
for the latent variables, based on the current estimates of the parameters, (ii) a maximization
(M) step, where parameters are updated based on the so-called expected complete data log–
likelihood which depends on the posterior probabilities computed in the E-step.

For the E-step one simply applies Bayes’ formula, e.g., in the parameterization of (3), to
obtain

P(zk | di , w j ) = P(w j | zk)P(zk | di )∑K
l = 1 P(w j | zl )P(zl | di ).

(6)

In the M-step one has to maximize the expected complete data log-likelihoodE [Lc]. Since
the trivial estimateP(di ) ∝ n(di ) can be carried out independently, the relevant part is
given by

E
[
Lc
] = N∑

i=1

M∑
j=1

n(di , w j )

K∑
k=1

P(zk | di , w j ) log
[
P(w j | zk)P(zk | di )

]
. (7)

In order to take care of the normalization constraints, (7) has to be augmented by appropriate
Lagrange multipliersτk andρi ,

H = E
[
Lc
]+ K∑

k= 1

τk

(
1−

M∑
j = 1

P(w j | zk)

)
+

N∑
i = 1

ρi

(
1−

K∑
k= 1

P(zk | di )

)
. (8)

Maximization ofH with respect to the probability mass functions leads to the following set
of stationary equations

N∑
i = 1

n(di , w j )P(zk | di , w j )− τk P(w j | zk) = 0, 1≤ j ≤ M, 1≤ k ≤ K , (9)

M∑
j = 1

n(di , w j )P(zk | di , w j )− ρi P(zk | di ) = 0, 1≤ i ≤ N, 1≤ k ≤ K . (10)

After eliminating the Lagrange multipliers one obtains the M-step re-estimation equations

P(w j | zk) =
∑N

i=1 n(di , w j )P(zk | di , w j )∑M
m=1

∑N
i=1 n(di , wm)P(zk | di , wm)

, (11)

P(zk | di ) =
∑M

j=1 n(di , w j )P(zk | di , w j )

n(di )
. (12)

The E-step and the M-step equations are alternated until a termination condition is met. This
can be a convergence condition, but one may also use a technique known asearly stopping.
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In early stopping one does not necessarily optimize until convergence, but instead stops
updating the parameters once the performance on hold-out data is not improving. This is
a standard procedure that can be used to avoid overfitting in the context of iterative fitting
methods, EM being a special case.

Before discussing further algorithmic questions, we will study the relationship between
the proposed model and LSA in more detail.

3.3. Latent probability spaces and probabilistic latent semantic analysis

Consider the class-conditional probability mass functionsP(· | zk) over the vocabularyW
which can be represented as points on theM−1 dimensional simplex of all probability mass
functions overW. Via its convex hull, this set ofK points defines aK−1 dimensional convex
regionR ≡ conv(P(· | z1), . . . , P(· | zK )) on the simplex (provided they are in general
position). The modeling assumption expressed by (3) is that all conditional probabilities
P(· |di ) for 1 ≤ i ≤ N are approximated by a convex combination of theK probability
mass functionsP(· | zk). The mixing weightsP(zk | di ) are coordinates that uniquely define
for each document a point within the convex regionR. A simple sketch of the geometry
is shown in Figure 2. This demonstrates that despite of the discreteness of the introduced
latent variables, acontinuous latent spaceis obtained within the space of all probability
mass functions overW. Since the dimensionality of the convex regionR is K − 1 as
opposed toM − 1 for the probability simplex, this can also be thought of in terms of
dimensionality reduction andR can be identified with aprobabilistic latent semantic space.
Each “direction” in this space corresponds to a particular context as quantified byP(· | zk)

and each documentdi participates in each context with some specific fractionP(zk | di ).
Note that since the aspect model is symmetric with respect to terms and documents, by

Figure 2. Sketch of the probability simplex and a convex region spanned by class-conditional probabilities in
the aspect model.
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reversing their role one obtains a corresponding regionR′ in the simplex of all probability
mass functions overD. Here each termw j will participate in each context with some fraction
P(zk |w j ), i.e., the probability of an occurrence ofw j as part of the contextzk.

To stress this point and to clarify the relation to LSA, let us rewrite the aspect model
as parameterized by (5) in matrix notation. Hence define matrices byÛ= (P(di | zk))i,k,
V̂ = (P(w j | zk)) j,k, and 6̂ = diag(P(zk))k. The joint probability modelP can then be
written as a matrix productP = Û6̂V̂t . Comparing this decomposition with the SVD
decomposition in LSA, one can point out the following re-interpretation of concepts of
linear algebra: (i) the weighted sum over outer products between rows ofÛ andV̂ reflects
conditional independence in PLSA, (ii) theK factors are seen to correspond to the mixture
components of the aspect model, (iii) the mixing proportions in PLSA substitute for the
singular values of the SVD in LSA. The crucial difference between PLSA and LSA, however,
is the objective function utilized to determine the optimal decomposition/approximation.
In LSA, this is theL2- or Frobenius norm, which corresponds to an implicit additive
Gaussian noise assumption on (possibly transformed) counts. In contrast, PLSA relies on
the likelihood function of multinomial sampling and aims at an explicit maximization
of the predictive power of the model. As is well known, this corresponds to a minimization
of the cross entropy or Kullback–Leibler divergence between the empirical distribution and
the model, which is different from any type of squared deviation. On the modeling side this
offers important advantages, for example, the mixture approximationPof the co-occurrence
table is a well-defined probability distribution and factors have a clear probabilistic meaning
in terms of mixture component distributions. In contrast, LSA does not define a properly
normalized probability distribution and, even worseÑ, may contain negative entries. In
addition, there is no obvious interpretation of the directions in the LSA latent space, while the
directions in the PLSA latent space are interpretable as class-conditional word distributions
that define a certain topical context. The probabilistic approach can also take advantage
of the well-established statistical theory for model selection and complexity control, e.g.,
to determine the optimal number of latent space dimensions. Choosing the number of
dimensions in LSA on the other hand is typically based on ad hoc heuristics.

A comparison in terms of computational complexity might suggest some advantages for
LSA: ignoring potential problems of numerical stability, the SVD can be computed exactly,
while the EM algorithm is an iterative method which is only guaranteed to find a local
maximum of the likelihood function. There are two independent issues: (i) How much does
the model accuracy suffer from the fact that EM is only able to find a local maximum?
(ii) Provided that the local maximum is (almost) as good as the global maximum, what is
the time complexity to compute a solution, i.e., how does the EM algorithms scale with the
size of the data set? In many experiments conducted on various data sets, we have observed
that the global maximum (as well as any local maximum) is often plagued by overfitting.
In order to avoid overfitting, one may use regularization techniques like early stopping
or tempered EM (cf. Section 3.6). It turns out that the variability of the solution quality
obtained from various randomized initial conditions is usually small, the upshot being that
even a “poor” local maximum in PLSA might be better than the exact solution in LSA.
The number of arithmetic operations of course depends on the number of EM iterations
that have to be performed. Typically 20–50 iterations are sufficient, each iteration requiring
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O(R · K ) operations, whereR is the number of distinct observation pairs(di , w j ), i.e.,
N · M times the degree of sparseness of the term-document matrix. This can easily be
verified by noticing thatR · K posterior probabilities have to be computed in the E-step (6)
each of which contributes to exactly one re-estimation equation in (11) and one in (12). As a
consequence, the computation time of EM has not been significantly worse than computing
an SVD on the co-occurrence matrix in any of the performed experiments. There is also
a large potential for improving run-time performance of EM by on-line update schemes,
which has not been explored so far.

3.4. Intermezzo: Word usage analysis with the aspect model

Let us briefly discuss an elucidating example application of the aspect model at this point.
We have generated a dataset (CLUSTER) with abstracts of 1568 documents onclustering
and trained an aspect model with 128 latent classes. As a particularly interesting term in this
domain we have chosen the word ‘segment’. Figure 3 shows the most probable words from
4 out of the 128 aspects which have the highest probability to generate the term ‘segment’.
This sketchy characterization of the aspects reveals very meaningful sub-domains: the first
three aspects deal withimage segmentationwhile the fourth concernsphonetic segmentation
in the context of speech recognition. The further division ofimage segmentationinto three
slightly different types of word usage for ‘segment’ is also highly plausible: the first aspect
seems to capture some of the word statistics inmedical imaging, the second deals with
image sequence analysis, while the third aspect is related to image segmentation mainly in
the context ofcontour and boundary detection. Notice that the term ‘region’ and ‘segment’
have a very similar meaning in this context, which is indeed reflected by this aspect.

Figure 4 shows the abstracts of four exemplary documents, which have been pre-processed
by a standard stop-word list and a stemmer. The posterior probabilities for the classes given

Figure 3. The 4 aspects to most likely generate the word ‘segment’, derived from aK = 128 aspect model of the
CLUSTER document collection. The displayed word stems are the most probable words in the class-conditional
distributionP(w j | zk), from top to bottom in descending order.
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Figure 4. Abstracts of 4 exemplary documents from the CLUSTER collection along with latent class posterior
probabilitiesP{zk | di ,W = ‘segment’} and word probabilitiesP{W = ‘segment’| di }.

the different occurrences of ‘segment’ indicate how likely it is for each of the 4 aspects
to have generated this observation. By inspection one can verify that all occurrences are
assigned to the ‘correct’ aspect. We have also displayed estimates of the conditional word
probabilitiesP{W = ‘segment’| di } for the 4 documents. Notice that although ‘segment’
does not occur explicitly in document 3, the estimated probability for ‘segment’ is still
significant. This implies, for example, that we might consider returning the document in
response to a query with the keyword ‘segment’, although this term was actually never used
in the (available part of the) document.

To provide a second example from a different domain, we have used the Topic Detec-
tion and Tracking (TDT1) corpus (http://www.ldc.upenn.edu/TDT, 1997) which consists of
approximately 7 million word occurrences in 15863 documents. For illustrative purposes,
an aspect model withK = 128 dimensions was trained. Figure 5 displays the two most
probable aspects that generate the term ‘flight’ (left) and ‘love’ (right), revealing interesting
types of word usage for ‘flight’ (aviation vs. space missions) as well as ‘love’ (family love
vs. Hollywood love).

3.5. Aspects versus clusters

It is worth comparing the aspect model with statistical clustering models (cf. also Hofmann,
Puzicha, & Jordan, 1999). In clustering models for documents, one typically associates a
latent class variable with each document in the collection. Most closely related to our
approach is thedistributional clustering model(Pereira, Tishby, & Lee, 1993; Baker &
McCallum, 1998) and the multinomial (maximum likelihood) version of Autoclass cluster-
ing (Cheeseman & Stutz, 1996), an unsupervised version of a naive Bayes’ classifier.
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Figure 5. The 2 aspects to most likely generate the word ‘flight’ (left) and ‘love’ (right), derived from aK = 128
aspect model of the TDT1 document collection. The displayed terms are the most probable words in the class-
conditional distributionP(w j | zk), from top to bottom in descending order.

It can be shown (Hofmann, Puzicha, & Jordan, 1999) that the conditional word probability
of a probabilistic clustering model is given by

P(w j | di ) =
K∑

k=1

P{c(di ) = ck}P(w j | ck), (13)

whereP{c(di ) = ck} is the posterior probability of documentdi belonging to clusterck. In
maximum likelihood Autoclass, it is a simple implication of Bayes’ rule that the class poste-
rior probabilities will concentrate their probability mass on one clusterck with an increasing
number of observations (i.e., with the length of the document). The likelihood contribu-
tions for each word occurrence enter a product, reflecting the conditional independence
assumption

P{c(di ) = ck} =
P(ck)

∏M
j=1 P(w j | ck)

n(di ,w j )∑K
l=1 P(cl )

∏M
j=1 P(w j | cl )

n(di ,w j )
. (14)

This means that although (3) and (13) are algebraically equivalent, they are conceptually very
different. In a clustering model for documents, it is assumed that each document belongs to
exactly one cluster and it is only the finiteness of the number of observations per document
that induces uncertainty about a document’s cluster membership, as expressed in the class
posterior probabilitiesP{c(di ) = ck}. In contrast, the aspect model assumes that every
occurrenceof a word in a document is associated with a unique statezk of the latent class
variable. This does by no means exclude that different word occurrences within the same
document or occurrences of the same word within different documents can be “explained”
by different aspects. However, since latent class variables associated with occurrences in the
same document share their prior probabilitiesP(zk | di ), observations within a document get
effectively coupled. By symmetry this also holds for different occurrences of the same word.
As a result of this coupling, the probabilitiesP(zk | di ) andP(zk |w j ) tend to be “sparse”,
i.e., for givendi or w j typically only few entries are significantly different from zero.
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The aspect model clusters document-word pairs, which is different from clustering either
documents or words or both. As a consequence the document-specific word probabilities in
the aspect model are a convex combination of aspects, while the clustering model assumes
there is justone cluster-specific distribution which is inherited by all documents in the
cluster (cf. also Hofmann, Puzicha, & Jordan, 1999).

3.6. Model fitting revisited: Improving generalization by tempered EM

So far we have focused on maximum likelihood estimation to fit a model to a given document
collection. Although the likelihood is the quantity we believe to be crucial in assessing the
quality of a model, one clearly has to distinguish between the performance on the training
data and on unseen test data. We will use theperplexity, a measure commonly used in
language modeling, to assess the generalization performance of a model. The perplexity is
defined to be the log-averaged inverse probability on unseen data, i.e.,

P = exp

[
−
∑

i, j n′(di , w j ) log P(w j | di )∑
i, j n′(di , w j )

]
, (15)

wheren′(di , w j ) denotes counts on hold-out or test data.
To derive conditions under which generalization on unseen data can be guaranteed is

actuallythe fundamental problem of statistical learning theory. Here, we propose a gener-
alization of maximum likelihood for mixture models which is known asannealingand is
based on an entropic regularization term. The resulting method is calledTempered Expecta-
tion Maximization(TEM) and is closely related todeterministic annealing(Rose, Gurewitz,
& Fox, 1990). The combination of deterministic annealing with the EM algorithm has been
investigated before in Ueda and Nakano (1998), Hofmann, Puzicha, and Jordan (1999).

The starting point of TEM is a derivation of the E-step based on an optimization principle.
As has been pointed out in Neal and Hinton (1998), the EM procedure in latent variable
models can be obtained by minimizing a common objective function—the (Helmholtz)free
energy—which for the aspect model is given by

Fβ = −β
N∑

i=1

M∑
j=1

n(di , w j )

K∑
k=1

P̃(zk; di , w j ) log
[
P(di | zk)P(w j | zk)P(zk)

]

+
N∑

i=1

M∑
j=1

n(di , w j )

K∑
k=1

P̃(zk; di , w j ) log P̃(zk; di , w j ) . (16)

Here P̃(zk; di , w j ) are variational parameters which define a conditional distribution over
{z1, . . . , zK } andβ is a parameter which—in analogy to physical systems—is called the
inverse computational temperature. Notice that the first contribution in (16) is the negative
expected log-likelihood scaled byβ. Thus in the case of̃P(zk; di , w j ) = P(zk | di , w j )

minimizingF w.r.t. the parameters definingP(di , w j | zk)P(zk) amounts to the standard
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M-step in EM. In fact, it is straightforward to verify that the posteriors are obtained by
minimizingF w.r.t. P̃ atβ = 1. In generalP̃ is determined by

P̃(zk; di , w j )= [ P(zk)P(di | zk)P(w j | zk)]β∑
l [ P(zl )P(di | zl )P(w j | zl )]β

= [ P(zk | di )P(w j | zk)]β∑
l [ P(zl | di )P(w j | zl )]β

. (17)

This shows that the effect of the entropy atβ < 1 is to dampen the posterior probabilities
such that they will get closer to the uniform distribution with decreasingβ.

Somewhat contrary to the spirit of annealing as a continuation method, we propose an
‘inverse’ annealing strategy which first performs EM iterations and thendecreasesβ until
performance on hold-out data deteriorates. Compared to annealing this may accelerate the
model fitting procedure significantly (e.g., by a factor of≈ 10−50) and we have not found
the test set performance of “heated” models to be significantly worse than the one achieved
by carefully “annealed” models. The TEM algorithm can be implemented in the following
way:

1. Setβ ← 1 and perform EM with early stopping.
2. Decreaseβ ← ηβ (with η < 1) and perform one TEM iteration.
3. As long as the performance on hold-out data improves (non-negligible) continue TEM

iterations at this value ofβ, otherwise goto step 2
4. Perform stopping onβ, i.e., stop when decreasingβ does not yield further improvements.

4. Experimental results

In this paper, we have presented a novel approach to latent semantic analysis based on a
statistical latent variable model, the general problem of text analysis being the main thread
of our presentation. In the experimental evaluation, however, we focus on two more specific
tasks to assess the performance of PLSA: (i) perplexity minimization for a document-specific
unigram model and noun-adjective pairs, and (ii) automated indexing of documents. The
evaluation of LSA and PLSA on the first task will demonstrate the advantages of explicitly
minimizing perplexity by (tempered) maximum likelihood estimation, the second task will
then show that the advantages of PLSA in terms of a solid statistical foundation do pay off in
applications which superficially do not seem to be directly related to perplexity reduction.

4.1. Perplexity evaluation for PLSA and LSA

In order to compare the predictive performance of PLSA and LSA one has to specify
how to extract probabilities from a LSA decomposition. This problem is not trivial, since
negative entries prohibit a straightforward re-normalization of the approximating matrix
Ñ. We have thus followed the approach of Coccaro and Jurafsky (1998) to derive LSA
probabilities. The latter isad hocand involves the optimization of a free parameterγ , but
the extracted probabilities are more accurate than the ones obtained by other straightforward
normalization steps.



190 T. HOFMANN

Figure 6. Perplexity results as a function of the latent space dimensionality for (a) the MED data (rank 1033) and
(b) the LOB data (rank 1674). Plotted results are for LSA (dashed-dotted curve) and PLSA (trained by TEM=
solid curve, trained by early stopping EM= dotted curve). The upper baseline is the unigram model corresponding
to marginal independence. The star at the right end of the PLSA denotes the perplexity of the largest trained aspect
models (K = 2048).

Two data sets that have been used to evaluate the perplexity performance: (i) a standard
information retrieval test collection MED with 1033 document, (ii) a dataset with noun-
adjective pairs generated from a tagged version of the LOB corpus. In Figure 6 we report
perplexity results for LSA and PLSA on the MED (a) and LOB (b) datasets dependent on the
number of dimensions of the (probabilistic) latent semantic space. For the noun-adjective
pairs the reported perplexity corresponds to predicting nouns conditioned on the correspond-
ing adjective. PLSA outperforms the statistical model derived from standard LSA by far. On
the MED collection PLSA reduces perplexity relative to the unigram baseline by more than
a factor of three (3073/936≈ 3.3), while LSA achieves less than a factor of two in reduction
(3073/1647≈ 1.9). On the less sparse LOB data, the difference between LSA and PLSA
is somewhat less drastic, but still very significant. With PLSA the reduction in perplexity
is 1316/547≈ 2.41 while the reduction achieved by LSA is only 1316/632≈ 2.08. In
order to demonstrate the advantages of TEM, we have also trained aspect models on the
MED collection by standard EM with early stopping. As can be seen from the curves in
Figure 6(a), the difference between EM and TEM model fitting is significant. Although both
strategies—annealing and early stopping—are successful in controlling the model complex-
ity, EM training performs worse, since it makes a very inefficient use of the available degrees
of freedom. Notice, that with both methods it is possible to train high-dimensional models
with a continuous improvement in performance. The number of latent space dimensions
may even exceed the rank of the co-occurrence matrixN and the choice of the number of
dimensions becomes merely an issue of possible limitations of computational resources.

In order to investigate the effect of the final choice ofβ and to further stress the advantages
of TEM, we have performed another series of experiments on the TDT1 corpus using
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Figure 7. Annealing experiments on the TDT1 dataset for a model withK = 128 aspects at different subsampling
factors (from upper left to lower right: 32x,16x,8x,4x,2x,1x).N denotes the number of documents in the training
data set, small numbers indicate the inverse temperatureβ utilized for the respective training curves. The dotted
line shows the performance of EM past the optimal stopping point.

randomized subsampling to study the effect of the size of the document collection. Since
we want to focus on the control of overfitting and not on the problem of local maxima,
all models have been trained at a fixed temperature. Figure 7 shows perplexity curves for
different inverse temperaturesβ for a model withK = 128 as a function of the number
of tempered EM iterations at various subsampling levels. At all temperatures we have
performed early stopping once the perplexity on hold-out data increased. For the 32×
subsampling experiments (N = 496 documents), we have repeated runs 5 times in order to
evaluate the solution variability for different (randomized) initial conditions. The following
observations can be made: (i) Although early stopping prevents overfitting, the use of
temperature control yields a significant and consistent improvement for all sample sizes.
(ii) The advantages of tempered EM are considerable, even for the full TDT1 dataset with 7
million tokens. Thus overfitting is also an important problem in large-scale data sets. (iii) The
computational complexity of tempered EM is slightly higher compared to standard EM (i.e.,
β = 1), typically twice as many iterations are necessary to converge. (iv) The variablity in
the quality of solutions achieved from different initial conditions is small compared to the
perplexity difference between EM and TEM. (v) Althoughβ is a critical parameter, there
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is a broad range of values for which a comparable performance is achieved. Hence, TEM
is fairly robust with respect to the choice of the optimalβ.

4.2. Information retrieval with PLSA and LSA

One of the key problems in information retrieval isautomatic indexingwhich has its main
application in query-based retrieval. The most popular family of information retrieval tech-
niques is based on theVector–Space Model(VSM) for documents (Salton & McGill, 1983).
A VSM variant is characterized by three ingredients: a transformation function (also called
local term weight), a term weighting scheme (also called global term weight), and a similar-
ity measure. Since this paper deals with PLSA as a general unsupervised learning technique,
we have not taken advantage of the huge variety of sophisticated transformation functions
and term weighting schemes which are known to yield largely varying results on different
data sets. Instead, we have utilized a rather straightforward representation based on the
(untransformed) term frequenciesn(di , w j ) together with the standard cosine matching
function. Given that our interest is mainly in assessing the relative performance differences
between direct term matching, LSA, and PLSA, this choice seems to be justified. The same
representation used for documents applies to queriesq as well, so that the similarity function
for the baseline method can be written as

s(di ,q) =
∑M

j=1 n(di , w j )n(q, w j )√∑M
j=1 n(di , w j )2

√∑M
j=1 n(q, w j )2

, (18)

In Latent Semantic Indexing (LSI), the original vector space representation of documents
is replaced by a representation in the low–dimensional latent space and the similarity is
computed based on that representation. Queries or documents which were not part of the
original collection can befolded inby a simple matrix multiplication (cf. (Deerwester et al.,
1990) for details). In our experiments, we have actually considered linear combinations
of the original similarity score (18) (weightλ) and the one derived from the latent space
representation (weight 1− λ), as suggested in Pereira et al. (1993).

The same ideas have been applied in Probabilistic Latent Semantic Indexing (PLSI) in
conjunction with the PLSA model. More precisely, the low–dimensional representation
in the factor space P(zk | di ) and P(zk |q) have been utilized to evaluate similarities. To
achieve this queries have to be folded in, which is done in the PLSA by fixing theP(w j | zk)

parameters and calculating weightsP(zk |q) by TEM.
One advantage of using statistical models vs. SVD techniques is that it allows us to

systematically combine different models. While this should optimally be done according to
a Bayesian model combination scheme, we have utilized a much simpler approach in our
experiments which has nevertheless shown excellent performance and robustness. Namely,
we have simply combined the cosine scores of all models with a uniform weight. The
resulting method is referred to as PLSI∗. Empirically we have found the performance to
be very robust w.r.t. different (non-uniform) weights and also w.r.t. theλ-weight used in
combination with the original cosine score. This is due to the noise reducing benefits of
model averaging. Notice that LSA representations for differentK form a nested sequence,
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which is not true for the statistical models which are expected to capture a larger variety of
reasonable decompositions.

We have utilized the following four medium–sized standard document collection with
relevance assessment: (i) MED (1033 document abstracts from the National Library of
Medicine), (ii) CRAN (1400 document abstracts on aeronautics from the Cranfield Institute
of Technology), (iii) CACM (3204 abstracts from the CACM journal), and (iv) CISI (1460
abstracts in library science from the Institute for Scientific Information). For all document
collections queries are annotated with ground truth, i.e., a set of relevant documents has
been determined for each query by human experts. The condensed results in terms of
average precision (at the 9 recall levels 10%−90%) are summarized in Table 1, while the
corresponding precision-recall curves can be found in Figure 8. Here are some additional
details of the experimental setup: PLSA models atK = 32, 48, 64, 80, 128 have been trained
by TEM for each data set with 10% hold-out data. For PLSI we report the best result obtained
by any of these models, for LSI we report the best result obtained for the optimal dimension
(exploring 32–512 dimensions at a step size of 8). The combination weightλ for the cosine
baseline score has been manually optimized, MED, CRAN:λ= 1/2, CACM, CISI:λ= 2/3;
in general slightly smaller weights have been utilized for the combined models, although
the results are highly robust with respect to the exact choice ofλ.

Figure 8. Precision-recall curves for the 4 test collections. Depicted are curves for direct term matching, LSI,
and PLSI∗.
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Table 1. Average precision results and relative improvement w.r.t. the baseline method cos+ tf for the 4 standard
test collections.

MED CRAN CACM CISI
prec. impr. prec. impr. prec. impr. prec. impr.

cos+ tf 44.3 – 29.9 – 17.9 – 12.7 –
LSI 51.7 +16.7 ∗28.7 −4.0 ∗16.0 −11.6 12.8 +0.8
PLSI 63.9 +44.2 35.1 +17.4 22.9 +27.9 18.8 +48.0
PLSI∗ 66.3 +49.7 37.5 +25.4 26.8 +49.7 20.1 +58.3

Compared are LSI, PLSI, as well as results obtained by combining PLSI models (PLSI∗). An asterix for
LSI indicates that no performance gain could be achieved over the baseline, the result at 256 dimensions
with λ = 2/3 is reported in this case.

Figure 9. Perplexity and average precision as a function of the inverse temperatureβ for an aspect model with
K = 48 (left) andK = 128 (right).

The experiments consistently validate the advantages of PLSI over LSI. Substantial per-
formance gains have been achieved for all 4 data sets. Notice that the relative precision
gain compared to the baseline method is typically around 100% in the most interesting
intermediate regime of recall! In particular, PLSI works well even in cases where LSI fails
completely (these problems of LSI are in accordance with the original results reported in
Deerwester et al. (1990)). The benefits of model combination are also very substantial. In
all cases the (uniformly) combined model performed better than the best single model.

These experiments clearly demonstrate that the advantages of PLSA over standard
LSA are not restricted to applications with performance criteria directly depending on
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the perplexity. Statistical objective functions like the perplexity (log-likelihood) may thus
provide a general yardstick for analysis methods in text learning and information retrieval.
To stress this point we ran a series of experiments, where both, perplexity and average pre-
cision, have been monitored simultaneously as a function ofβ. The resulting curves for the
MED collection are plotted in Figure 9. The results on the other collections are very similar.
Although the two curves do not attain their respective extrema for exactly the same value
of β, the correlation is quite striking. In fact, the best retrieval performance is achieved for
slightly lower values ofβ than the one determined on the hold-out data.

5. Conclusion

We have proposed a novel method for unsupervised learning, calledProbabilistic Latent
Semantic Analysis, which is based on a statistical latent-class model. We have argued that
this approach is more principled than standard Latent Semantic Analysis, since it possesses
a sound statistical foundation and utilizes the (annealed) likelihood function as an optimiza-
tion criterion.Tempered Expectation Maximizationhas been presented as a powerful fitting
procedure. We have experimentally verified the claimed advantages in terms of perplexity
evaluation on text data as well as on linguistic data and for an application in automated doc-
ument indexing, achieving substantial performance gains in all cases. Probabilistic Latent
Semantic Analysis has thus to be considered as a promising novel unsupervised learning
method with a wide range of application in text learning, computational linguistics, in-
formation retrieval, and information filtering. Future work and publications will deal in
larger detail with specific applications as well as with extensions and generalizations of the
presented method.
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