
Class Notes

Tile-Based Methods
for Interactive Applications

Ares Lagae∗

Katholieke Universiteit Leuven

Craig S. Kaplan†

University of Waterloo

Chi-Wing Fu‡

Nanyang Technological University

Victor Ostromoukhov§

University of Montreal

Johannes Kopf¶

Universität Konstanz

Oliver Deussen‖

Universität Konstanz

SIGGRAPH 2008

∗e-mail: ares.lagae@cs.kuleuven.be
†e-mail: csk@cgl.uwaterloo.ca
‡e-mail: philip_cwfu@yahoo.com.hk
§e-mail: ostrom@iro.umontreal.ca
¶e-mail: johannes.kopf@uni-konstanz.de
‖e-mail: oliver.deussen@uni-konstanz.de





Class Description

Over the last years, several techniques have been demonstrated that rely on tile-based
methods. A lot of interactive applications could potentially benefit from these techniques.
However, the state-of-the-art is scattered over several publications, and survey works are
not available. In this class we give a detailed overview of tile-based methods in com-
puter graphics. The class consist of five parts, which are briefly covered in the following
paragraphs.

Tile-Based Methods using Wang and Corner Tiles The first part of the class intro-
duces tile-based methods in computer graphics based on Wang tiles and corner tiles. This
part serves as a general introduction for the class, but also covers methods and applica-
tions based on Wang tiles and corner tiles. We introduce Wang tiles and corner tiles, and
present several tiling algorithms. We discuss in detail tile-based texture mapping using
graphics hardware, tile-based generation of Poisson disk distributions, and object distri-
bution for procedural texturing. We briefly cover other applications such as sampling,
non-photorealistic rendering, and geometric object distribution. The lecturer for the first
part is Ares Lagae, who recently finished his PhD about tile-based methods in computer
graphics [Lagae, 2007].

Periodic Tilings for Computer Graphics Applications The second part of the class
introduces the mathematical and algorithmic aspects of decorative tilings such as those
used by M. C. Escher. It focuses on the theory of isohedral tilings, tilings that cover the
plane systematically with congruent copies of a single shape. The isohedral tilings are
flexible enough to support a wide variety of applications in art and design, while admitting
a compact and efficient implementation. We show how to store, manipulate and render
isohedral tilings, and survey some recent applications. The lecturer for the second part
is Craig Kaplan, an expert on the use of computer graphics in ornamental design Kaplan
[2002].

Tile-Based Methods for Surface Modeling The third part of the class covers tile-
based methods for surface modeling. Tiling is a practical and cost-effective method for

iii



Class Description

high-quality surface modeling and rendering. Rather than intensive data acquisition and
synthesis, the generalized Wang tile set presented in this part of the talk allows us to
seamlessly and non-periodically tile texture data on parameterized surfaces of arbitrary
topology. Once we synthesize textures on tiles, we can reuse the same tile set on different
surfaces and we can also instantaneously change the surface appearance by just switching
the reference tile set. Further than color textures, we also extend surface tiling to include
bump maps, geometry details, the BTF’s, as well as Poisson disk tiling. The lecturer for
the third part is Chi-Wing Fu, who wrote several papers on this topic [Fu and Leung,
2005].

Non-Periodic Tilings for Computer Graphics Applications The fourth part of the class
covers an important class of non-periodic tilings and their benefits for computer graphics
applications. First, the theory of Penrose tilings is presented. We show how the inherent
self-similarity of Penrose tiling can be exploited in order to get efficient implementation
of uniform distributions with blue-noise properties. Then, we present polyomino-based
uniform distributions, and show their advantages. Finally, we explore other non-periodic
tiling systems, potentially usable for computer graphics applications: dodecagonal tiling,
Ammann tiling, etc. The lecturer for the fourth part is Victor Ostromoukhov who is an
expert in this topic [Ostromoukhov et al., 2004; Ostromoukhov, 2007].

Tile-Based Methods for Non-Photorealistic Rendering and Landscape Modeling The
fifth part of the class covers applications of tile-based methods in the fields of non-photorealistic
rendering and landscape modeling [Cohen et al., 2003]. Using hierarchical tile sets one is
able to create point sets with infinite density still showing Poisson disk characteristics [Kopf
et al., 2006]. We will demonstrate this using a set of tiles that is recursively subdivided.
This is possible because the set shows self similarity. The resulting points can be used
to create stipple drawings and also distributions of plants that also show Poisson disk be-
havior. This will be demonstrated by an application that enables real-time modeling and
rendering of complex landscapes. The lecturer for the fifth part is Johannes Kopf, who has
considerable experience with tile-based design.
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Intended Audience & Prerequisites

The intended audience for this class is both the experienced graphics researcher, interested
in applying tile-based methods to his own research, and the graphics practitioner, interested
in using the tile-based methods covered in this class.
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GoalGoal

• A detailed overview of tile-based methods in 
computer graphics

• Focus on
– Interactive techniques and applications

– Mathematical concepts and tiling theory
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PrerequisitesPrerequisites

• Basic working knowledge in
– Mathematics

– Computer science

– Computer graphics

• Target audience
– Experienced graphics researchers

– Graphics practitioner
4

SpeakersSpeakers

• In order of appearance
– Ares Lagae Katholieke Universiteit Leuven

– Craig S. Kaplan University of Waterloo

– Chi-Wing Fu (Philip) Nanyang Technological University

– Victor Ostromoukhov Université de Montréal

– Johannes Kopf Universität Konstanz 
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ScheduleSchedule
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Kopf11:30 - 12:10

Non-Periodic Tilings for Computer Graphics 
Applications

Ostromoukhov10:50 - 11:30

Break10:35 - 10:50

Tile-Based Methods for Surface ModelingFu09:55 - 10:35

Periodic Tilings for Computer Graphics ApplicationsKaplan09:15 - 09:55

Tile-Based Methods using Wang and Corner TilesLagae08:35 - 09:15

IntroductionLagae08:30 - 08:35

Tile-Based Methods                  
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Tile-Based Methods                  
using Wang Tiles and Corner Tiles
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Katholieke Universiteit Leuven
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IntroductionIntroduction

• Tiles & tilings

– A tiling is an arrangement of plane figures that 
fills the plane without gaps or overlaps
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IntroductionIntroduction

• Tiles & tilings

– A tiling is an arrangement of plane figures that 
fills the plane without gaps or overlaps
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IntroductionIntroduction

• Tile-based methods

– The use of tilings to efficiently compute signals
that are otherwise expensive to compute

original signal generated signal

difficult

10

IntroductionIntroduction

• Tile-based methods

– The use of tilings to efficiently compute signals
that are otherwise expensive to compute

original signal set of tiles generated signal

difficult

easyeven more difficult

11

ConclusionConclusion

• Tile-based methods for interactive applications

Which kind of tiles to use?

How to efficiently compute a tiling?

How to fill the tiles with a signal?

12

OverviewOverview

• Wang tiles and corner tiles

• Tiling algorithms

• Tile-based methods
– for generating Poisson disk distributions

– for texture synthesis

• Applications
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OverviewOverview

• Wang tiles and corner tiles

• Tiling algorithms

• Tile-based methods
– for generating Poisson disk distributions

– for texture synthesis

• Applications
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Wang TilesWang Tiles

• Regular tessellations
– Regular tiling using a single regular polygonal tile

hexagon square triangle

15

Wang TilesWang Tiles

• Wang tiles
– Unit square tiles

– Colored edges

– Fixed orientation

the complete set of Wang tiles over 2 colors

16

Wang TilesWang Tiles

• Wang tile set
– Finite set of Wang tiles

– A complete set of Wang tiles over C colors counts 
C4 tiles

the complete set of Wang tiles over 2 colors

17

Wang TilesWang Tiles

• Tiling with Wang tiles
– Using a Wang tile set

– Adjoining edges must 
have matching colors

– Generated using a tiling 
algorithm

a tiling with the 
complete Wang tile 

set over 3 colors

18

History of Wang TilesHistory of Wang Tiles

• Mathematics

– Wang, 1961

• Investigated the tiling problem; conjectured that aperiodic tile sets did not 
exist

– Berger, 1966

• Refuted the conjecture of Wang; Turing machines and the halting 
problem; Constructed the first aperiodic set of Wang tiles (20.426 tiles)

– Berger, 1966 (104); Knuth, 1968 (92); Lauchli, 1966 (40); Robinson, 
1967 (52); Penrose, 1977 (32), Robinson, 1977 (24), Kari, 1996 (14), 
Culik, 1996 (13)

– Penrose, 1974

• An aperiodic set of two tiles
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19

History of Wang TilesHistory of Wang Tiles

• Computer graphics

– Stam, 1997

• Aperiodic texture 

– Hiller, Deussen & Keller, 2000

• Poisson disk distributions

– Cohen, Shade, Hiller & Deussen, 2003:

• Wang tiles for image and texture generation

– …

20

Corner TilesCorner Tiles

• Corner tiles
– Unit square tiles

– Colored corners

– Fixed orientation

the complete set of corner tiles over 2 colors

21

Corner TilesCorner Tiles

• Corner tile set
– Finite set of corner tiles

– A complete set of corner tiles over C colors counts 
C4 tiles

the complete set of corner tiles over 2 colors

22

Corner TilesCorner Tiles

• Tiling with corner tiles
– Using a corner tiles set

– Adjoining corners must 
have matching colors

– Generated using a tiling 
algorithm

a tiling with the 
complete corner tile 

set over 3 colors

23

Wang Tiles vs. Corner TilesWang Tiles vs. Corner Tiles

• The corner problem
– Corner tiles constrain all their neighbors

– Wang tiles don’t

Wang tiles corner tiles

24

OverviewOverview

• Wang tiles and corner tiles

• Tiling algorithms

• Tile-based methods
– for generating Poisson disk distributions

– for texture synthesis

• Applications
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25

Tiling AlgorithmsTiling Algorithms

• Goal
– Generating a stochastic tiling

tiling

set of tiles

tiling algorithm

26

Scanline Stochastic Tiling AlgorithmsScanline Stochastic Tiling Algorithms

• For Wang tiles
– Place tiles in scanline order (W

�
E & N

�
S)

– Choose a random tile with matching edge colors

a scanline stochastic tiling algorithm for Wang tiles

27

Scanline Stochastic Tiling AlgorithmsScanline Stochastic Tiling Algorithms

• For Wang tiles
– Place tiles in scanline order (W

�
E & N

�
S)

– Choose a random tile with matching edge colors

– A compact set of Wang tiles over C colors 
counts 2C2 tiles

a compact Wang tile set over 2 colors

28

a scanline stochastic tiling algorithm for corner tiles

Scanline Stochastic Tiling AlgorithmsScanline Stochastic Tiling Algorithms

• For corner tiles
– Place tiles in scanline order (W

�
E & N

�
S)

– Choose a random tile with matching corner colors

29

Direct Stochastic Tiling AlgorithmsDirect Stochastic Tiling Algorithms

• Which tile is at location (1000,1000)?

• Scanline stochastic tiling algorithms
– Compute the complete tiling at once

Æ Direct stochastic tiling algorithms
– Evaluate the stochastic tiling on the fly 

30

Direct Stochastic Tiling AlgorithmsDirect Stochastic Tiling Algorithms

• For corner tiles
– Based on a hash function that associates a 

random color with each integer lattice point

a direct stochastic tiling algorithm for corner tiles
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Direct Stochastic Tiling AlgorithmsDirect Stochastic Tiling Algorithms

• For Wang tiles
– Slightly more complex

– Transform from square lattice to diamond lattice

direct stochastic tiling algorithms for Wang tiles

32

Hash FunctionsHash Functions

• 1D hash function
–

– Permutation table P of size N

– P contains a random permutation of {0, 1, …, N-1}

( ) [ % ]hash x P x N=

33

Hash FunctionsHash Functions

• 2D hash function
–

–

–

( , ) [ % ] [ % ]x yhash x y P x N P y N= +
( , ) [( [ % ] )% ]hash x y P P x N y N= +
( , ) [ [ % ] ^ [ % ]]x yhash x y P P x N P y N=

34

Long-Period Hash FunctionsLong-Period Hash Functions

• Traditional hash functions
–

– Period = N, size = N (256)

• Long-period hash functions
– Combine multiple permutation tables (17,19,23,24,29,31,37)

– Period = lcm (5.930.659.848), size = sum (180)

( ) [ % ]hash x P x N=

1

0

( ) [ % ] %
M

i i
i

hash x P x N N
−

=

 =   
∑

35

Long-Period Hash FunctionsLong-Period Hash Functions

• Example

36

OverviewOverview

• Wang tiles and corner tiles

• Tiling algorithms

• Tile-based methods
– for generating Poisson disk distributions

– for texture synthesis

• Applications
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37

Poisson Disk DistributionsPoisson Disk Distributions

• Definition
– A 2D Poisson distribution in which all points are 

separated by a minimum distance 2r

minimum distance criterion

a Poisson disk distribution

r

2r≥ r

38

Poisson Disk DistributionPoisson Disk Distribution

• Generation
– Dart throwing, relaxation dart throwing

dart throwing

39

Poisson Disk DistributionPoisson Disk Distribution

• Generation
– Lloyd’s relaxation scheme

initial point 
distribution

Voronoi diagram 
centroids

final point 
distribution

improved point 
distribution

40

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Poisson disk tile regions
– Determined by the Poisson disk radius r

• Modified Poisson  disk tile regions
– Slightly enlarge regions

Poisson disk tile regions modified Poisson disk tile regions

41

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Dual tiling
– Combine the modified 

Poisson disk tile regions 
with a corner tile set

42

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Dual tiling
– 3 kinds of tiles

• C corner tiles

• C2 edge tiles

• C4 interior tiles
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43

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Construct a Poisson disk distribution
– Over the C corner tiles

constraints dart throwing relaxation clip

44

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Construct a Poisson disk distribution
– Over the C corner tiles

45

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Construct a Poisson disk distribution
– Over the C2 edge tiles

constraints dart throwing relaxation clip

46

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Construct a Poisson disk distribution
– Over the C2 edge tiles

47

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Construct a Poisson disk distribution
– Over the C4 interior tiles

constraints dart throwing relaxation clip

48

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Construct a Poisson disk distribution
– Over the C4 interior tiles
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Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Efficiently generating Poisson disk distributions
– Construct corner-based                                              

Poisson disk tile set

– Generate stochastic                                             
tiling

a tiling with        
corner-based              

Poisson disk tiles

50

Corner-Based Poisson Disk TilesCorner-Based Poisson Disk Tiles

• Efficiently generating Poisson disk distributions
– Construct corner-based                                              

Poisson disk tile set

– Generate stochastic                                             
tiling

the resulting 
Poisson disk 

distribution

51

Corner-Based Poisson Sphere TilesCorner-Based Poisson Sphere Tiles

• Tile-based method for Poisson sphere 
distributions

a tiling with        
corner-based              

Poisson sphere tiles

52

OverviewOverview

• Wang tiles and corner tiles

• Tiling algorithms

• Tile-based methods
– for generating Poisson disk distributions

– for texture synthesis

• Applications

53

Texture SynthesisTexture Synthesis

• Create from an example texture a larger 
similar texture

example texture synthesized texture

texture synthesis

54

Tile-Based Texture SynthesisTile-Based Texture Synthesis

• Corner-based texture tiles
– Tile-based method for efficiently synthesizing 

textures

original signal set of tiles generated signal

difficult

easyeven more difficult
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55

Tile-Based Texture SynthesisTile-Based Texture Synthesis

• Corner-based texture tiles

for each color 
select patch

for each tile 
assemble patches

cut out tile cover seam 
with new patch

56

Tile-Based Texture SynthesisTile-Based Texture Synthesis

• Tile-based texture mapping

Tile-based texture mapping

example texture set of texture tiles synthesized texture

57

Tile-Based Texture MappingTile-Based Texture Mapping

• Example

58

Tile-Based Texture MappingTile-Based Texture Mapping

• Tile packing
– Avoids unwanted artifacts

tile packing of the 
complete set of 

corner tiles over 2 
colors

complete set of corner tiles over 2 colors

59

Tile-Based Texture MappingTile-Based Texture Mapping

• Tile packing
– Constructive method for Wang tiles

1D tile packing 2D tile packing

1D tile set

60

Tile-Based Texture MappingTile-Based Texture Mapping

• Tile packing
– Search method for corner tiles

tile packing of the 
complete set of corner 

tiles over 2 colors

tile packing of the 
complete set of Wang tiles 

over 2 colors
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OverviewOverview

• Wang tiles and corner tiles

• Tiling algorithms

• Tile-based methods
– for generating Poisson disk distributions

– for texture synthesis

• Applications

62

SamplingSampling

• The Poisson disk distribution is one of the best 
sampling distributions
– Photoreceptors in the eye

photoreceptors in the human eye

63

SamplingSampling

• The Poisson disk distribution is one of the best 
sampling distributions
– Photoreceptors in the eye, theoretical evidence

– Primary rays, environment map sampling, ...

environment map sampling
64

Non-Photorealistic RenderingNon-Photorealistic Rendering

• The Poisson disk distribution is one of the 
best primitive distributions
– Pen-and-ink illustrations, stippling, halftoning, …

original image stippled hatched

65

Procedural ModelingProcedural Modeling

• Many distributions follow a pattern with a 
minimum-distance criterion
– Trees in a forest, hairs in fur, people in a crowd, …

a beech forest in the winter 66

Procedural ModelingProcedural Modeling

a planet with an asteroid belt

• Many distributions follow a pattern with a 
minimum-distance criterion
– Trees in a forest, hairs in fur, people in a crowd, …
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67

Procedural TexturingProcedural Texturing

• A 2D procedural object distribution function
– Enables the procedural generation of a new class 

of textures

68

Procedural TexturingProcedural Texturing

• A 2D procedural object distribution function
– Evaluation of the texture basis function

boolean closest point distance unique ID

69

Procedural TexturingProcedural Texturing

• A 2D procedural object distribution function
– Procedural object distribution

evaluate texture 
basis function

in disk?

result

evaluate object

evaluate background 70

Procedural TexturingProcedural Texturing

• A 2D procedural object distribution function
– Parameters: scale s

s = 1 s = 4 s = 16 s = 64

71

Procedural TexturingProcedural Texturing

• A 2D procedural object distribution function
– Parameters: size r, orientation 

r = 1 r = 0.75 r ~ U(0.5, 1) r ~ N(0.8, 0.05)

= 0 = /4 ~ U( /4, /32) ~ U(0, 2 )

72

Procedural TexturingProcedural Texturing

• A 3D procedural object distribution function
– Examples

polka dots granite abstract
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73

Procedural TexturingProcedural Texturing

• A 3D procedural object distribution function
– Evaluation of the texture basis function

boolean distance unique ID

74

OverviewOverview

• Wang tiles and corner tiles

• Tiling algorithms

• Tile-based methods
– for generating Poisson disk distributions

– for texture synthesis

• Applications

75

ConclusionConclusion

• Tile-based methods for interactive applications

Which kind of tiles to use?
�

Corner tiles

How to efficiently compute a tiling?
�

Direct stochastic tiling algorithm

How to fill the tiles with a signal?
�

Two examples, general method

76

ThanksThanks

• Questions?

• More information
– Class notes

–
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The electronic version of my dissertation is available at
http://www.cs.kuleuven.be/~ares.

Ares Lagae
Heverlee, May 2008
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Abstract

Many complex signals, such as point distributions and textures, cannot efficiently be syn-
thesized and stored. In this work we present tile-based methods to solve this problem.
Instead of synthesizing a complex signal when needed, the signal is synthesized on fore-
hand over a small set of tiles. Arbitrary large amounts of that signal can then efficiently
be generated when needed by generating a stochastic tiling.

Tile-based methods are traditionally based on Wang tiles. The colored edges of Wang
tiles only constrain the four direct neighboring tiles, but not the four diagonally neighboring
tiles. This problem introduces unwanted artifacts in the tiled signals, and complicates
methods for synthesizing signals over a set of Wang tiles. To solve this problem we present
corner tiles. Corner tiles are unit square tiles with colored corners rather than colored
edges. The colored corners of corner tiles constrain all neighboring tiles. We revisit the
most important applications of Wang tiles, and we show that corner tiles have substantial
advantages for each of these applications.

Stochastic tilings are traditionally generated using scanline stochastic tiling algorithms.
However, these algorithms store the complete tiling and are therefore not efficient. To solve
this problem, we present direct stochastic tiling algorithms for Wang tiles and corner tiles.
These algorithms are capable of evaluating a stochastic tiling locally, without explicitely
constructing and storing the tiling up to that point. We also introduce long-period hash
functions to generate very large tilings.

Poisson disk distributions and textures are two examples of complex signals. We present
tile-based methods for generating Poisson disk distributions and for synthesizing textures.
Tile-based methods not only allow to efficiently generate Poisson disk distributions and
synthesize textures, but also enable new applications such as tile-based texture synthesis
and a procedural object distribution function. This new texture basis function allows to
distribute procedural objects over a procedural background, using intuitive parameters
such as the scale, size and orientation of the objects. We also present an overview of
applications of tiled Poisson disk distributions.

The tile-based methods we present in this work are a valuable tool for computer graphics,
and help to keep up with the continuously increasing demand for more complexity and
realism in digitally synthesized images.
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Chapter 1

Introduction

1.1 Tile-Based Methods in Computer Graphics

Computer graphics is a very diverse field of research with many applications, including film
and visual effects, advertising, car and flight simulators, architecture, scientific simulations
and computer games. These applications are the driving force behind computer graphics
and the continuous demand for more quality and complexity in digitally synthesized images.

A common problem in the field of computer graphics is the synthesis and storage of
complex signals, such as point distributions or textures. For several of these complex
signals, no efficient synthesis algorithms are available, and storing large quantities of these
signals is expensive. Tile-based methods provide a solution for both these problems.

As a simple example, consider the use of textures in interactive computer games. A
commonly used technique to create the impression of a large texture is tiling a small
square texture. This technique clearly avoids synthesizing and storing a large texture, but
also introduces visually disturbing artifacts. The large texture is repeating and tile seams
are visible. The challenge of tile-based methods is to generate a tiled complex signal as
similar as possible to the original complex signal, without obvious repetition and tile seams.

This work presents high-quality tile-based methods based on Wang tiles and corner tiles.
Wang tiles are unit square tiles with colored edges, and corner tiles are unit square tiles
with colored corners. Wang tiles and corner tiles have a fixed orientation. A tiling is
generated by placing the tiles next to each other, such that adjoining edges or corners have
matching colors.

Rather than synthesizing a complex signal directly, the signal is synthesized over a small
set of tiles on forehand. Arbitrary large quantities of that signal can then efficiently be
obtained when needed simply by generating a tiling. The complex signal is synthesized
consistently with the continuity constraints imposed by the colored edges. This ensures
that no tile seams are noticeable in the tiled complex signals. The tiled signals are generated
using stochastic tilings. This ensures that no repetition is noticeable.

A tile-based method for generating a complex signal consists of a method for synthesizing
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the complex signal over a set of tiles, and a method for generating a stochastic tiling
using the set of tiles. The method for synthesizing the complex signal over a set of tiles is
dependent on the signal and is typically expensive. The method for generating a stochastic
tiling using the set of tiles is independent of the signal and is typically inexpensive. Once
the complex signal is synthesized over a set of tiles, arbitrary large quantities of that signal
can be generated very efficiently by generating a stochastic tiling. The tile sets are usually
small and therefore reduce storage requirements.

This work introduces corner tiles as a better alternative for Wang tiles. The colored
edges of Wang tiles only constrain the four direct neighboring tiles, but not the diagonally
neighboring tiles. This leads to unwanted artifacts in the tiled complex signals and com-
plicates methods for constructing complex signals over a set of Wang tiles. Corner tiles
are not subject to this problem.

This work introduces efficient tiling algorithms for generating stochastic tilings using
Wang tiles and corner tiles, and methods for constructing Poisson disk distributions and
synthesizing textures over a set of Wang tiles and corner tiles. Although the methods for
constructing a complex signal over a set of tiles are dependent on the signal, the general
idea behind the methods presented in this work should generalize to other kinds of signals.

Poisson disk distributions are stochastic point distributions in which all points are sep-
arated by a minimum distance. Poisson disk distributions have several applications in
computer graphics, such as sampling and object distribution. However, no efficient algo-
rithms are available for generating Poisson disk distributions. Constructing a Poisson disk
distribution over a set of Wang tiles or corner tiles is challenging, because the minimum
distance criterion should be respected over tile boundaries. This work also includes an
overview of applications of tiled Poisson disk distributions, and a detailed comparison of
several methods for generating Poisson disk distributions.

Textures are ubiquitous in computer graphics, and methods for efficiently synthesizing
textures are clearly of interest. Tile-based methods for texture synthesis are an interesting
alternative for existing texture synthesis techniques, because the process of texture syn-
thesis is broken up into two parts. In a first part, a texture is synthesized over a set of
tiles. In a second part, an arbitrary large texture can be generated very efficiently simply
by generating a tiling.

The tile-based methods presented in this work enable efficient generation of Poisson disk
distributions and rapid synthesis of textures, but also enable new applications, such as
a procedural object distribution in the case of Poisson disk distributions, and tile-based
texture mapping in the case of texture synthesis.

Corner tiles are also investigated in the context of the tiling problem and aperiodic tile
sets, which is the original context of Wang tiles. Several new aperiodic sets of Wang tiles
and corner tiles are introduced in this work.

The methods introduced in this work help to manage the continuous demand for more
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quality and complexity in digitally synthesized images, and are a valuable tool for computer
graphics.

1.2 Overview

This work is organized as follows.

Chapter 2 introduces tilings, Wang tiles and corner tiles, discusses previous applications
of tilings in computer graphics, and introduces several useful definitions, conventions
and notations.

Chapter 3 presents efficient algorithms for generating stochastic tilings with Wang tiles
and corner tiles. This chapter presents scanline stochastic tiling algorithms and direct
stochastic tiling algorithms for Wang tiles and corner tiles, and long-period hash
functions defined over the integer lattice, used in direct stochastic tiling algorithms.

Chapter 4 introduces Poisson disk distributions and presents several tile-based methods
for generating Poisson disk distributions.

Chapter 5 introduces tile-based methods for texture mapping and texture synthesis. This
chapter shows how to synthesize a texture over a set of Wang tiles and corner tiles,
presents an efficient tile-based texture mapping algorithm running on the GPU, and
discusses the tile packing problem.

Chapter 6 discusses several applications of Poisson disk distributions. These applications
include sampling, non-photorealistic rendering, scientific visualization, procedural
modeling, and procedural texturing.
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Chapter 2

Wang Tiles and Corner Tiles

2.1 Introduction

The tile-based methods presented in this work are based on Wang tiles and corner tiles.
In this chapter we introduce Wang tiles and corner tiles. We briefly sketch their history,
and introduce key concepts that will be used in later chapters.

Overview

This chapter is organized as follows. Section 2.2 introduces tilings. In section 2.3 we discuss
previous applications of tilings in computer graphics. Section 2.4 introduces Wang tiles
and briefly sketches their background. In section 2.5 we discuss applications of Wang tiles
in computer graphics. Section 2.6 explains the corner problem and introduces corner tiles.
In section 2.7 we introduce definitions, conventions and notations. Section 2.8 proposes a
convenient scheme for enumerating Wang tile sets and corner tile sets. In section 2.9 we
explain the close relationship between Wang tiles and corner tiles. Section 2.10 discusses
generalizations of Wang tiles and corner tiles to arbitrary dimensions. In section 2.11 we
conclude.

2.2 Tilings

Tilings are in abundance all around us. Not only man-made, but also occurring in nature.
Some of the most famous examples of tilings can be seen in the Alhambra at Granada,
Spain [Saladin, 1926], and in the work of the Dutch artist M. C. Escher [Escher and Locher,
1971].

A tiling is an arrangement of plane figures that fills the plane without gaps or overlaps,
or its generalization to higher dimensions. Each plane figure is a tile. The set of plane
figures used in the tiling is the tile set. To tile means to cover the plane with the tiles.
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Figure 2.1: The smallest aperiodic Wang tile set currently known.

A tiling is periodic if a translation exists that maps the tiling to itself. If this is not the
case, the tiling is non-periodic. An aperiodic tile set is a tile set that does not admit a
periodic tiling. A tiling generated by an aperiodic tile set is an aperiodic tiling.

The classic work on tilings is Tilings and Patterns [Grünbaum and Shepard, 1986]. A
good introductory text on aperiodic tilings can be found in Andrew Glassner’s Notebook:
Recreational Computer Graphics [Glassner, 1999, chapter 12].

2.3 Tilings in Computer Graphics

Most applications of tilings in computer graphics simulate tilings in the real world. Kaplan
and Salesin [2000] used isohedral tilings to provide a solution to the problem of Escher-
ization: given a closed figure in the plane, find a new closed figure that is similar to the
original and tiles the plane. Their system creates illustrations much like the ones by the
Dutch artist M. C. Escher. Hausner [2001] presented a system for generating decorative
tile mosaics. Ostromoukhov et al. [2004] used a hierarchically subdivided Penrose tiling to
generate well-distributed point sets.

2.4 Wang Tiles

The tiles we focus on in this work are Wang tiles. A Wang tile set is a finite set of square
tiles. The tiles are all the same size, and each edge of a tile has a fixed color. The colors
are combined in several specified ways. The plane is tiled using arbitrary many copies of
the tiles in the tile set, in such a way that adjoining edges have the same color.

Wang tiles were first proposed by Wang in 1961, and later popularized in an article in
Scientific American [Wang, 1965]. Wang presented an algorithm to decide whether a given
set of Wang tiles could tile the plane. He relied on the conjecture that aperiodic tile sets,
tile sets that do not admit periodic tilings, do not exist.

This conjecture was in 1966 refuted by Berger. He showed that any Turing machine can
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be translated into a Wang tile set, and that the Wang tile set tiles the plane if and only
if the Turing machine will never halt. The halting problem is undecidable and thus so is
Wang’s original problem.

Berger constructed the first aperiodic tile set counting 20426 tiles. This number was
reduced repeatedly, often by well known scientists, such as Knuth [1968]. The smallest
aperiodic set of Wang tiles consists of 13 tiles over 5 colors [Culik, 1996], and is shown in
figure 2.1.

Not only Wang tiles allow the construction of aperiodic tile sets. In 1974, Penrose
discovered his famous kite and dart, an aperiodic set of only two tiles. Whether a single
aperiodic tile exists is still an open question.

2.5 Wang Tiles in Computer Graphics

Computer graphics is often concerned with the synthesis of complex signals. Wang tiles
are an important tool to facilitate the generation of such signals. Instead of synthesizing a
complex signal directly, the signal is constructed over a small set of Wang tiles, consistent
with the continuity constraints imposed by the colored edges. This is usually more difficult
than synthesizing the signal directly, but once the signal is synthesized over the tile set,
arbitrary large quantities of this signal can be generated very efficiently by generating a
tiling.

Wang tiles were introduced in the field of computer graphics by Stam [1997] who created
non-repeating textures of arbitrary size using an aperiodic set of Wang tiles. Shade et al.
[2000] and Hiller et al. [2001] used Wang tiles to generate Poisson disk distributions. The
latter approach was later adopted by Cohen et al. [2003], in a paper that popularized Wang
tiles in the field of computer graphics. The same paper introduced a method for texture
synthesis using Wang tiles. Wei [2004] proposed tile-based texture mapping on graphics
hardware. Fu and Leung [2005] recently extended texture tiling to surfaces with arbitrary
topology.

2.6 Corner Tiles and the Corner Problem

Wang tiles soon proved to be a valuable tool for constructing complex signals in real time.
However, the colored edges of Wang tiles do not guarantee continuity of the signal near
tile corners. Wang tiles do not constrain their diagonal neighbors. This is illustrated in
figure 2.2(a). Any two Wang tiles can be put diagonally to each other by adding two
suitable tiles to complete the tiling. This problem, called the corner problem, complicates
construction methods and causes unwanted artifacts in the generated signals.

7



Chapter 2 Wang Tiles and Corner Tiles

(a) (b)

Figure 2.2: The corner problem. (a) Wang tiles only enforce continuity with their four
direct neighbors and do not constrain their diagonal neighbors. (b) Corner tiles enforce
continuity with all their neighbors.

In order to solve the corner problem, we proposed corner tiles [Lagae and Dutré, 2006a],
square tiles with colored corners. Corner tiles are similar to Wang tiles, but their colored
corners ensure continuity of the signal over both tile edges and tile corners, thus avoiding
the corner problem. This is illustrated in figure 2.2(b).

Cohen et al. [2003] first identified the corner problem. They superimpose corner markings
on a Wang tile set in an attempt to solve the problem. Although this allowed them to
synthesize textures with different densities, the corner problem remains: for a given corner
marking, any two tiles can be put diagonally next to each other. They did not make
the observation that the edge colors should be dropped altogether to adequately solve the
corner problem.

To our knowledge, tiles with colored corners have not been used previously in computer
graphics (or in other domains), except by Ng et al. [2005], who presented a technique for
assembling a set of tiles similar to corner tiles from an input texture to synthesize larger
textures. Their technique is discussed in detail in section 5.3. Neyret and Cani [1999]
use triangular tiles with edge and corner colors to generate pattern-based textures over a
triangle mesh, in the spirit of Stam [1997].

2.7 Definitions, Conventions and Notations

Wang tiles are unit square tiles with colored edges. The edges of a Wang tile are named
after the compass headings north (N), east (E), south (S) and west (W). The colors of the
edges are indicated by cN , cE, cS and cW .

Corner tiles are unit square tiles with colored corners. The corners of a corner tile are
named after the compass headings north-east (NE), south-east (SE), south-west (SW), and
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Figure 2.3: The complete Wang tile set over 2 colors.

Figure 2.4: The complete corner tile set over 2 colors.

north-west (NW). The colors of the corners are indicated by cNE, cSE, cSW and cNW .

A tile set is a finite set of tiles. The number of different colors used in the tile set is
indicated by C. The C colors are represented by the integers 0, 1, . . . , C−1. All illustrations
in this work use the colors red, yellow, green, cyan and blue for respectively 0, 1, 2, 3 and
4.

A complete tile set contains a tile for every possible combination of four edge or corner
colors. A complete set of Wang tiles or corner tiles over C colors therefore counts C4 tiles.
Figure 2.3 shows the complete Wang tile set over two colors, and figure 2.4 shows the
complete corner tile set over two colors. A complete set of Wang tiles or corner tiles over
2, 3, 4, 5, 6, 7 and 8 colors consist of 16, 81, 256, 625, 1, 296, 2, 401 and 4, 096 tiles.

A tiling is constructed by placing the tiles next to each other such that adjoining edges
or corners have matching colors. Each tile in the tile set can be used arbitrarily many
times. The tiles are placed with their corners on the integer lattice points. By convention,
the tile coordinates are the coordinates of the lower left corner of the tile. Figure 2.5 shows
a tiling with the complete Wang tile set over three colors, and figure 2.6 shows a tiling
with the complete corner tile set over three colors.

The horizontal edges and vertical edges of Wang tiles are independent. This allows Wang
tile sets that use a different number of colors for horizontal and vertical edges. The number
of colors used for horizontal edges is indicated by Ch, and the number of colors used for
vertical edges is indicated by Cv. A complete Wang tile set over Ch horizontal colors and
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Figure 2.5: A tiling with the complete Wang tile set over 3 colors.
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Figure 2.6: A tiling with the complete corner tile set over 3 colors.
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Cv vertical colors consist of (ChCv)
2 tiles. If Ch colors are used for horizontal edges and

Cv colors for vertical edges, then the number of colors used in the tile set is max(Ch, Cv).
In this work, Ch is always a subset of Cv, or vice versa. However, not everyone follows
this convention. For example, Cohen et al. [2003] use a tile set with red and green for
horizontal edges and blue and yellow for vertical edges. Despite the fact that four different
colors are used, this is a tile set over two colors.

2.8 Enumerating Wang Tile Sets and Corner Tile Sets

For efficiently manipulating Wang tiles and corner tiles, an enumeration of the tiles is
needed. In this work we use the following scheme.

Wang tiles are uniquely determined by their edge colors cN , cE, cS and cW . Wang tiles
can thus be represented as the 4-digit base-C numbers cNcEcScW , or as the decimal integers
0, 1, . . . , C4 − 1. A base conversion switches between the corner colors and the tile index.

The tile index i of the Wang tile with edge colors cN , cE, cS and cW is given by

i = cNC3 + cEC2 + cSC + cW , (2.1)

or, after factoring out powers of C using Horner’s rule, by

i = ((cNC + cE)C + cS)C + cW . (2.2)

This conversion of base only requires three integer multiplications and three integer addi-
tions.

The edge colors cN , cE, cS and cW of the Wang tile with tile index i are given by

cN = (i/C3) % C

cE = (i/C2) % C

cS = (i/C) % C

cW = i % C

(2.3)

where % is the modulo division, and / is the integer division. This conversion of base can
be implemented using only three modulo divisions and three integer divisions

cW ← i % C

i← i/C

cS ← i % C

i← i/C

cE ← i % C

i← i/C

cN ← i

(2.4)
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where ← indicates assignment.
For corner tiles, we use a similar scheme. Corner tiles are uniquely determined by their

corner colors cNE, cSE, cSW and cNW . Corner tiles can thus be represented as the 4-
digit base-C numbers cNEcSEcSW cNW , or as the decimal integers 0, 1, . . . , C4 − 1. A base
conversion switches between the corner colors and the tile index.

The tile index i of the corner tile with corner colors cNE, cSE, cSW and cNW is given by

i = ((cNEC + cSE)C + cSW )C + cNW . (2.5)

The corner colors cNE, cSE, cSW and cNW of the corner tile with tile index i are given
by

cNE = (i/C3) % C

cSE = (i/C2) % C

cSW = (i/C) % C

cNW = i % C

(2.6)

where % is the modulo division, and / is the integer division. This conversion of base can
be implemented using only three modulo divisions and three integer divisions

cNW ← i % C

i← i/C

cSW ← i % C

i← i/C

cSE ← i % C

i← i/C

cNE ← i

(2.7)

where ← indicates assignment.
When the number of colors is a power of two, the base conversions can be implemented

very efficiently using bitwise operators.

2.9 Corner Tiles as Wang Tiles

Corner tiles are closely related to Wang tiles. In fact, every corner tile set can be trans-
formed into an equivalent Wang tile set. This is done by encoding any combination of two
corner colors into an edge color. This operation squares the number of colors. Figure 2.7
shows the Wang tile set equivalent to the complete corner tile set over two colors, shown
in figure 2.4. This is a Wang tile set of 16 tiles over 4 colors.
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Figure 2.7: The Wang tile set equivalent to the corner tile set over 2 colors.

In general, a Wang tile set cannot be transformed into an equivalent corner tile set, and
a Wang tile set equivalent to a corner tile set is not subject to the corner problem. This
shows that corner tiles are in some way more restrictive than Wang tiles.

2.10 Dominoes, Wang Cubes and Corner Cubes

Wang tiles and corner tiles easily generalize to arbitrary dimension. The one-dimensional
and three-dimensional equivalents are especially useful.

In one dimension, Wang tiles and corner tiles are dominoes. These gaming pieces are
well known and have been studied extensively in the field of recreational mathematics [Ball,
1926]. We will use dominoes in section 5.5 to solve the Wang tile packing problem.

In three dimensions, Wang tiles and corner tiles become Wang cubes and corner cubes.
Wang cubes have received some attention in the field of discrete mathematics and in
computer graphics. Culik and Kari [1995] showed that an aperiodic set of 21 Wang cubes
exists. Lu and Ebert [2005] used Wang cubes for example-based volume illustrations. We
will use corner cubes in section 4.4 to generate Poisson sphere distributions.

2.11 Conclusion

In this chapter we have introduced Wang tiles and corner tiles. We have discussed the
history of Wang tiles and corner tiles, and we have introduced important concepts that
will be used in later chapters.
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Chapter 3

Tiling Algorithms for Wang Tiles and
Corner Tiles

3.1 Introduction

After synthesizing a signal over a set of Wang tiles or corner tiles, arbitrary large quantities
of that signal can be generated very efficiently by generating a tiling. Because periodicity
in the signal is visually disturbing, applications in computer graphics require random or
stochastic tilings, such as the ones shown in figures 2.5 and 2.6. Stochastic tilings are
inherently non-periodic. The stronger mathematical guarantee of provable aperiodicity
is not that useful in computer graphics. A mathematical proof of aperiodicity does not
necessarily provide an algorithm for actually generating the aperiodic tiling, and even if
it does, these algorithms are often very complex. Also, aperiodicity does not imply small
scale non-periodicity. Aperiodic tilings are sometimes very structured. For these reasons,
stochastic tilings are better suited for most applications in computer graphics.

Overview

This chapter is organized as follows. In section 3.2 we discuss scanline stochastic tiling
algorithms, and in section 3.3 we discuss direct stochastic tiling algorithms, two classes of
stochastic tiling algorithms. Section 3.4 discusses hash functions defined over the integer
lattice, an essential ingredient of direct stochastic tiling algorithms. In section 3.5 we
conclude.

3.2 Scanline Stochastic Tiling Algorithms

Scanline stochastic tiling algorithms are stochastic tiling algorithms that generate a tiling
by placing tiles in scanline order. In this section, we discuss a scanline tiling algorithm for
Wang tiles and a scanline stochastic tiling algorithm for corner tiles.
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Figure 3.1: A scanline stochastic tiling algorithm for Wang tiles.

Figure 3.2: A compact Wang tile set over 2 colors.

3.2.1 A Scanline Stochastic Tiling Algorithm for Wang Tiles

In 2003, Cohen et al. presented a scanline stochastic tiling algorithm for Wang tiles.

The Wang tiles are placed in scanline order, from west to east, and from north to south.
A random Wang tile is selected for the NW corner. The first row is completed by adding
Wang tiles for which the color of the W edge corresponds to the color of the E edge of the
Wang tile to the left. The leading Wang tile of each new row is selected so that its N edge
matches the S edge of the Wang tile above. The row is completed by choosing Wang tiles
for which the N and W edges match the S and E edges from the Wang tiles above and to
the left. This is illustrated in figure 3.1.

To ensure a non-periodic tiling, the Wang tile set is constructed such that there are two
Wang tiles for each combination of N and W edge colors. Each time a Wang tile has to
be selected, the choice is made at random. A Wang tile set over C colors will contain 2C2

Wang tiles, since there are C2 combinations of N and W edge colors. A Wang tile set
obtained this way is called a compact Wang tile set, because it is significantly smaller than
a complete Wang tile set. Figure 3.2 shows a compact Wang tile set over two colors.

Compact Wang tile sets are useful when the size of the Wang tile set should be minimized.
A compact Wang tile set is quadratic in the number of colors, while a complete Wang tile
set is quartic in the number of color. For 2, 3, 4, 5, 6, 7 and 8 colors, a compact Wang tile
set counts 8, 18, 32, 50, 98, 128 Wang tiles while a complete Wang tile set consists of 16,
256, 625, 1, 296, 2, 401 and 4, 096 Wang tiles.
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Figure 3.3: A scanline stochastic tiling algorithm for corner tiles.

3.2.2 A Scanline Stochastic Tiling Algorithm for Corner Tiles

In 2006, we presented a scanline stochastic tiling algorithm for corner tiles [Lagae and
Dutré, 2006a]. The scanline stochastic tiling algorithm for corner tiles is very similar to
the scanline stochastic tiling algorithm for Wang tiles.

The corner tiles are placed in scanline order, from west to east, and from north to south.
A random corner tile is selected for the NW corner. The first row is completed by adding
corner tiles for which the color of the NW corner and the color of the SW corner corresponds
to the color of the NE corner and the color of the SE corner of the corner tile to the left.
The leading corner tile of each new row is selected so that its NW and NE corners match
the SW and SE corners of the corner tile above. The row is completed by choosing corner
tiles for which the NE, NW and SW corners match the SE and SW corners from the corner
tile above and the NE and SE corners from the corner tile to the left. This is illustrated
in figure 3.3.

To ensure a non-periodic tiling, the corner tile set is constructed such that there are two
corner tiles for each combination of NE, NW and SW corner colors. Each time a corner
tile has to be selected, the choice is made at random. A corner tile set over C colors
will contain 2C3 corner tiles, since there are C3 combinations of NE, NW and SW corner
colors. A corner tile set obtained this way is called a compact corner tile set, because it is
significantly smaller than a complete corner tile set.

Compact corner tile sets are useful when the size of the corner tile set should be mini-
mized. A compact corner tile set is cubic in the number of colors, while a complete corner
tile set is quartic in the number of color. For 2, 3, 4, 5, 6, 7 and 8 colors, a compact corner
tile set counts 16, 54, 128, 250, 432, 686 and 1, 024 corner tiles while a complete corner tile
set consists of 16, 256, 625, 1, 296, 2, 401 and 4, 096 corner tiles.

Note that the complete corner tile set over two colors and the compact corner tile set
over two colors are identical. Also note that compact Wang tile sets are smaller than
compact corner tile sets.
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Figure 3.4: A direct stochastic tiling algorithm for corner tiles.

3.3 Direct Stochastic Tiling Algorithms

Several applications, such as tile-based texture mapping (see section 5.4), and the proce-
dural object distribution texture basis functions (see section 6.6), require local evaluation
of the tiling. In order to evaluate the tiling at a specific location, scanline stochastic tiling
algorithms must construct and store the tiling up to that point. This is clearly not efficient.
To address this problem, we propose direct stochastic tiling algorithms. Direct stochastic
tiling algorithms are able to compute which tile is at a given location without explicitly
constructing and storing the tiling up to that point.

The direct stochastic tiling algorithms we present are based on hash functions defined
over the integer lattice. These hash functions associate a random color with each lattice
point. A tiling is obtained by transforming the colored lattice. The hash functions we
use are efficient in time and space, and the transformation can be performed locally. This
enables efficient direct stochastic tiling algorithms.

In this section, we discuss several direct stochastic tiling algorithms for Wang tiles and a
direct stochastic tiling algorithm for corner tiles. For clarity, we will first discuss the direct
stochastic tiling algorithm for corner tiles. The hash functions used in the direct stochastic
tiling algorithms are discussed in section 3.4

3.3.1 A Direct Stochastic Tiling Algorithm for Corner Tiles

In 2006, we proposed a direct stochastic tiling algorithm for corner tiles [Lagae and Dutré,
2006a].

Corner tiles are placed with their corners on the integer lattice points. The coordinates
of a corner tile are the coordinates of the integer lattice point corresponding to the lower
left or SW corner. To generate a tiling with a corner tile set over C colors, the direct
stochastic tiling algorithm for corner tiles uses a hash function h defined over the integer
lattice. This hash function associates a random color h(x, y) ∈ {0, 1, . . . , C − 1} with
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Figure 3.5: A direct stochastic tiling algorithm for Wang tiles using two hash functions.
The first hash function is used for the horizontal edges, and the second hash function is
used for the vertical edges.

each location (x, y). The corner colors cNE, cSE, cSW and cNW of the corner tile at tile
coordinates (x, y) are given by h(x + 1, y + 1), h(x + 1, y), h(x, y) and h(x, y + 1). The
index of the corner tile can now be obtained using equation 2.5. The direct stochastic
tiling algorithm for corner tiles is illustrated in figure 3.4.

Because the color of each corner is chosen at random, the direct stochastic tiling algo-
rithm for corner tiles results in a complete corner tile set over C colors.

The direct stochastic tiling algorithm for corner tiles is very efficient. It requires only
four hash function evaluations.

3.3.2 Direct Stochastic Tiling Algorithms for Wang Tiles

In this subsection, we discuss a direct stochastic tiling algorithm for Wang tiles using two
hash functions, a direct stochastic tiling algorithm for compact sets of Wang tiles, and a
direct stochastic tiling algorithm for Wang tiles using a hash function defined at the tile
edges.

3.3.2.1 A Direct Stochastic Tiling Algorithm for Wang Tiles using Two Hash
Functions

In 2005, we proposed a direct stochastic tiling algorithm for Wang tiles using two hash
functions [Lagae and Dutré, 2005].

Wang tiles are placed with their corners on the integer lattice points. The coordi-
nates of a Wang tile are the coordinates of the integer lattice point corresponding to
the lower left corner. To generate a tiling with a Wang tile set over C colors, the di-
rect stochastic tiling algorithm for Wang tiles uses two hash functions hh and hv de-
fined over the integer lattice. These hash functions associate a pair of random colors
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Figure 3.6: A direct stochastic tiling algorithm for compact sets of Wang tiles.

(hh(x, y), hv(x, y)) ∈ {0, 1, . . . , C − 1}2 with each location (x, y). The hash function hh is
used to compute the color of the horizontal edges, and the hash function hv is used to com-
pute the color of the vertical edges. The edge colors of a Wang tile are computed as the sum
modulo C of the random colors associated with the corners of the Wang tile. If the pair
of random colors associated with the NE, SE, SW and NW corner of the Wang tile at tile
coordinates (x, y) are

(
ch
NE, cv

NE

)
,
(
ch
SE, cv

SE

)
,
(
ch
SW , cv

SW

)
and

(
ch
NW , cv

NW

)
, then the edge

colors cN , cE, cS and cW are given by (ch
NW + ch

NE)%C, (cv
NE + cv

SE)%C, (ch
SE + ch

SW )%C,
(cc

SW + cv
NW )%C. The index of the Wang tile can now be obtained using equation 2.2. The

direct stochastic tiling algorithm for Wang tiles using two hash functions is illustrated in
figure 3.5.

Because the color of each edge is chosen at random, the direct stochastic tiling algorithm
for Wang tiles using two hash functions results in a complete Wang tile set over C colors.

The direct stochastic tiling algorithm for Wang tiles is more expensive than the direct
stochastic tiling algorithm for corner tiles. It requires eight hash function evaluations, four
integer additions and four integer modulo divisions.

The direct stochastic tiling algorithm can easily be modified for tile sets over a different
number of colors for horizontal edges Ch and vertical edges Cv by generating pairs of
random colors (hh(x, y), hv(x, y)) ∈ {0, 1, . . . , Ch − 1} × {0, 1, . . . , Cv − 1} and performing
edge computations for horizontal and vertical edges modulo Ch and Cv. This modified
direct stochastic tiling algorithm for Wang tiles also results in a complete Wang tile set.

An algorithm similar in spirit was proposed concurrently by Wei [2004].

3.3.2.2 A Direct Stochastic Tiling Algorithm for Compact Sets of Wang Tiles

In 2005, we also proposed a direct stochastic tiling algorithm for compact sets of Wang
tiles [Lagae and Dutré, 2005].

The direct stochastic tiling algorithm for compact sets of Wang tiles is very similar to
the direct stochastic tiling algorithm for Wang tiles using two hash functions. However, to
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Figure 3.7: A direct stochastic tiling algorithm for Wang tiles using a hash function defined
at the tile edges.

generate a tiling with a compact Wang tile set over C colors only a single hash function h
is used. This hash function associates a random color h(x, y) ∈ {0, 1, . . . , C − 1} with each
location (x, y) The edge colors of a Wang tile are computed as the sum modulo C of the
random colors associated with the corners of the Wang tile. If the random color associated
with the NE, SE, SW and NW corner of the Wang tile at tile coordinates (x, y) is cNE,
cSE, cSW and cNW , then the edge colors cN , cE, cS and cW are given by (cNW + cNE)%C,
(cNE + cSE)%C, (cSE + cSW )%C, (cSW + cNW )%C. The direct stochastic tiling algorithm
for compact sets of Wang tiles is illustrated in figure 3.6.

This algorithm results in a compact set of C3 Wang tiles over C colors. Note that,
except for two colors, these compact Wang tile sets are different from the compact Wang
tile sets produced by the scanline stochastic tiling algorithms for Wang tiles, that counted
2C3 tiles.

3.3.2.3 A Direct Stochastic Tiling Algorithm for Wang Tiles using a Hash Function
Defined at the Tile Edges

The direct stochastic tiling algorithm for Wang tiles using a hash function defined at the
tile edges is a more efficient variant of the direct stochastic tiling algorithm for Wang tiles
using two hash functions.

Compared with the direct stochastic tiling algorithm for corner tiles, direct stochastic
tiling algorithm for Wang tiles are more complicated. This is because the lattice defined
by the colored corners of corner tiles and the lattice over which the hash function is defined
are both square lattices. In contrast, the lattice defined by the colored edges of Wang tiles
is a diamond lattice (a square lattice rotated 45 degrees). The key observation of the direct
stochastic tiling algorithm for Wang tiles using a hash function defined at the tile edges is
that a diamond lattice can be obtained by discarding points in a square lattice.

Wang tiles are placed with their corners on the integer lattice points. The coordinates
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of a Wang tile are the coordinates of the integer lattice point corresponding to the lower
left. To generate a tiling with a Wang tile set over C colors, the direct stochastic tiling
algorithm for Wang tiles uses a hash function h defined over a square lattice twice as dense
as the integer lattice. The edge colors cN , cE, cS and cW of the Wang tile at tile coordinates
(x, y) are given by h(2x + 1, 2y + 2), h(2x + 2, 2y + 1), h(2x + 1, 2y) and h(2x, 2y + 1).
The remaining five random colors are ignored. The index of the Wang tile can now be
obtained using equation 2.2. The direct stochastic tiling algorithm for Wang tiles using a
hash function defined at the tile edges is illustrated in figure 3.7.

Because the color of each edge is chosen at random, the direct stochastic tiling algorithm
for Wang tiles using a hash function defined at the tile edges results in a complete Wang
tile set over C colors. In contrast with the direct stochastic tiling algorithm for Wang tiles
using two hash functions, the direct stochastic tiling algorithm for Wang tiles using a hash
function defined at the tile edges only requires four hash function evaluations.

3.4 Hash Functions

Hash functions defined over the integer lattice are an essential ingredient of the direct
stochastic tiling algorithms discussed in section 3.3. Hash functions are also used exten-
sively in procedural modeling and texturing [Perlin, 1985; Ebert et al., 2002]. In this
section, we discuss traditional hash functions based on permutation tables and we propose
long-period hash functions based on permutation tables.

3.4.1 Traditional Hash Functions Based on Permutation Tables

Hash functions used in procedural modeling and texturing are typically based on permu-
tation tables. A permutation table P of size N contains a random permutation of the
integers {0, 1, . . . , N − 1}. The permutation table is zero-based, the first element is P [0].

A random permutation of the elements {0, 1, . . . , N − 1} can be generated by starting
with the permutation {0, 1, . . . , N − 1}, and then exchanging the ith element with an
element randomly selected from the first i elements, for i ∈ 0, 1, . . . , N − 2. Note that, for
i equal to N − 1, this operation has no effect.

A one-dimensional hash function is defined as

h(x) = P [x%N ], (3.1)

where x is an integer, P [i] is the (i + 1)th element of P , and % is the modulo division.
This hash function is a periodic function with period N . The range of this hash function
is N .
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A two-dimensional hash function can be defined using two permutation tables Px and
Py of size N

h(x, y) = (Px[x%N ] + Py[y%N ])%N, (3.2)

where x and y are integers. However, in order to avoid the storage of two permutation
tables, the same permutation table is generally used twice

h(x, y) = P [(P [x%N ] + y)%N ]. (3.3)

This hash function is a periodic function with period (N,N). The range of this hash
function is N .

A three-dimensional hash function is defined similarly as

h(x, y, z) = P [(P [(P [x%N ] + y)%N ]) + z)%N ], (3.4)

where x, y and z are integers. This hash function is a periodic function with period
(N,N,N). The range of this hash function is N .

This family of hash functions is used extensively in procedural modeling and texturing,
and we also use them in our direct stochastic tiling algorithms. The hash functions are
easy to implement and efficient to evaluate.

3.4.2 Long-Period Hash Functions Based on Permutation Tables

The period of hash functions based on permutation tables is short. This causes unwanted
repetition artifacts in procedural textures and tilings. Increasing the period is easy but
also expensive, because the length of the period is equal to the size of the permutation
table.

In 2006, we proposed long-period hash functions based on permutation tables [Lagae
and Dutré, 2006b]. The key observation for constructing long-period hash functions is that
hash functions based on permutation tables are periodic functions, and that the addition
of periodic functions yields a new periodic function with a larger period.

In this subsection we define long-period hash functions, we study the period and range,
distribution and efficiency of long-period hash functions, and we formulate guidelines for
designing long-period hash functions.

3.4.2.1 Definition

A one-dimensional long-period hash function is defined as

h(x) =

(
M−1∑
i=0

Pi[x%Ni]

)
%Nj, (3.5)
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where x is an integer, P0, P1, . . . , PM−1 are M permutation tables with size N0, N1, . . . , NM−1,
and Nj is one of these sizes.

A two-dimensional long-period hash function is defined as

h(x, y) =

(
M−1∑
i=0

Pi[(Pi[x%Ni] + y)%Ni]

)
%Nj, (3.6)

where x and y are integers
A three-dimensional long-period hash function is defined similarly as

h(x, y, z) =

(
M−1∑
i=0

Pi[(Pi[(Pi[x%Ni] + y)%Ni] + z)%Ni]

)
%Nj. (3.7)

where x, y and z are integers. These long-period hash functions are also called combined
hash functions.

The period of a combined hash function is the least common multiple of the periods
of the combining hash functions. In order to maximize the period of the combined hash
function, the periods of the combining hash functions should be relatively prime. The
range of the combined hash function is determined by the final modulo divisor Nj, which is
one of N0, N1, . . . , NM−1. Note that, in contrast with traditional hash functions, the range
and period of the combined hash functions are different.

A similar technique was used in 1988 by L’Ecuyer to construct a long-period pseudo-
random number generator by combining several shorter-period linear congruential genera-
tors. However, with the advent of recent pseudo-random number generators [Matsumoto
and Nishimura, 1998], this technique has largely become obsolete in its original context.

3.4.2.2 Distribution

Traditional hash functions produce uniformly distributed values over the integer lattice,
and most applications of these hash functions rely on this property. The following theorem
shows that combined hash functions will also produce uniformly distributed values.

Theorem. If X0, X1, . . . , XN−1 are N independent discrete random variables, such that
X0 is uniform between 0 and d− 1, where d is a positive integer, then

X =

(
N−1∑
i=0

Xi

)
%d (3.8)

follows a discrete uniform probability law between 0 and d− 1.
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Note that there are no requirements on the distribution of the random variables X1, X2, . . . , XN−1.
This theorem was first hinted at by Wichmann and Hill [1982], and later proved by L’Ecuyer
[1988].

For long-period hash functions, all combining hash functions are uniformly distributed.
Therefore, the final modulo divisor Nj can be any one of the sizes of the permutation tables
of the combining hash functions N0, N1, . . . , NM−1. However, some care must be taken in
selecting the appropriate permutation table sizes. Suppose a combined hash function is
built from a small permutation table of size Ns and a large permutation table of size
Nl, with Ns ≪ Nl. The period of the combined hash function is NsNl. However, if the
final modulo divisor is Nl, then the period will contain Ns almost identical parts. This is
because the range of the hash function using the permutation table of size Ns is very small
compared to the range of the hash function using the permutation table of size Nl. If the
final modulo divisor is Ns, this will not be the case. Therefore, the sizes of the permutation
tables should not differ too much.

3.4.2.3 Efficiency

The time needed to evaluate a combined hash function is roughly proportional to the
number of combining hash functions. This does not mean that an application that uses
a long-period hash function consisting of N combining hash functions will be N times
slower than the same application using a traditional hash function. In most applications,
the evaluation of the hash function is only a small part of the total computation time.
Also note that combined hash functions typically have a smaller memory footprint, which
improves the cache efficiency of lookups in the permutation tables.

3.4.2.4 Design

The design of a combined hash function is determined by several factors: the required
range of the hash function, the period of the hash function, the memory footprint of the
combined permutation tables, and the time needed to evaluate the hash function. We
recommend the strategy outlined below to design a long-period hash function.

First, determine the required range of the hash function. This fixes the final modulo
divisor and thus the size of one permutation table. If the range of the hash function is too
small, or if the range should be adjustable, then use a multiple of the range of the hash
function and apply an additional final modulo divisor.

Next, choose a number of permutation table sizes for the rest of the combining hash
function. The sizes should not differ too much, in order to ensure a uniform distribution.
The sizes should also be relatively prime in order to maximize the period. An easy way to
choose the permutation table sizes is to take the primes closest to the range of the hash
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(a) (b)

Figure 3.8: Tilings of surfaces with (a) cylindrical and (b) toroidal topology.

function. If the primes are not a factor of the range, then the period of the combined hash
function will be the product of the permutation table sizes.

The number of permutation tables will determine the time needed to evaluate the hash
function, and the joint size of the permutation tables will determine the memory footprint of
the hash function. Period length can be traded for evaluation time and memory footprint.

3.4.3 Hash Functions for Direct Stochastic Tiling Algorithms

Direct stochastic tiling algorithms use a hash function to associate a random color with
each integer lattice point. This colored lattice is then transformed to a tiling. Properties of
the direct stochastic tiling algorithms such as efficiency and periodicity are inherited from
the hash function.

Traditional hash functions based on permutation tables are simple and efficient. They
are often used when speed is crucial or when a long period is less important. Permutation
table sizes of 256 are common.

When speed is less important or when a long period is crucial, long-period hash functions
based on permutation tables can be used. A long-period hash function for direct stochastic
tiling algorithms can be designed as follows. The number of colors used in most tilings is
2, 3, 4, 6, or 8. The range of the hash function is therefore set to 24, the least common
multiple of these number of colors. By applying an additional modulo divisor, the range
of the hash function can be adjusted to 2, 3, 4, 6 and 8. For the sizes of the other
permutation tables, the primes 17, 19, 23, 29, 31 and 37 are selected. The period of the
combined hash function is 17× 19× 23× 24× 29× 31× 37 = 5, 930, 659, 848. Note that
this is more than the 32-bit integer range. The size of the combined permutation table is
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(a) (b)

Figure 3.9: Perlin noise generated (a) with the traditional hash function and (b) with the
long-period hash function. The two images have the same appearance.

only 17 + 19 + 23 + 24 + 29 + 31 + 37 = 180.

Note that periodicity is not necessarily a bad thing. Periodicity allows to correctly
handle boundary conditions when tiling surfaces with cylindrical or toroidal topology. This
is illustrated in figure 3.8.

3.4.4 Hash Functions for Procedural Texturing

The most famous texture basis function is Perlin’s noise function [Perlin, 1985, 2002]. Long-
period hash functions based on permutation tables can be used to robustly implement this
texture basis function.

A long-period hash function for Perlin’s noise function can be designed as follows. Per-
lin’s noise function uses the lower 4 bits of the hash function (16 values) to choose amongst
one of 12 vectors at each integer lattice point. The required range of the hash function is
therefore 16. For the sizes of the other permutation tables the primes 11, 13, 17 and 19 are
selected. The period of the combined hash function is 11×13×16×17×19 = 739, 024. The
size of the combined permutation table is 11+13+16+17+19 = 76. Compared to Perlin’s
implementation, the period is increased with a factor of almost 3, 000, the memory foot-
print is decreased with a factor of almost 3.5, and the evaluation time is increased with a
factor of about 5. The total evaluation time of the modified noise function is increased with
a factor of about 2.5. Figure 3.9 shows the original and the modified implementation. As
expected, the two images have the same appearance. The long-period hash function does
not introduce unwanted artifacts and preserves the typical look of Perlin’s noise function.
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3.5 Conclusion

Tile-based methods in computer graphics require efficient algorithms for generating stochas-
tic tilings. In this chapter we have presented scanline stochastic tiling algorithms and direct
stochastic tiling algorithms for Wang tiles and corner tiles. We have also studied the hash
functions on which the direct stochastic tiling algorithms are based.

Direct stochastic tiling algorithms are more elegant and at least as efficient as scan-
line stochastic tiling algorithms. We therefore recommend to use direct stochastic tiling
algorithms if possible, even for applications that do not require local evaluation of the
tiling.

Stochastic tiling algorithms for corner tiles are usually more efficient and more elegant
than stochastic tiling algorithms for Wang tiles. We therefore recommend to use corner
tiles if possible.

One stochastic tiling algorithm that is still missing in this chapter is a direct stochastic
tiling algorithm for compact sets of corner tiles. Although such an algorithm would be
useful, we have not yet succeeded in developing one.

Direct stochastic tiling algorithms are based on hash functions. The period of the tiling
is inherited from the period of the hash functions. Hash functions based on permutation
tables allow to trade storage space and evaluation time for period length, and allow to
construct hash functions with long periods. These hash functions are not only useful in
tiling algorithms but also in procedural modeling and texturing techniques.
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Chapter 4

Tile-Based Methods for Generating
Poisson Disk Distributions

4.1 Introduction

In computer graphics, Wang tiles and corner tiles are used to facilitate the synthesis of
complex signals. Poisson disk distributions are complex point distributions that are difficult
to generate in real time. This chapter presents several methods for constructing Poisson
disk distributions over a set of Wang tiles or corner tiles. With a single set of precomputed
tiles, high-quality Poisson disk distributions of arbitrary size can be generated very efficient,
simply by producing a stochastic tiling.

Overview

This chapter is organized as follows. In section 4.2 we introduce Poisson disk distributions.
Section 4.3 presents corner-based Poisson disk tiles, a tile-based methods for generating
Poisson disk distributions. In section 4.4 we investigate Poisson sphere distributions, the
three-dimensional equivalent of Poisson disk distributions. In section 4.5 we conclude.

This chapter only discusses methods for constructing Poisson disk distributions over a
set of Wang tiles or corner tiles. Applications of Poisson disk distributions are discussed
in chapter 6, and efficient tiling algorithms for Wang tiles and corner tiles are presented in
chapter 3.

4.2 Poisson Disk Distributions

In this section we define Poisson disk distributions, we sketch the history and background of
Poisson disk distributions, we propose an intuitive radius specification scheme for Poisson
disk distributions, and we introduce methods for generating Poisson disk distributions.
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Figure 4.1: A Poisson disk distribution.

4.2.1 Definition

A Poisson distribution or random distribution is the simplest random point distribution. A
Poisson distribution is a point distribution in which the points and the coordinates of the
points have no relationship to each other. A Poisson distribution is obtained by generating
uniformly distributed random numbers and using them as coordinates for the points. This
distribution is called a Poisson distribution because the number of points in an area is
distributed according to a Poisson probability distribution with mean equal to the area
multiplied with the density.

A Poisson disk distribution is a two-dimensional Poisson distribution in which all points
are separated from each other by a minimum distance. Half that distance is called the
radius r of the distribution. If a disk of that radius is placed at each point, then no two
disks overlap. This explains why this distribution is called a Poisson disk distribution.
Figure 4.1 shows an example of a Poisson disk distribution.

4.2.2 History and Background

Poisson disk distributions were introduced in the field of computer graphics to solve the
aliasing problem. Aliasing is a major source of artifacts in digitally synthesized images.
This problem was first identified by Crow [1977]. Dippé and Wold [1985], Cook [1986]
and Mitchell [1987] introduced nonuniform sampling to turn regular aliasing patterns into
featureless noise, which is perceptually less objectable. The Poisson disk distribution was
identified as one of the best sampling patterns. This work was based on studies by Yellot
[1982, 1983], who found that the photoreceptors in the retina of the eye are distributed
according to a Poisson disk distribution, an indication that this sampling pattern is effective
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for imaging.

Poisson disk distributions are traditionally generated using an expensive dart throwing
algorithm [Cook, 1986]. Fast methods that generate approximate Poisson disk distributions
have been suggested by various authors [Dippé and Wold, 1985; Mitchell, 1987, 1991;
Klassen, 2000]. The algorithm mostly used nowadays is due to McCool and Fiume [1992].
It generalizes over the dart throwing approach, and uses Lloyd’s relaxation method [Lloyd,
1982] to optimize the generated distribution.

Because Poisson disk distributions are expensive to generate, Dippé and Wold [1985]
suggested already in 1985 to replicate a precomputed tile with Poisson disk distributed
points across the plane. Since then, several tile-based methods were proposed. Most of
them use Wang tiles. The first tile based method, an extension of the dart throwing
algorithm, was presented by Shade et al. [2000]. Hiller et al. [2001] used Lloyd’s relaxation
algorithm to construct a Poisson disk distribution over a set of Wang tiles. This method was
later adopted by Cohen et al. [2003]. Ostromoukhov et al. [2004] presented an interesting
technique to generate a distribution with blue noise properties over a given density, based
on the Penrose tiles and Lloyd’s relaxation method. Kopf et al. [2006] presented a method
to generate Poisson disk distributions over a given density in real time, based on recursive
Wang tiles that contain self-similar and progressive Poisson distributions.

Recently, Jones [2006] and Dunbar and Humphreys [2006] presented efficient implemen-
tations of the dart throwing algorithm.

Tools to analyze the spectral properties of point sets were introduced by Ulichney [1987],
in the context of dithering.

4.2.3 Radius Specification

The radius of a Poisson disk distribution determines how well the points are distributed,
and is therefore a measure of the quality of the Poisson disk distribution. The radius
is typically expressed as an absolute number. However, this is not practical because the
radius is dependent on the size of the domain of the point distribution and on the number
of points in the distribution.

In 2005, we proposed a more intuitive radius specification scheme [Lagae and Dutré,
2005]. Instead of using the absolute radius r, the radius is expressed as a relative radius
ρ. The relative radius ρ is a fraction of the maximum radius rmax that can be achieved.

The densest packing of disks in the plane is a hexagonal lattice. Therefore, the point
configuration with maximum disk radius rmax is a hexagonal lattice. The packing density
η of a hexagonal lattice is [Steinhaus, 1999]

η =
π

2
√

3
≈ 0.9069. (4.1)
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The packing density is defined as the fraction of the area filled by the disks.
The maximum disk area of a Poisson disk distribution counting N points over the toroidal

unit square is therefore η/N . The maximum possible disk radius rmax of this Poisson disk
distribution is thus given by

rmax =

√
1

2
√

3N
. (4.2)

The Poisson disk radius r of a given point distribution is specified as a fraction ρ of the
maximum disk radius

r = ρ rmax, (4.3)

with ρ ∈ [0, 1].
In contrast with the absolute radius, the relative radius is independent of the number of

points and the size of the domain of the point distribution. The relative radius is therefore
a good measure of how well the points are distributed.

The relative radius of a Poisson distribution is 0, because a Poisson distribution does
not enforce a minimum distance between points. The relative radius of a hexagonal lattice
is 1, because a hexagonal lattice is the densest packing of disks in the plane. The relative
radius of a Poisson disk distribution should be relatively large, in order to ensure a good
distribution of points, but not too large, because point distributions with a very large
relative radius are too close to the hexagonal lattice, and are therefore too regular. Practice
shows that the radius of most Poisson disk distribution is somewhere in between 0.65 and
0.85.

4.2.4 Generation

Poisson disk distributions are traditionally generated with dart throwing, relaxation dart
throwing or Lloyd’s relaxation method.

4.2.4.1 Dart Throwing

The dart throwing algorithm of Cook [1986] was the first algorithm to generate Poisson
disk distributions. The algorithm generates points distributed according to a Poisson
distribution, and rejects points that do not satisfy the minimum separation with already
generated points. This process continues until no more points can be added. To correctly
handle boundary conditions, the distributions generated by the dart throwing algorithm
are usually toroidal.

This algorithm is expensive, and difficult to control. Instead of specifying the number
of points, the radius of the distribution has to be provided, the final number of points in
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(a) (b) (c) (d)

Figure 4.2: Lloyd’s relaxation method. (a) The initial point set. (b) The Voronoi diagram
of the initial point set. The centroids of the Voronoi cells are indicated by circles. (c) The
points are moved to the centroid of their Voronoi cell. (d) This process is iterated. Note
the increase in radius of the point set.

the distribution is difficult to predict, and if the process is stopped too soon, the density
of the points is not uniform.

4.2.4.2 Relaxation Dart Throwing

McCool and Fiume [1992] proposed an improved version of the dart throwing algorithm,
which we call relaxation dart throwing. Points are placed with a large radius initially, and
once no more space has been found for a large number of attempts, the radius is reduced
by some fraction.

This algorithm has several advantages compared to dart throwing. It is faster, it allows
to specify the final size of the distributions rather than the radius, and termination is
guaranteed.

4.2.4.3 Lloyd’s Relaxation Scheme

After a Poisson disk distribution is generated, McCool and Fiume [1992] apply Lloyd’s
relaxation method [Lloyd, 1982] to optimize the radius of the Poisson disk distribution.
Lloyd’s relaxation method is an iterative process. In each iteration, the Voronoi diagram
of the point set is computed, and each point is moved to the centroid of its Voronoi cell.
This process is illustrated in figure 4.2.
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(a) (b)

Figure 4.3: The Poisson disk tile regions and the modified Poisson disk tile regions. (a)
The Poisson disk radius determines corner regions, edge regions and an interior region. (b)
The corner regions are modified such that the distance between regions of the same type
is at least 2r.

4.3 Corner-Based Poisson Disk Tiles

In 2006, we presented corner tiles and corner-based Poisson disk tiles, a method for con-
structing a Poisson disk distribution over a set of corner tiles [Lagae and Dutré, 2006a].

Constructing a Poisson disk distribution over a set of corner tiles is challenging. The
difficulty is to generate a Poisson disk distribution in each tile of the tile set, such that
every tiling results in a valid Poisson disk distribution. The minimum distance criterion
of a Poisson disk distribution imposes severe constraints on the point distributions in the
corner tiles.

A point in a tile closer to a corner than the Poisson disk radius affects points in three
neighboring tiles. A point in a tile closer to an edge than the Poisson disk radius affects
points in one neighboring tile. A point in a tile, further away from the tile boundary than
the Poisson disk radius does not affect points in neighboring tiles. The regions obtained
this way are called the Poisson disk tile regions. The Poisson disk radius determines corner
regions, edge regions and an interior region. This is illustrated in figure 4.3(a).

To minimize the constraints between the different regions, the corner regions are enlarged
such that the distance between edge regions is twice the Poisson disk radius. The regions
obtained this way are called the modified Poisson disk tile regions. Within a single tile,
points in edge regions now only affect points in corner regions, and not in other edge
regions. This is illustrated in figure 4.3(b).

By combining the modified Poisson disk tile regions with the complete corner tile set
over C colors, a new tiling is obtained. This is illustrated in figure 4.4. This tiling uses
three different kinds of tiles. Corner tiles, horizontal and vertical edge tiles, and interior
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Figure 4.4: A tiling obtained by combining the modified Poisson disk tile regions with the
complete corner tile set over 3 colors. This tiling was generated from the tiling shown in
figure 2.6.

(a) (b) (c) (d)

Figure 4.5: Construction of a Poisson disk distribution over a corner tile of a corner-
based Poisson disk tile set. (a) The corner tile. (b) A toroidal Poisson disk distribution is
generated. (c) The Poisson disk distribution is optimized using Lloyd’s relaxation scheme.
(d) The corner tile is cut out of the Poisson disk distribution.
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Figure 4.6: Poisson disk distributions constructed over corner tiles of a corner-based Pois-
son disk tile set.

(a) (b) (c) (d)

Figure 4.7: Construction of a Poisson disk distribution over a vertical edge tile of a corner-
based Poisson disk tile set. (a) The edge tile is assembled with the corresponding corner
tiles. (b) A toroidal Poisson disk distribution is generated. (c) The Poisson disk distribution
is optimized using Lloyd’s relaxation scheme. (d) The edge tile is cut out of the Poisson
disk distribution.

36



4.3 Corner-Based Poisson Disk Tiles

Figure 4.8: Poisson disk distributions constructed over horizontal edge tiles of a corner-
based Poisson disk tile set.

Figure 4.9: Poisson disk distributions constructed over vertical edge tiles of a corner-based
Poisson disk tile set.
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(a) (b)

(c) (d)

Figure 4.10: Construction of a Poisson disk distribution over a tile of a corner-based
Poisson disk tile set. (a) The interior tile is assembled with the corresponding corner tiles
and edge tiles. (b) A toroidal Poisson disk distribution is generated. (c) The Poisson disk
distribution is optimized using Lloyd’s relaxation scheme. (d) The tile is cut out of the
Poisson disk distribution.
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Figure 4.11: Poisson disk distributions constructed over tiles of a corner-based Poisson
disk tile set.
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Figure 4.12: A tiling with a set of corner-based Poisson disk tiles.
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Figure 4.13: A Poisson disk distribution generated with a set of corner-based Poisson disk
tiles. This Poisson disk distribution was generated from the tiling shown in figure 4.12.
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tiles. Corner tiles correspond to the union of four modified corner regions. There are C
corner tiles, one for each color. Edge tiles correspond to the union of two modified edge
regions. There are C2 horizontal and C2 vertical edge tiles, one for each combination of
two corner colors. Interior tiles correspond to the modified interior regions. There are C4

interior tiles, one for each combination of four corner colors. Note that edge-based Poisson
disk tiles use C12 rather than C4 interior tiles.

To construct a Poisson disk distribution over a set of corner tiles, the number of colors
of the corner tile set C, the number of points per tile N , and the relative Poisson disk
radius ρ are chosen. The absolute Poisson disk radius determines the size of the modified
Poisson disk regions.

First, a Poisson disk distribution is constructed over the corner tiles. This is illustrated
in figure 4.5. For each corner tile, a toroidal Poisson disk distribution of N points is
generated using dart throwing or relaxation dart throwing (see figure 4.5(b)), optionally
followed by Lloyd’s relaxation method (see figure 4.5(c)). The corner tile is then cut out
of the Poisson disk distribution (see figure 4.5(d)). If the desired Poisson disk radius is not
reached, this process is repeated. Figure 4.6 shows Poisson disk distributions constructed
over corner tiles.

Next, a Poisson disk distribution is constructed over the edge tiles. This is illustrated
in figure 4.7. Each edge tile is assembled with the corresponding corner tiles (see fig-
ure 4.7(a)). A toroidal Poisson disk distribution is generated using dart throwing or relax-
ation dart throwing (see figure 4.7(b)), optionally followed by Lloyd’s relaxation method
(see figure 4.7(c)). The edge tile is then cut out of the Poisson disk distribution (see fig-
ure 4.7(d)). If the desired Poisson disk radius is not reached, this process is repeated. No
new points are added to the corner tiles. During relaxation, the points in the corner tiles
are fixed, and other points are prohibited to enter the corner tiles. This is done by clipping
the displacement vectors of points that are about to enter the corner tiles. Figures 4.8
and 4.9 show Poisson disk distributions constructed over horizontal and vertical edge tiles.

Finally, a Poisson disk distribution is constructed over the interior tiles. This is illus-
trated in figure 4.10. Each interior tile is assembled with the corresponding corner tiles and
edge tiles (see figure 4.10(a)). A toroidal Poisson disk distribution that brings the number
of points inside the tile to N is generated using dart throwing or relaxation dart throwing
(see figure 4.10(b)), optionally followed by Lloyd’s relaxation method (see figure 4.10(c)).
The tile is then cut out of the Poisson disk distribution (see figure 4.10(d)). If the desired
Poisson disk radius is not reached, this process is repeated. No new points are added to
the corner tiles and the edge tiles. During relaxation, the points in the corner tiles and the
edge are fixed, and other points are prohibited to enter the corner tiles and the edge tiles.
Figure 4.11 shows Poisson disk distributions constructed over corner tiles.

A corner-based Poisson disk tile set based on a complete Wang tile set over C colors
consists of C4 tiles. For 2, 3, 4, 5, 6, 7 and 8 colors, a set of corner-based Poisson disk tiles
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counts 16, 81, 256, 625, 1, 296, 2, 401 and 4, 096. Corner-based Poisson disk tile sets are
significantly smaller than edge-based Poisson disk tile sets.

Figure 4.12 shows a tiling with a set of edge-based Poisson disk tiles, and figure 4.13
shows the resulting Poisson disk distribution.

The time needed to generate a Poisson disk tile set ranges from several minutes to several
hours, depending on the parameters. However, the construction of a tile set has to be done
only once. With a single set of tiles, an infinite number of Poisson disk distributions can
be generated.

4.4 A Tile-Based Method for Generating Poisson Sphere
Distributions

Poisson disk distributions have many applications in computer graphics. Several of these
applications, such as geometric object distribution (see section 6.5) and the two-dimensional
procedural object distribution texture basis function (see section 6.6), have three-dimensional
counterparts. These applications require Poisson sphere distributions, the three-dimensional
equivalent of Poisson disk distributions.

In this section we present Poisson sphere distributions and three-dimensional corner
tiles, and we introduce corner-based Poisson sphere tiles, a tile-based method for efficiently
generating Poisson sphere distributions.

4.4.1 Poisson Sphere Distributions

Poisson sphere distributions are very similar to Poisson disk distributions, and most con-
cepts of Poisson disk distributions easily generalize to Poisson sphere distribution. In this
subsection we define Poisson sphere distributions, we extend the relative radius specifica-
tion scheme to Poisson sphere distributions, and we discuss methods for generating Poisson
sphere distributions.

4.4.1.1 Definition

A Poisson sphere distribution is a three-dimensional Poisson distribution in which all points
are separated from each other by a minimum distance. Half that distance is called the
radius r of the distribution. If a sphere of that radius is placed at each point, then no two
spheres intersect.
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4.4.1.2 Radius Specification

The relative radius specification scheme for Poisson disk distributions has a direct three-
dimensional equivalent.

The packing density η of the densest packing of spheres is given by

η =
π

3
√

2
≈ 0.7405. (4.4)

The packing density is defined as the fraction of the volume filled by the spheres.
The problem of finding the densest packing of spheres, also known as the Kepler Problem,

was only solved recently [Cipra, 1998].
The maximum sphere volume of a Poisson sphere distribution counting N points over

the toroidal unit cube is therefore η/N . The maximum possible sphere radius rmax of this
Poisson sphere distribution is thus given by

rmax = 3

√
1

4
√

2N
. (4.5)

The Poisson sphere radius r of a given point distribution is specified as a fraction ρ of
the maximum disk radius

r = ρ rmax, (4.6)

where ρ ∈ [0, 1].
As in two dimensions, the relative radius is also a measure of how well the points are dis-

tributed. Good Poisson sphere distributions should have a relative radius that is relatively
high.

4.4.1.3 Generation

Poisson disk distributions are traditionally generated with dart throwing, relaxation dart
throwing or Lloyd’s relaxation method. These algorithms easily generalize to three dimen-
sions.

4.4.2 Three-Dimensional Corner Tiles

Three-dimensional corner tiles are a simple extension of two-dimensional corner tiles.
Three-dimensional corner tiles are unit cube tiles with colored corners. The corners

of a three-dimensional corner tile are named after its coordinates. A complete tile set
contains a tile for every possible combination of eight corner colors. A complete set of
three-dimensional corner tiles over C colors counts C8 tiles. Figure 4.14 shows several tiles
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Figure 4.14: Several tiles of the complete 3D corner tile set over 2 colors.

Figure 4.15: A tiling with the complete 3D corner tile set over 2 colors.
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: The Poisson sphere tile regions. (a) The corner regions. (b) The edge regions.
(c) The face regions. (d) The interior region. (e) The assembled tile. (f) The partially
assembled tile.

of the complete set of three-dimensional corner tiles over two colors. A complete set of
three-dimensional corner tiles over 2, 3 and 4 colors consist of 256, 6, 561 and 65, 536 tiles.

A tiling is constructed by placing the tiles next to each other such that adjoining corners
have matching colors. Each tile in the tile set can be used arbitrarily many times. The
tiles are placed with their corners on the integer lattice points. Figure 4.15 shows a tiling
with the complete set of three-dimensional corner tiles over two colors.

The enumeration scheme for corner tiles (see section 2.8) and the direct stochastic tiling
algorithm for corner tiles (see section 3.3) easily generalize to three dimensions.

4.4.3 Corner-Based Poisson Sphere Tiles

In 2006, we presented corner-based Poisson sphere tiles, a tile-based method for efficiently
generating Poisson sphere distributions [Lagae and Dutré, 2006c]. Corner-based Poisson
sphere tiles are an extension of corner-based Poisson disk tiles (see section 4.3) to three
dimensions.

A point in a tile closer to a corner than the Poisson sphere radius affects points in seven
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(a) (b) (c)

(d) (e) (f)

Figure 4.17: The modified Poisson sphere tile regions. (a) The modified corner regions.
(b) The modified edge regions. (c) The modified face regions. (d) The modified interior
region. (e) The assembled tile. (f) The partially assembled tile.
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Figure 4.18: A tiling obtained by combining the modified Poisson sphere tile regions with
the complete 3D corner tile set over 2 colors. This tiling was generated from the tiling
shown in figure 4.15.

(a) (b) (c) (d)

Figure 4.19: The four kinds of tiles in the tiling obtained by combining the modified
Poisson sphere tile regions with the complete 3D corner tile set over 2 colors. (a) Corner
tiles. (b) Edge tiles. (c) Face tiles. (d) Interior tiles.
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(a) (b) (c) (d)

Figure 4.20: Construction of a Poisson sphere distribution over a corner tile of a corner-
based Poisson sphere tile set. (a) The corner tile. (b) A toroidal Poisson sphere distribution
is generated. (c) The Poisson sphere distribution is optimized using Lloyd’s relaxation
scheme. (d) The corner tile is cut out of the Poisson disk distribution.

(a) (b) (c) (d)

Figure 4.21: Construction of a Poisson sphere distribution over an edge tile of a corner-
based Poisson sphere tile set. (a) The edge tile is assembled with the corresponding corner
tiles. (b) A toroidal Poisson sphere distribution is generated. (c) The Poisson sphere
distribution is optimized using Lloyd’s relaxation scheme. (d) The edge tile is cut out of
the Poisson sphere distribution.
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(a) (b) (c) (d)

Figure 4.22: Construction of a Poisson sphere distribution over a face tile of a corner-based
Poisson sphere tile set. (a) The face tile is assembled with the corresponding corner tiles
and edge tiles. (b) A toroidal Poisson sphere distribution is generated. (c) The Poisson
sphere distribution is optimized using Lloyd’s relaxation scheme. (d) The face tile is cut
out of the Poisson sphere distribution.

neighboring tiles. A point in a tile closer to an edge than the Poisson sphere radius affects
points in three neighboring tiles. A point in a tile closer to a face than the Poisson sphere
radius affects points in one neighboring tile. A point in a tile, further away from the tile
boundary than the Poisson sphere radius does not affect points in neighboring tiles. The
regions obtained this way are called the Poisson sphere tile regions. The Poisson sphere
radius determines corner regions, edge regions, face regions and an interior region. This is
illustrated in figure 4.16.

To minimize the constraints between the different regions, the corner regions are enlarged
such that the distance between edge regions is twice the Poisson sphere radius. Now points
in different edge regions do not affect each other. The edge regions are enlarged such
that the distance between face regions is twice the Poisson sphere radius. Now points in
different face regions do not affect each other. The regions obtained this way are called
the modified Poisson sphere tile regions. This is illustrated in figure 4.17.

By combining the modified Poisson sphere tile regions with the complete corner tile set
over C colors, a new tiling is obtained. This is illustrated in figure 4.18. This tiling uses
four different kinds of tiles. Corner tiles, edge tiles, face tiles and interior tiles. Corner
tiles correspond to the union of eight modified corner regions. There are C corner tiles,
one for each color. Edge tiles correspond to the union of four modified edge regions. There
are C2 edge tiles for each orientation, one for each combination of two corner colors. Face
tiles correspond to the union of two modified face regions. There are C4 face tiles for each
orientation, one for each combination of four corner colors. Interior tiles correspond to the
modified interior regions. There are C8 interior tiles, one for each combination of eight
corner colors. These four kinds of tiles are shown in figure 4.19. Note that the corner tile
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(a) (b) (c)

(d) (e) (f)

Figure 4.23: Construction of a Poisson sphere distribution over a tile of a corner-based
Poisson sphere tile set. (a) The interior tile is assembled with the corresponding corner
tiles, edge tiles and face tiles. (b) All points further from the tile than twice the Poisson
sphere radius are discarded. (c) A toroidal Poisson sphere distribution is generated in the
interior. (d) A toroidal Poisson sphere distribution is generated in the exterior. (e) The
Poisson sphere distribution is optimized using Lloyd’s relaxation scheme. (f) The tile is
cut out of the Poisson sphere distribution.
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is a great rhombicuboctahedron, an Archimedean solid.
To construct a Poisson sphere distribution over a set of corner tiles, the number of colors

of the corner tile set C, the number of points per tile N , and the relative Poisson sphere
radius ρ are chosen. The absolute Poisson sphere radius determines the size of the modified
Poisson sphere regions.

First, a Poisson sphere distribution is constructed over the corner tiles. This is illustrated
in figure 4.20. For each corner tile, a toroidal Poisson sphere distribution of N points is
generated using dart throwing or relaxation dart throwing (see figure 4.20(b)), optionally
followed by Lloyd’s relaxation method (see figure 4.20(c)). The corner tile is then cut out
of the Poisson sphere distribution (see figure 4.20(d)). If the desired Poisson sphere radius
is not reached, this process is repeated.

Next, a Poisson sphere distribution is constructed over the edge tiles. This is illus-
trated in figure 4.21. Each edge tile is assembled with the corresponding corner tiles (see
figure 4.21(a)). A toroidal Poisson sphere distribution is generated using dart throwing
or relaxation dart throwing (see figure 4.21(b)), optionally followed by Lloyd’s relaxation
method (see figure 4.21(c)). The edge tile is then cut out of the Poisson sphere distribu-
tion (see figure 4.21(d)). If the desired Poisson sphere radius is not reached, this process
is repeated. No new points are added to the corner tiles. During relaxation, the points in
the corner tiles are fixed, and other points are prohibited to enter the corner tiles. This
is done by clipping the displacement vectors of points that are about to enter the corner
tiles.

Next, a Poisson sphere distribution is constructed over the face tiles in the same way.
This is illustrated in figure 4.22.

Finally, a Poisson sphere distribution is constructed over the interior tiles. This is
illustrated in figure 4.23. Each interior tile is assembled with the corresponding corner
tiles, edge tiles and face tiles. (see figure 4.23(a)). All points further away from the tile
boundary than the Poisson sphere radius are discarded (see figure 4.23(b)). A Poisson
sphere distribution is generated using dart throwing or relaxation dart throwing, both in
the inside (see figure 4.23(c)) and in the outside (see figure 4.23(d)), optionally followed
by Lloyd’s relaxation method (see figure 4.23(e)). The tile is then cut out of the Poisson
sphere distribution (see figure 4.23(f)). If the desired Poisson sphere radius is not reached,
this process is repeated.

A corner-based Poisson sphere tile set based on a complete corner tile set over C colors
consists of C8 tiles. The only practical choice for C is 2, which results in a corner-based
Poisson sphere tile set counting 256 tiles.

The time needed to generate a Poisson sphere tile set ranges from several minutes to
several hours, depending on the parameters. However, the construction of a tile set has
to be done only once. With a single set of tiles, an infinite number of Poisson sphere
distributions can be generated.
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4.5 Conclusion

In this chapter we have introduced Poisson disk distributions and we have proposed an
intuitive scheme for specifying the radius of a Poisson disk distribution. We have pre-
sented edge-based Poisson disk tiles, template Poisson disk tiles, and corner-based Poisson
disk tiles, three tile-based methods for generating Poisson disk distributions. We have
introduced Poisson sphere distributions and three-dimensional corner tiles, and we have
presented corner-based Poisson sphere tiles, a tile-based method for constructing Pois-
son sphere distributions. We have discussed nonuniform Poisson disk distributions and
we have proposed a tile-based method for generating nonuniform well-distribution point
distributions.
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Chapter 5

Tile-Based Methods for Texture
Synthesis

5.1 Introduction

In computer graphics, Wang tiles and corner tiles are used to facilitate the synthesis of
complex signals. A texture is a complex signal that is difficult to synthesize efficiently. This
chapter presents a method for synthesizing a texture over a set of Wang tiles or corner
tiles, and a tile-based texture mapping algorithm for efficiently generating an arbitrary
large non-repeating texture using a set of precomputed tiles.

Overview

This chapter is organized as follows. In section 5.2 we introduce texture mapping and
texture synthesis. Section 5.3 presents a method for synthesizing a texture over a set of
Wang tiles or corner tiles. In section 5.4 we propose a tile-based texture mapping algorithm.
Section 5.5 discusses the tile packing problem. In section 5.6 we conclude.

This chapter only discusses methods for synthesizing textures over a set of Wang tiles
or corner tiles. Efficient tiling algorithms for Wang tiles and corner tiles are presented in
chapter 3.

5.2 Texture Mapping and Texture Synthesis

Texture mapping was introduced in 1974 by Catmull as a method for increasing the visual
complexity of computer-generated images without adding geometric detail. A texture map,
or simply a texture, is mapped onto the surface of a shape to add color or detail to the
shape.

A texture can be acquired in several ways. Possibilities include painting a texture,
taking a digital photograph of a texture, and generating a texture procedurally. Procedural
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(a) (b) (c) (d)

Figure 5.1: Construction of a texture tile set based on corner tiles from an example texture.
(a) For each color, a square patch is chosen in the example texture (the red, green and
yellow patch). (b) The patches are assembled according to the corner colors of the tile. (c)
The tile is cut out. (d) The seam is covered with a new irregular patch from the example
texture (the gray patch).

texture synthesis is discussed in detail in section 6.6. Texture synthesis is an alternative
way to obtain textures. Texture synthesis creates from an example texture a new, usually
larger texture that appears to be generated by the same underlying process.

Texture synthesis has become a popular area of research within computer graphics, and
a complete survey of related work is beyond the scope of this work. For an overview, we
refer to Liu et al. [2004] and Kwatra et al. [2005]. Most techniques for texture synthesis
are region growing methods, such as pixel-based texture synthesis [Bonet, 1997; Efros and
Leung, 1999; Wei and Levoy, 2000] and patch-based texture synthesis [Efros and Freeman,
2001; Liang et al., 2001; Cohen et al., 2003; Kwatra et al., 2003], or global methods [Heeger
and Bergen, 1995; Kwatra et al., 2005]. Tile-based texture synthesis can be classified as a
patch-based method.

5.3 Tile-Based Texture Synthesis

Stam [1997] was the first to consider Wang tiles in the context of texturing. Stam used
Wang tiles to generate non-repeating procedural textures of arbitrary size. A method
similar in spirit was presented by Neyret and Cani [1999]. They used triangular tiles with
edge and corner colors to generate pattern-based textures over a triangle mesh. Cohen
et al. [2003] combined Wang tiles with texture synthesis, and presented a method for
synthesizing an example texture over a set of Wang tiles. A variation on the technique of
Cohen et al. was proposed by Burke. The method of Cohen et al. was also used by Wei
[2004], who presented a texture mapping algorithm based on Wang tiles. Fu and Leung
[2005] extended texture tiling to arbitrary topological surfaces. The method of Cohen et al.
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(a)

(b)

(c)

Figure 5.2: Texture synthesis with texture tiles based on corner tiles. (a) The example
texture. (b) A set of texture tiles based on corner tiles constructed from the example
texture. (c) A new texture synthesized with the texture tile set.
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Figure 5.3: Textures synthesized with texture tiles based on corner tiles. These textures
are synthesized by tiling 4 × 4 tiles from a complete texture tile set based on corner tiles
over two or three colors.
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(a) (b)

Figure 5.4: Patch combination strategies for texture tiles based on Wang tiles. (a) The
method of Cohen et al. (b) A variant introduced by Burke.

(a) (b)

Figure 5.5: Patch combination strategies for texture tiles based on corner tiles. (a) A
straightforward extension of the method of Cohen et al. for Wang tiles to corner tiles. (b)
The method of Ng et al. Note that this is the only method that adds a new texture patch
to each tile.
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was extended to corner tiles by Ng et al. [2005].
We use the method of Ng et al. for synthesizing an example texture over a set of corner

tiles. This is illustrated in figure 5.1. For each corner color, a square patch is chosen at
random from the example texture (see figure 5.1(a)). Each tile of the tile set is constructed
by combining the four patches corresponding to the corner colors (see figure 5.1(b)), and
cutting out the tile (see figure 5.1(c)). This leaves a cross shaped seam that is covered with
a new diamond-shaped irregular patch from the example texture (see figure 5.1(d)). This
patch is optimized using the graph cut method [Kwatra et al., 2003], and is restricted to
lie in the circle inscribed in the tile. After an example texture is synthesized over a set of
corner tiles, a new texture can be synthesized by generating a tiling. The process of tile-
based texture synthesis is illustrated in figure 5.2. The method of Ng et al. is simple and
works well. Figure 5.3 shows several textures synthesized with corner-based texture tiles.
The quality of the synthesized textures is similar to that of other patch-based techniques.

Cohen et al. [2003] were the first to synthesize an example texture over a set of Wang
tiles. Several variations on the method of Cohen et al. have been proposed, and the
technique of Ng et al. for corner tiles is based on the method of Cohen et al. These
methods only differ in how the patches are placed on the tile. Figures 5.4 and 5.5 show
several patch combination strategies for Wang tiles and corner tiles.

The advantage of corner tiles over Wang tiles is less pronounced in texture tile construc-
tion. Unwanted artifacts in the synthesized textures are typically located where patches
meet. This is at the corners for Wang tiles and in the middle of the edges for corner tiles.
In this respect, Wang tiles and corner tiles are similar. However, textures synthesized with
corner tiles are usually more similar to the example texture than textures synthesized with
Wang tiles. This is because the center of each corner tile is covered with a new irregular
patch from the example texture. Therefore, each corner tile contains potentially unique
texture samples from the example texture. Other patch combination strategies use for
each tile only the patches corresponding to the corner or edge colors. We refer to Ng et al.
[2005] for a more detailed comparison.

An important advantage of tile-based texture synthesis is that the process of texture
synthesis is broken up into two parts. Once an example texture is synthesized over a set
of tiles, arbitrary large textures can be synthesized very efficiently simply by generating
stochastic tilings.

5.4 Tile-Based Texture Mapping

Interactive applications in computer graphics harness the power of graphics hardware to
guarantee interactive frame rates. Texture mapping is a fundamental feature for these
applications. However, texture memory is a scarce resource on graphics hardware, and
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Figure 5.6: Tile-based texture mapping using corner tiles. Screenshots from our interactive
tile-based texture mapping application based on corner tiles. Texture filtering does not
introduce unwanted artifacts because a tile packing was used.
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storing and managing large textures is challenging. All too often, tileable textures are
used to save texture memory. However, this results in visually disturbing repetition. In
2004, Wei presented a texture mapping algorithm based on Wang tiles to overcome this
problem. In 2006, we presented a cleaner and more efficient variant version of this algorithm
based on corner tiles [Lagae and Dutré, 2006a]. In this section we discuss these tile-based
texture mapping algorithms in detail.

Tile-based texture mapping uses an example texture synthesized over a set of Wang tiles
or corner tiles to simulate an arbitrary large non-periodic texture. This is more complicated
than it seems at first sight, because graphics hardware is very specialized and the graphics
processing unit (GPU) is a stream processing architecture.

The number of texture units on a GPU is typically small, and a GPU generally prefers
square textures. Therefore, all tiles of the tile set must be packed into a single square
texture. Tile-based texture mapping algorithms typically use complete tile sets. This is
because the C4 tiles of a complete tile set over C colors can easily be arranged into a square
texture using a C2 ×C2 configuration. However, in order to avoid unwanted discontinuity
artifacts introduced by texture filtering, this configuration must also be a valid tiling. This
is because texture sampling uses texels from adjacent tiles. Note that the borders of a
texture are treated toroidally. For more details, we refer to Wei [2004].

An arrangement of the C4 tiles of a complete set of Wang tiles or corner tiles over C
colors into a C2 × C2 toroidal configuration such that adjoining edges or corners have
matching colors is called a tile packing. Tile packings are discussed in detail in section 5.5.

The tile-based texture mapping algorithm runs as a fragment program on the GPU.
This fragment program transforms texture coordinates in the arbitrary large non-periodic
texture to texture coordinates in the texture containing the texture tiles. A tiling is
imposed on the arbitrary large non-periodic texture. For each incoming fragment, the tile
coordinates and the coordinates within the tile are computed. A direct stochastic tiling
algorithm is used to determine the tile at these coordinates. The tile packing provides the
location of that tile in the texture containing the texture tiles. This location is combined
with the coordinates of the fragment within the tile, and the texture lookup is performed.
For more implementation details we refer to Wei [2004] and Lefebvre and Neyret [2003].

A Wang tile packing can be formulated as a closed-form expression [Wei, 2004]. This
expression is evaluated directly in the fragment program. However, this is not the case for a
corner tile packing (see section 5.5). Therefore, the corner tile packing is stored explicitely,
as a constant array in the fragment program, or as an additional texture. The permutation
table used by the hash function of the direct stochastic tiling algorithm is stored in the
same way.

To avoid the corner problem, the tile-based texture mapping algorithm of Wei requires a
second Wang tile packing that contains all possible corner configurations of the Wang tile
set. This additional texture is used for texture lookups close to tile corners. Because corner
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(a)

(b)

Figure 5.7: The complete 1D Wang or corner tile sets over (a) 2 and (b) 3 colors.

tiles are not subject to the corner problem, only the texture containing the tile packing is
needed. Compared to the original method of Wei, our tile-based texture mapping algorithm
based on corner tiles reduces the required texture memory by a factor of two and saves
one texture unit. This is an important advantage, as reducing texture memory usage is
the main goal of tile-based texture mapping. Our algorithm also runs faster, because the
tiling algorithm for corner tiles is simpler and more efficient than equivalent algorithms for
Wang tiles. Corner tiles reduce the cost of tile-based texture mapping almost to that of
regular texture mapping. This is a significant saving for interactive applications.

Our tile-based texture mapping algorithm based on corner tiles runs at several hundred
frames per second on a NVidia GeForce 7800 GTX graphics card. Figure 5.6 shows several
results.

5.5 The Tile Packing Problem

A tile packing is an essential ingredient of the tile-based texture mapping algorithms dis-
cussed in section 5.4. A tile packing is used to avoid unwanted texture filtering artifacts.
In this section we discuss the problem of computing a tile packing of a complete set of
Wang tiles or corner tiles. We also show that the tile packing problem is an interesting
combinatorial problem.

The tile packing problem consists of arranging the C4 tiles of a complete set of Wang
tiles or corner tiles over C colors into a C2×C2 toroidal configuration such that adjoining
edges or corners have matching colors.

In 2006, we studied the corner tile packing problem in detail [Lagae and Dutré, 2006a,d].

5.5.1 The One-Dimensional Tile Packing Problem

In one dimension, Wang tiles and corner tiles can be seen as dominoes. A complete set of
Wang tiles or corner tiles over C colors counts C2 tiles. Figure 5.7 shows the complete set
of tiles over 2 and 3 colors. The one-dimensional tile packing problem consists of arranging
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(a) (b)

Figure 5.8: Graphs representing the complete 1D Wang or corner tile set over (a) 2 and
(b) 3 colors.

(a)

(b)

Figure 5.9: Tile packings of the complete 1D Wang or corner tile set over 2 and 3 colors.
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a complete set of C2 tiles into a single circular train. Domino problems like this one are
well known in the field of recreational mathematics. A solution based on graph theory is
given in the classic work Mathematical Recreations and Essays [Ball, 1926].

The tile set is represented as a directed graph with a vertex for each color, and an edge
connecting two vertices for each tile in the tile set. Figure 5.8 shows the graphs for the
complete tile sets over 2 and 3 colors. A solution for the tile packing problem is given by
an Eulerian circuit, a graph cycle that uses each graph edge exactly once. A complete tile
set results in a complete directed graph, which always has an Eulerian circuit. Figure 5.9
shows tile packings of the complete tile sets over 2 and 3 colors. A tile packing obtained
with this method is called an Eulerian Wang tile packing.

Wei [2004] presented a closed-form expression that gives the position of a specific tile in
a one-dimensional Eulerian tile packing.

5.5.2 The Wang Tile Packing Problem

Wei [2004] observed that Wang tiles are separable and that a solution for the two-dimensional
Wang tile packing problem is given by the outer product of two one-dimensional tile pack-
ings. This is illustrated in figure 5.10.

A one-dimensional tile packing of a complete set over C colors consist of C2 tiles. The
outer product of two such tile packings produces a matrix of C4 tiles. Because adjoining
edges have matching colors, and each tile occurs exactly once, this is a tile packing of the
C4 tiles of a complete Wang tile set over C colors. This construction method generalizes
to tile packings of Wang tiles in any dimension.

A closed-form expression that gives the position of a specific tile in an Eulerian Wang
tile packing is obtained by applying the closed-form expression for the one-dimensional
case for each dimension.

5.5.3 The Corner Tile Packing Problem

Although tiles with colored edges and problems similar to the Wang tile packing problem
were studied before in the field of recreational mathematics [MacMahon, 1921], corner tiles
and the corner tile packing problem have not been examined. The method for constructing
a Wang tile packing also does not seem to extend to corner tiles.

When we started exploring the corner tile packing problem, it resisted all attempts to
solve it. It was not clear whether the corner tile packing problem even had a solution. We
therefore decided to tackle the problem using combinatorial search methods.

A simple exhaustive search or generate-and-test method is not practical. For C colors
the tiles can be arranged in C4! ways. For 2, 3 and 4 colors, this equals approximately
2.09 × 1013, 5.80 × 10120 and 8.58 × 10506. Instead we use a backtracking method, that
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Figure 5.10: The construction of an Eulerian tile packing of the complete Wang tile set
over 3 colors.
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Figure 5.11: A recursive tile packing of the complete corner tile set over 4 colors.

67



Chapter 5 Tile-Based Methods for Texture Synthesis

Figure 5.12: A recursive tile packing of the complete Wang tile set over 4 colors.
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places one tile at a time until a dead end is reached, at which point previous steps are
retraced. Backtracking greatly reduces the amount of work in an exhaustive search, and is
often used to solve hard combinatorial problems such as the knights tour problem and the
queens problem [Ball, 1926]. The algorithm can also be used to search for solutions to the
Wang tile packing problem.

Although backtracking is relatively fast compared to simple exhaustive search and generate-
and-test methods, the time needed to solve the tile packing problem is still large. There-
fore, our backtracking algorithm also supports parallelization, checkpointing and progress
estimation. For implementation details, we refer to [Lagae and Dutré, 2006d].

With the backtracking algorithm, we are able to compute Wang and corner tile packings
for 2, 3 and 4 colors. For 2 colors, all solutions of the Wang and corner tile packing problem
are obtained almost immediately on a regular desktop computer. The corner tile packing
problem has 32 solutions and the Wang tile packing problem has 203, 520 solutions. This
supports the claim that in some way, corner tile packings are more difficult to construct
than Wang tile packings. For 3 colors, the first solution of the Wang and corner tile packing
problems is obtained almost immediately, but computing or counting all solutions seems
to be hopeless. For 4 colors, computing a corner tile packing took 280 days of CPU time,
and it took roughly 23 years of CPU time to find the first solution of the Wang tile packing
problem. These last results were obtained using a parallel version of our backtracking
algorithm, running on a cluster with almost 400 2.4 GHz CPU’s.

A solution for C colors can often be found faster by starting from a solution of C − 1
colors. That way, a recursive tile packing is obtained. Figures 5.12 and 5.11 show recursive
Wang and corner tile packings for 4 colors.

The tile packing problem has many symmetries. New solutions can be obtained from
existing ones using translation (the tile packing is toroidal), rotation, reflection, and per-
mutation of the colors. The 32 solutions of the 2 color corner tile packing problem reduce
to a single fundamental solution.

There is still room for improving the backtracking algorithm. The many symmetries
of the tile packing problem are currently not exploited. To solve the corner tile packing
problem we have also experimented with a backtracking algorithm that places colored pegs
rather than tiles. This algorithm seems to be faster.

The tile packing problem is an interesting combinatorial puzzle. We were able to obtain
Wang and corner tile packings for up to 4 colors. However, several problems, such as
counting the number of solutions of the tile packing problem, and finding a constructive
method and a closed-form expression for the corner tile packing problem, remain unsolved.
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(a) (b)

Figure 5.13: Jigsaw puzzles derived from tile packings of the complete (a) Wang and (b)
corner tile set over 2 colors.

5.5.4 Puzzles Derived from the Tile Packing Problem

The work most closely related to the tile packing problem in the field of recreational
mathematics is that of MacMahon [1921]. He describes sets of pieces of different geometrical
forms (including equilateral triangles, squares and pentagons) with colored edges that are
tiled into another geometrical form. The profile of the adjoining edges is then altered to
produce jigsaw puzzles. His work is unique in the fact that it details how the puzzles can be
constructed and solved. In contrast with Wang and corner tiles, the pieces of MacMahon
pieces may be rotated. MacMahon also does not consider pieces with colored corners.

Inspired by the work of MacMahon, we have created jigsaw puzzles from tile packings by
altering the profile of the adjoining edges or corners. Figure 5.13 shows two examples. To
create interesting puzzles, it is better to use tile packings constructed with the backtracking
algorithm instead of Eulerian tile packings. We found it already hard to construct a tile
packing of the complete set of corner tiles over 2 colors by hand, so these puzzles should
be challenging, especially puzzles based on tile packings of 3 or 4 colors. To prevent the
tiles from being rotated, a picture could be printed on the puzzle.
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5.6 Conclusion

In this chapter we have investigated the use of Wang tiles and corner tiles in texture map-
ping and texture synthesis. We have introduced texture mapping and texture synthesis.
We have discussed a method for synthesizing a texture over a set of Wang tiles or corner
tiles. We have presented a tile-based texture mapping algorithm, and we have discussed
the tile packing problem. For tile-based texture mapping, corner tiles are clearly superior
to Wang tiles. For tile-based texture synthesis corner tiles are also better than Wang tiles,
but the difference is less pronounced. Tile packings are more difficult to compute for corner
tiles than for Wang tiles. However, a tile packing has to be computed only once.
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Chapter 6

Applications of Poisson Disk
Distributions

6.1 Introduction

In the previous chapters we have introduced and analyzed efficient methods for generating
Poisson disk distributions. Generating Poisson disk distributions is of course not a goal in
itself, Poisson disk distributions have several applications in computer graphics. Efficient
methods for generating Poisson disk distributions enable efficient implementation of these
applications but also enable completely new applications. In this chapter we discuss several
applications of Poisson disk distributions.

Overview

This chapter is organized as follows. Section 6.2 discusses sampling. In section 6.3 we
discuss applications in non-photorealistic rendering. Section 6.4 introduces applications in
scientific visualization. In section 6.5 we discuss procedural modeling, geometric object
distribution and geometry instancing. Section 6.6 introduces a new application of Poisson
disk distributions in procedural texturing. In section 6.7 we conclude.

6.2 Sampling

Poisson disk distributions were introduced in the field of computer graphics in the context
of sampling. In 1977, Crow identified unwanted artifacts in digitally synthesized images,
such as jaggies and moiré patterns, as instances of the aliasing problem from digital signal
processing. In the mid-eighties, Dippé and Wold [1985], Cook [1986] and Mitchell [1987]
introduced nonuniform sampling and the Poisson disk distribution to turn regular aliasing
artifacts into perceptually less objectable stochastic noise. Their work was based on studies
by Yellot [Yellot, 1982, 1983], who found that the photoreceptors in the retina of the eye are
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(a) The Uffizi Gallery, 288 points

(b) Galileo’s Tomb, 3, 200 points

Figure 6.1: Environment map sampling using warped Poisson disk distributed points. The
(a) The Uffizi Gallery and (b) Galileo’s Tomb environment maps were sampled with (a)
288 and (b) 3, 200 point light sources, by warping Poisson disk distributions generated with
edge-based Poisson disk tiles. The sampling patterns were generated in approximately 150
ms. (The environment maps used in this figure are courtesy of Paul Debevec.)
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distributed according to a Poisson disk distribution, and presented theoretical evidence in
favor of the Poisson disk distribution. It is now generally accepted that because of it’s blue
noise power spectrum, the Poisson disk distribution is one of the best stochastic sampling
patterns.

The Poisson disk sampling pattern allows a better reconstruction of a sampled function
than other sampling patterns. This matters a lot for applications in computer graphics,
which typically cannot compute enough samples to eliminate aliasing artifacts or stochas-
tic noise. For example, the physically based rendering system of Pharr and Humphreys
[2004] uses the best-candidate sampling pattern [Mitchell, 1991], an approximate Poisson
disk distribution, to sample the image plane for generating primary rays. However, the
Poisson disk sampling pattern is not commonly used for sampling, mainly because it is
considered too difficult and too expensive to generate. The efficient methods for generat-
ing Poisson disk distributions discussed in the previous chapters enable the use of Poisson
disk distributions for sampling, even for interactive and real-time applications.

Importance sampling is one of the most frequently used variance reduction techniques in
global illumination and distribution ray tracing [Dutré et al., 2002; Pharr and Humphreys,
2004]. Importance sampling requires nonuniform point distributions. Similar to Poisson
disk distributions, nonuniform Poisson disk distributions have significant advantages over
other point distributions. An example of importance sampling in the context of global
illumination is sampling a high dynamic range environment map, representing an infi-
nite area light source [Cohen and Debevec, 2001; Agarwal et al., 2003; Kollig and Keller,
2003]. The environment map is replaced by a number of point light sources to speed up
integration of the incoming illumination. This can be done by warping Poisson disk dis-
tributed points according to a probability density function derived from the environment
map. Figure 6.1 shows environment maps sampled using warped Poisson disk distributions.
Another solution is to directly generate a nonuniform Poisson disk distribution. However,
both techniques are not optimal. Warping can introduce clumping, and using a single tile
introduces periodicity. Efficiently generating sampling patterns with blue noise properties
is still a very active area of research [Ostromoukhov et al., 2004; Dunbar and Humphreys,
2006; Kopf et al., 2006].

6.3 Non-Photorealistic Rendering

Non-photorealistic rendering [Gooch and Gooch, 2002] is an area of computer graphics
that uses different rendering styles to communicate specific messages. Non-photorealistic
rendering is used for artistic media simulation, user-assisted image creation and automatic
image creation. Poisson disk distributions have several applications in non-photorealistic
rendering.
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(a) (b) (c)

Figure 6.2: Primitive distribution for illustration using warped Poisson disk distributed
points. (a) The Lena image. (b) Stippled and (c) hatched non-photorealistic renderings
generated from the Lena image, by warping Poisson disk distributions generated with
edge-based Poisson disk tiles. Approximately 13, 000 primitives were distributed.

A pen-and-ink illustration can be generated from a given image by placing a number of
primitives, for example points or strokes, according to a density function derived from that
image. It is widely accepted in stippling and halftoning that a Poisson disk distribution
yields more visually pleasing results [Ulichney, 1987; Deussen et al., 2000; Secord et al.,
2002]. However, Poisson disk distributions are not frequently used because they are con-
sidered too expensive to generate. Pen-and-ink illustrations can efficiently be generated
by warping or redistributing Poisson disk distributed points using the inverse cumulative
of the density function. Figure 6.2 shows illustrations generated using warped Poisson
disk distributions. Another solution is to directly generate a nonuniform Poisson disk
distribution.

Non-photorealistic rendering also employs several other techniques introduced in previ-
ous chapters to simulate artistic styles. For example, Kaplan and Salesin [2000] used the
theory of tiling to create images much like the ones by the Dutch artist M. C. Escher, and
Hausner [2001] used Lloyd’s relaxation method to simulate decorative mosaics.

6.4 Scientific Visualization

Scientific visualization [Tufte, 1986] is a field of research that creates images, diagrams,
or animations from complex scientific data. Like non-photorealistic rendering, the goal
is to convey specific messages. Poisson disk distributions have several applications in
scientific visualization. For example, a vector field can be visualized by sampling the
vector field using icons [Tufte, 1986]. The best results are obtained when the icons are
placed according to a Poisson disk distribution. Scientific visualization also employs other
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Figure 6.3: A beech forest in the winter. Over 2, 000 instances of 5 beeches were distributed
using Poisson disk tiles to create this beech forest. Each beech consists of about 16, 000
triangles. (The beeches were generated with NatFX from Bionatics by Karl vom Berge.
The environment map was created using the Utah sky model.)

techniques introduced in previous chapters to create illustrations. For example, Lu and
Ebert [2005] used Wang cubes with point distributions to create example-based volume
illustrations.

6.5 Procedural Modeling, Geometric Object Distribution
and Geometry Instancing

Modeling the real world is an important aspect of computer graphics. However, model-
ing complex environments such as plant ecosystems or cities by hand can be very time-
consuming. Procedural modeling techniques assist the user to create complex environ-
ments, or create complex environments automatically. For example, Deussen et al. [1998]
proposed a system for creating complex plant ecosystems and Parish and Müller [2001]
presented a method for modeling cities.

Geometric object distribution is an important aspect of procedural modeling. Many
man-made and natural distributions follow a pattern with a minimum distance criterion.
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Figure 6.4: A planet with an asteroid belt. The asteroid belt was modeled by instancing
several thousand asteroids using a Poisson sphere distribution. (The map of Saturn is
courtesy of Björn Jónsson. The asteroid models are courtesy of Scott Hudson.)
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For example the trees in a forest and the individual hairs in fur. These distributions can
easily be modeled using Poisson disk distributions. Figure 6.3 shows a beech forest in the
winter. The trees were distributed according to a Poisson disk distribution. Figure 6.4
shows a planet with an asteroid belt. The asteroid belt was modeled by cutting out a ring
of points from a Poisson sphere distribution.

Geometry instancing is frequently used to efficiently implement geometric object dis-
tribution. Instead of using a unique geometric model for each distributed object, only a
limited set of geometric models is used, and each distributed object is an instance of one
of these models. The instances may have differentiating parameters, such as orientation,
size and color. This technique was also used in figures 6.3 and 6.4.

However, for very large or complex environments, placing and storing all instances is still
expensive. This problem can be relieved by using the tile-based methods for generating
Poisson disk distributions introduced in chapter 4. Because the direct stochastic tiling
algorithm allows to efficiently evaluate a Poisson disk distribution locally, it enables on the
fly instancing. This eliminates the cost of storing instancing information. This principle
could also be used in real-time applications, such as flight simulators or games.

6.6 Procedural Texturing

Texture mapping [Catmull, 1974] is commonly used to increasing the visual complexity of
computer-generated images without adding geometric detail. A texture is mapped onto
the surface of a shape to add color or detail to the shape. Traditional textures are raster
graphics images. Raster graphics images have several disadvantages. Raster graphics
images have a fixed resolution and size, and have large storage requirements.

Procedural textures are textures defined by a procedure or an algorithm rather than by a
raster graphics image. Compared to traditional textures, procedural textures are compact,
have no fixed resolution and size, and can be easily parameterized. Procedural texturing
has become an invaluable tool for high-quality image synthesis. Procedural techniques are
capable of generating a large variety of convincing textures, such as marble, wood and
stone.

At the heart of procedural texturing are texture basis functions. They bootstrap the
visual complexity which is present in the generated textures. The most famous texture
basis function is Perlin’s noise function [Perlin, 1985], or as Peachy states, “the function
that launched a thousand textures” [Ebert et al., 2002]. However, the use of texture basis
functions is not limited to procedural texturing. Texture basis functions are also used
in procedural modeling, shading and animation. This large variety of applications is a
motivation to find new texture basis functions and expand the range of textures that can
be generated procedurally.
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In this section, we present a procedural object distribution function. This new texture
basis function distributes procedurally generated objects over a procedurally generated
texture, which serves as background. Objects are placed uniformly over the texture, and
are guaranteed not to overlap. The texture basis function allows intuitive control over
the scale, size and orientation of the objects being distributed, and can be evaluated
efficiently. We discuss the history and background of procedural texturing, and present a
two-dimensional as well as a tree-dimensional procedural object distribution function.

6.6.1 History and Background

The introduction of solid texturing by Perlin [1985] and Peachy [1985] in the mid-eighties
was a milestone in the field of procedural modeling.

The most popular three-dimensional texture basis function is Perlin’s noise function
[Perlin, 1985; Perlin and Hoffert, 1989; Perlin, 2002]. The noise value at each point is
determined by computing a pseudo-random gradient at each of the eight nearest vertices
on the integer cubic lattice, followed by splined interpolation. Perlin’s noise function has
become the standard way to model natural materials such as marble, wood and stone, and
natural phenomena such as smoke, water and fire. Although presented in 1985, the Perlin’s
texture basis function is still heavily used nowadays.

Another useful 3D texture basis function is the cellular texture basis function of Worley
[1996]. Random feature points are scattered throughout space, and the function returns the
distance to the closest feature points. This process is accelerated using space subdivision:
feature points are generated on the fly, in the cubes defined by the integer lattice. Worley’s
texture basis function is suited for generating rocks, tiled areas, and a variety of organic
patterns. Worley introduced his cellular texture basis function in 1996, although a simpler
version of this texture basis function was already proposed in 1988 by Burchill.

To address a number of shortcomings of Perlin’s noise function, Cook and DeRose [2005]
presented wavelet noise, a band-limited version of Perlin’s noise function. Their work was
inspired by earlier work by Lewis [1989].

There are several other techniques to generate textures procedurally. For example, Turk
[1991] presented a biologically inspired method, called reaction-diffusion, that generates
interesting mammalian patterns. These methods, however, do not qualify as texture basis
functions, because they do not have the semantics of a point evaluation, but require global
operations to work.

For an excellent overview of the field of procedural texturing and modeling, we refer to
[Ebert et al., 2002].
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(a) (b) (c) (d)

Figure 6.5: Evaluation of the 2D object distribution texture basis function. The texture
basis function returns (a) a boolean value indicating whether the point of evaluation is
within the Poisson disk of the closest feature point, (b) the coordinates of the closest
feature point, (c) a unique ID identifying the closest feature point, and (d) the distance to
the closest feature point.

(a) (b) (c) (d)

Figure 6.6: Procedural object distribution with the 2D object distribution texture basis
function. (a) The texture basis function is evaluated. (b) If the point of evaluation lies
within a Poisson disk, it is transformed to the local coordinate system of that disk, and a
procedural object is evaluated. (c) If the point of evaluation is not located inside a Poisson
disk, a procedural texture which serves as background is evaluated. (d) The resulting
procedural texture.
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6.6.2 A 2D Procedural Object Distribution Function

The two-dimensional procedural object distribution function is a new texture basis function
that distributes procedurally generated objects over a procedurally generated background.

The texture basis function is defined over the infinite plane. When evaluated, it returns
the point in a tiled Poisson disk distribution closest to the point of evaluation, and a unique
identifier for this point. The function also returns the distance to the closest point, and a
boolean value indicating whether the point of evaluation is within the Poisson disk of the
closest point. This is illustrated in figure 6.5.

To distribute procedural objects over a procedural background, the texture basis function
is evaluated. If the point of evaluation lies within a Poisson disk, it is transformed to the
local coordinate system of that disk, and a procedural object is evaluated. If the point of
evaluation is not located inside a disk, a procedural texture which serves as background is
evaluated. This process is illustrated in figure 6.6.

In the remainder of this subsection, we discuss how to evaluate the texture basis function
efficiently, and how to control the placement of the distributed objects. We also present
several results and discuss some more advanced topics.

6.6.2.1 Evaluation

Evaluation of the texture basis function is straightforward. The Poisson disk tile that con-
tains the point of evaluation (x, y) is located at tile coordinates (⌊x⌋, ⌊y⌋), and is provided
by the direct stochastic tiling algorithm. The tile and its neighbors are then searched for
the closest point. The unique identifier of the closest point is a combination of the hash
value of the tile coordinates of the tile where the closest point was found, and the index of
the closest point in that tile.

Only a single Poisson disk tile set is needed. Randomness is introduced by the direct
stochastic tiling algorithm, randomizing the texture basis function is done by randomizing
the permutation table used by the hash function of the tiling algorithm.

The texture basis function can be implemented using edge-based Poisson disk tiles,
template Poisson disk tiles or corner-based Poisson disk tiles. Corner-based Poisson disk
tiles are recommended because the tile sets are smaller and the tiling algorithms are more
efficient.

Several optimizations are employed to evaluate the texture basis function efficiently.
After constructing a Poisson disk tile set, the points in the tiles are sorted lexicographically.
This speeds up the location of the closest point. Also note that if the distance to a candidate
closest point is less than the Poisson disk radius, it must be the closest point. The largest
empty circle optimization limits the number of neighboring tiles that has to be searched
while locating the closest point. During construction of the Poisson disk tile set, the radius
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(a) (b) (c) (d)

Figure 6.7: Manipulation of the scale s of the 2D object distribution texture basis function.
(a) s = 1. (b) s = 4. (c) s = 16. (d) s = 64. Note that each image is a closeup of the next
one.

of the largest empty circle re is computed. Alternatively, re can be bounded analytically.
This radius determines different regions in the tile, much like the ones in figure 4.3(a). If
the point of evaluation (x, y) is closer to a corner than re, three neighboring tiles have to
be considered. Else, if (x, y) is closer to an edge than re, one neighboring tile needs to be
considered. In all other cases, the closest point must lie within the same tile as (x, y). This
optimization is very effective. For a Poisson disk tile set with N = 32 points per tile, and
α = 0.75, re was approximately 0.16. For about 10% of the evaluations, four tiles had to
be considered. Roughly 40% of the evaluations required two tiles, and for almost 50% of
the evaluations, only a single tile was visited.

Due to these optimizations, the texture basis function can be evaluated very efficiently.
In our implementation, one evaluation of the new texture basis function is as expensive
as 5 evaluations of Perlin’s two-dimensional noise function. This makes our texture basis
function also suited for interactive and real-time applications.

6.6.2.2 Parameters

The placement of the distributed objects can be controlled by four parameters: the scale
s, the size r, the orientation θ and the aspect ratio a.

To decouple the texture basis function as much as possible from the underlying tiled
Poisson disk distribution, a scale parameter s is introduced that controls the density of
objects. A scale of s corresponds to an object density of s objects per unit square. Con-
trolling the scale of the texture basis function is done by scaling the domain over which it
is evaluated. To obtain an object density of s, the tiled Poisson disk distribution is scaled
by a factor of

√
S/N , where N is the number of points per tile. Figure 6.7 shows a pro-

cedural texture for different values of the scale parameter. Note that this scale parameter
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(a) (b) (c) (d)

Figure 6.8: Manipulation of the size r and orientation θ of the 2D object distribution
texture basis function. (a) r = 1, θ = 0. (b) r = 0.75, θ = π/4. (c) r ∼ U(0.5, 1),
θ ∼ N(π/4, π/32). (d) r ∼ N(0.8, 0.05), θ ∼ U(0, 2π). The scale s of all procedural
textures is 36.

(a) (b) (c) (d)

Figure 6.9: Manipulation of the aspect ratio a of the 2D object distribution texture basis
function. These procedural textures show a color encoding of the local coordinate systems.
(a) θ ∼ U(0, 2π), a = 1. (b) θ ∼ U(0, 2π), a = φ (the golden ratio, φ ≈ 1.6180). (c)
θ ∼ N(π/4, π/32), a = φ. (d) θ ∼ N(0, π/32), a ∼ N(2.5, 0.1). The scale s and size r of
all procedural textures is 36 and 0.80 respectively.
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is different from the original scale parameter introduced in [Lagae and Dutré, 2005]. The
new scale parameter is more intuitive and easier to use.

When the texture basis function is evaluated, and the point of evaluation lies within a
disk, it is transformed to the local coordinate system of that disk. These coordinates are
then used to evaluate the procedural object. Manipulating the size r and orientation θ of
the distributed objects is done by scaling the local coordinate system by a factor r ∈ [0, 1],
and rotating it by an angle θ ∈ [0, 2π], before evaluating the procedural object. Figure 6.8
shows a procedural texture for different values of the size and orientation parameters.

By introducing the aspect ratio a, a very general and flexible object distribution function
is obtained. As figure 6.9 shows, distributions of local coordinate systems can be generated
procedurally using only four intuitive parameters. Arbitrary procedural content can be
placed in these coordinate systems.

Object attributes, such as size, orientation and aspect ratio, can be chosen at random
on a per-object basis. However, some care must be taken. Although each object may
have different attributes, all evaluations of the texture basis function involving the same
object must produce the same random values for the attributes. This is why the texture
basis function provides a unique identifier associated with each disk. When used to seed
a random number generator, for example a fast linear congruential generator, random
attributes can be generated correctly on a per-object basis. The unique identifier can also
be used to generate additional object attributes.

6.6.2.3 Examples

The procedural object distribution function extends the range of textures that can be gener-
ated procedurally. Figures 6.10, 6.11 and 6.12 show several procedural textures generated
with the new texture basis function. They demonstrate the procedural object distribu-
tion function for several settings of the scale, size and orientation parameters. Like all
procedural textures, these textures have no fixed resolution and size, and can be easily
parameterized.

A lot of interesting procedural objects can be generated with the so called superformula
[Gielis, 2003; Gielis et al., 2003]. The heart shape of figure 6.10(d) is based on the polar
equation r (θ) = cos 5θ− 5 cos θ. A single petal of a daisy of figure 6.10(e) was created us-
ing an exponentiated cosine lobe. The texture of figure 6.10(f) is inspired by Mondriaan’s
painting Composition with red, yellow and blue. The parameters for the texture basis func-
tion are r = 0.8 and θ ∼ U(0, 2π). The rounded triangle is a supershape with parameters
m = 3, n1 = 6.7, n2 = n3 = 12 and a = b = 1, and the rounded rectangle is a supershape
with parameters m = 4, n1 = n2 = n3 = 12 and a = b = 1. The rounded rectangle of
figure 6.10(g) is a supershape with parameters m = 4, n1 = n2 = n3 = 8 and a = b = 1.
The starfish of figure 6.10(h) consists of two supershapes. The parameters for the outer
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.10: Textures generated with the 2D object distribution texture basis function.
(a) Stars. (b) Flowers. (c) Polka dots. (d) Hearts. (e) Daisies. (f) Mondriaan shapes. (g)
Abstract squares. (h) Starfish.
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Figure 6.11: Dresses worn by the Venus model. The dresses are textured with the proce-
dural textures shown in figure 6.10.
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Figure 6.12: A table with a table cloth on a granite floor. The textures used in this scene
were generated with the 2D procedural object distribution function.

one are m = 5, n1 = 2, n2 = n3 = 7 and a = b = 1, and the parameters for the inner one
are m = 5, n1 = 2, n2 = n3 = 13 and a = b = 1. The particles in the granite of figure 6.12
are random convex hexagons. The color of these particles, the color of the mortar and the
base color were modulated with Perlin noise.

6.6.2.4 Discussion

By modifying the hash function used in the direct stochastic tiling algorithm, seamless
textures can be created. For example, evaluating the hash function with tile coordinates
modulo M results in a periodic tiling with period M , and can be used to produce a
toroidally wrapping texture to cover a cylinder or texture.

The procedural object distribution function is somewhat similar to the cellular texture
basis function of Worley [1996]. However, the cellular texture basis function of Worley
uses feature points randomly scattered in space, and therefore cannot be used to distribute
objects without overlap.

In general, most texture basis functions generate some kind of pseudo-random scalar
value over their domain. From that perspective, the procedural object distribution function
is not a typical texture basis function. However, the ultimate goal of all texture basis
functions is the same: providing a solid basis for generating a large variety of textures.
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(a) (b) (c)

Figure 6.13: Evaluation of the 3D object distribution texture basis function. The texture
basis function returns (a) a boolean value indicating whether the point of evaluation is
within the Poisson disk of the closest feature point, (b) a unique ID identifying the closest
feature point, and (c) the distance to the closest feature point. The coordinates of the
closest feature point (not shown) are also returned.

The procedural object distribution function does just that.

6.6.3 A 3D Procedural Object Distribution Function

Solid textures [Perlin, 1985; Peachy, 1985] are three-dimensional textures that simulate
solid materials. When a solid texture is applied to the surface of an object, the object
appears to be carved out of that material. Most texture basis functions are available in
two as well as three dimensions.

The two-dimensional procedural object distribution function easily extends to three di-
mensions using three-dimensional corner tiles and corner-based Poisson sphere tiles (see
section 4.4). Figure 6.13 shows the outputs of the three-dimensional texture basis function.

The three-dimensional procedural object distribution function is good at modeling natu-
ral materials with particle distributions, such as granite, and abstract man-made patterns.
Figure 6.14 shows several procedural solid textures generated with the texture basis func-
tion. The texture basis function has a small memory footprint and is quite efficient: one
evaluation is about as expensive as 20 evaluations of Perlin’s Noise function. Figure 6.15
shows how we integrated the procedural object distribution functions into a commercial
rendering system.
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(a) (b) (c)

Figure 6.14: The Venus model carved from solid textures generated with the 3D object
distribution texture basis function. (a) Granite. (b) Mondriaan shapes. (c) Polka dots.
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6.6 Procedural Texturing

Figure 6.15: Integration of the object distribution texture basis function in a commercial
rendering system.
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6.7 Conclusion

In this chapter we have discussed applications of Poisson disk distributions in sampling,
non-photorealistic rendering, scientific visualization and procedural modeling. We have
also introduced a procedural object distribution function, a new texture basis function
that extends the range of textures than can be generated procedurally. We have shown
that Poisson disk distributions are a general tool in computer graphics, and that the tile-
based methods for generating Poisson disk distributions introduced in the previous chapters
can be used to improve existing applications but also enable new applications.
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Chapter 7

Conclusion

7.1 Summary

A common problem in the field of computer graphics is the synthesis and storage of complex
signals, such as point distributions or textures. In this work we have presented tile-based
methods to solve this problem. Instead of synthesizing a complex signal directly, the signal
is synthesized over a small set of tiles. Arbitrary large amounts of that signal can then be
generated very efficiently simply by generating a stochastic tiling.

We have introduced corner tiles as an alternative for Wang tiles. In contrast with Wang
tiles, corner tiles also constrain the four diagonally neighboring tiles, and are therefore not
subject to the corner problem. We have revisited the most important applications of Wang
tiles, and we have shown that corner tiles have substantial advantages for each of these
applications.

We have presented direct stochastic tiling algorithms for Wang tiles and corner tiles.
In contrast with scanline stochastic tiling algorithms, direct stochastic tiling algorithms
are capable of evaluating a stochastic tiling locally, without explicitely constructing and
storing the tiling up to that point. We have also presented long-period hash functions for
direct stochastic tiling algorithms.

We have demonstrated tile-based methods for generating Poisson disk distributions and
for synthesizing textures. Tile-based methods not only allow to efficiently generate Poisson
disk distributions or synthesize textures, but also enable new applications such as tile-
based texture synthesis and a procedural object distribution function. This new texture
basis function allows to distribute procedural objects over a procedural background, using
intuitive parameters such as the scale, size and orientation of the objects. We have also
presented an overview of applications of tiled Poisson disk distributions.

The tile-based methods we have presented in this work are a valuable tool for computer
graphics, and help to keep up with the continuously increasing demand for more complexity
and realism in digitally synthesized images.
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Lagae, A. and Dutré, P. An alternative for Wang tiles: Colored edges versus colored
corners. ACM Transactions on Graphics, 25(4):1442–1459, 2006a.

97



Bibliography
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1 Introduction

Tiling theory, the study of shapes that cover the plane with no gaps or overlaps, is an elegant and aesthetic
branch of mathematics. Tilings themselves are an ancient artform; countless historical and contemporary
examples motivate us to explain mathematically what was devised by intuition alone. The area is full of
unsolved problems that are simple to state but complex and mysterious when considered carefully [7].

Elements of tiling theory have already found exciting applications in computer graphics, from art
and ornamental design to sampling and texture synthesis. In computer graphics we might be able to benefit
from many aspects of tiling theory, either by borrowing its theorems to solve problems, or by developing
algorithms for generating novel attractive tilings. However, there is no reference that summarizes the fun-
damentals of tiling theory in a way suitable for computer graphics practitioners. The definitive reference
on the subject, Grünbaum and Shephard’s Tilings and Patterns [16], is wonderful but sadly out of print.
Furthermore, its mathematical focus omits potentially important algorithmic details that would arise in any
practical implementation.

The goal of this document is to present the basics of tiling theory in an accessible way, including
additional details of interest to those seeking to use tilings in computer graphics applications. In some places,
I have taken the license to include a few mathematical details where the math is especially worthwhile or to
clear up common confusions.

This tutorial is necessarily just an introduction. Motivated readers should still consult Tilings and
Patterns for most of the mathematical infrastructure of tiling theory. Readers familiar with tiling theory will
note that I have deliberately omitted a formal discussion of symmetry theory. Although the two subjects
frequently overlap, a considerable amount of tiling theory can be presented with only the rudiments of
symmetry theory. I have also left out a discussion of related results in non-Euclidean geometry, which is a
beautiful subject but arguably of interest only to a small minority in computer graphics.

Most of the text of this document is derived from my doctoral dissertation [20] (available online
at http://www.cgl.uwaterloo.ca/˜csk/phd/), particularly from Sections 2.3–2.5 and 4.2–4.6.
Some additional material was taken from “Computer graphics, geometry, and ornamental design”, a graduate
course in Computer Science that I taught at the University of Waterloo in 2006 (http://www.cgl.
uwaterloo.ca/˜csk/cs798/winter2006/).
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2 Tiling basics

In their indispensible book Tilings and Patterns [16], Grünbaum and Shephard develop an extensive theory
of tilings of the Euclidean plane. They begin from first principles with a nearly universally inclusive defini-
tion of tilings, one that permits so many pathological cases that the resulting objects cannot be meaningfully
studied. They then proceed to layer restrictions upon the basic definition, creating ever smaller families of
tilings that yield to more and more precise analysis and classification.

Many of the early pathological cases discussed by Grünbaum and Shephard would not be amenable
to practical applications in computer graphics. For our purposes, we can jump directly to a more restrictive
definition, corresponding to their notion of “normal tiling” [16, Section 3.2].

Definition (Tiling) A tiling is a countable collection T of tiles {T1, T2, . . .}, such that:
1. Every tile is a closed topological disk.
2. Every point in the plane is contained in at least one tile.
3. The intersection of every two tiles is empty, a point, or a simple curve with endpoints.
4. The tiles are uniformly bounded; that is, there exist u, U > 0 such that every tile

contains a closed ball of radius u and is contained in a closed ball of radius U .

The most natural property associated with tilings, that they cover the plane with no gaps and no
overlaps, is handled by Conditions 2 and 3. Conditions 1 and 4 ensure that the tiles are reasonably well
behaved entities that do not have exotic topological properties or become pathological at infinity.

Observe that Condition 3 does more than prevent tiles from overlapping. It also forbids tilings like
the one shown in Figure 1 from arising, where the boundary between two tiles is disconnected. However, in
return we can identify well-defined tiling vertices, points that are the intersection of three or more tiles, and
tiling edges, the paths that join tiling vertices. The set of tiling vertices and edges can be seen as capturing
all the topological information about the tiling (information about a tile’s neighbours, the tiles adjacent to a
vertex, and so on). We may also use the term tiling polygon to refer to the (not necessarily simple) polygon
joining the tiling vertices that lie on a single tile. These terms are illustrated in Figure 2.

Condition 3 might seem overly restrictive, in that a tiling like that of Figure 1 could arise naturally
in computer graphics applications. Indeed, Grünbaum later indicated that the condition was included in the
definition of normal tilings because he and Shephard felt they would have needed to assume it in many later
parts of their theory (due to its simplifying effect on topological structure). An alternate development could
leave Condition 3 out of normality and introduce it as needed.

In any practical application, we will necessarily operate on finite collections of tiles. A patch of tiles
is a finite set of tiles whose union is a topological disk. That is, a patch is a contiguous block of tiles with
no internal holes. Of course, no drawing of a tiling shows more than a finite patch; we make the the implicit
assumption that the context will provide the means of extending the patch to cover the plane.

3 Tilings with congruent tiles

In many of the tilings we see every day on walls and streets, the tiles all have the same shape. If every tile
in a tiling is congruent to some shape T (where the congruence may incorporate a reflection), we say that
the tiling is monohedral, and that T is the prototile of the tiling. More generally, a k-hedral tiling is one in
which every tile is congruent to one of k different prototiles. We also use the terms dihedral, trihedral and
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Figure 1: A set of shapes which do not constitute a tiling according to the definition set out in the text,
because some tiles intersect in multiple disjoint curves. The intersection between the two tiles outlined in
bold is shown in red; it consists of two disjoint line segments.

Figure 2: Basic topological features of a tiling. The tile labeled A is outlined in bold and its tiling vertices
are marked with dots. Each of the tiling edges on its boundary is also labeled. Tile B’s tiling polygon is
shown with dashed lines.
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Figure 3: A demonstration of matching conditions. A prototile set consisting of a square and a regular
octagon admits the tiling shown in the centre, but many other tilings as well, including the regular tiling by
squares. The prototiles on the right are modified with simple geometric matching conditions. They admit
only (the obvious analogue of) the square-octagon tiling.

multihedral for the cases k = 2, k = 3 and k > 1, respectively. If P is a set of prototiles, any tiling that can
be formed exclusively from congruent copies of members of P is said to be admitted by P .

Note that a tiling admitted by a set of prototiles need not use all of them (and thus k-hedrality is a
property of a tiling, and not of a prototile set). In some cases where we wish to force every member of a
prototile set to appear at least once in a tiling, the prototiles might require some modification. These modifi-
cations typically take the form of matching conditions: additional constraints placed on the vertices or edges
of prototiles that restrict which tiles may be placed next to them. For example, prototile edges might be
given symbolic labels, together with a rule indicating which pairs of labels are compatible. We then ask that
in any tiling by these prototiles, two tiles that share an edge have compatible labels on that edge. Frequently,
matching conditions of this sort can also be encoded geometrically as indentations and protusions on pro-
totile edges. Once the matching conditions have been used to enforce a particular arrangement of tiles, they
are often omitted from the final drawing of the tiling.

Given a finite set of shapes, we might wonder whether they are in fact a prototile set—that is, do the
given shapes admit any tilings at all? In full generality this problem is known to be formally undecidable
(see Section 8.2), and so we must speculate that it could be arbitrarily difficult to prove or disprove the fact
for any given set of shapes. However, we do have one useful tool at our disposal [16, Section 3.8]:

Theorem (The Extension Theorem) Let P be a finite set of shapes, each a closed topological
disk. If, for any r > 0, there exists a patch of tiles from P that contains a disk of radius r, then
P admits a tiling of the plane.

The Extension Theorem offers us a kind of generic limiting process: if we can construct arbirarily
large finite patches of tiles, then we can go off to infinity in all directions. Naturally, any one prototile set
might come equipped with a specialized argument that yields the tilings it admits; this theorem can take the
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place of many of those arguments. For example, it can almost always be invoked to justify the construction
of substitution tilings (see Section 8.1).

4 Symmetry

In the previous section, I used the term “congruence” to refer informally to a transformation in the plane that
does not distort shape or size. In Euclidean geometry, we can define congruences as rigid motions: transfor-
mations of the plane that preserve distance. Every Euclidean rigid motion belongs to one of five categories:
the identity (or “do nothing”) transformation, translations, rotations, reflections, and glide reflections (a
reflection followed by a translation parallel to the axis of reflection).

For every tiling T there exists a set Σ(T ) consisting of those rigid motions for which T is indis-
tinguishable from its image under the rigid motion. If we think of the tiling as drawn on a piece of paper
with another copy superimposed on a transparent overlay, any movement of the overlay that causes the two
drawings to line up belongs in this set. The members of Σ(T ) are known as the symmetries of T . Because
a tiling’s symmetries have a natural group structure under composition of rigid motions, Σ(T ) is known as
the symmetry group of T .

Symmetry theory is a rich and elegant branch of mathematics that overlaps significantly with tiling
theory. However, for the purposes of these notes I will avoid an extensive discussion of the subject. For the
most part, the topics discussed here can be understood with only basic, intuitive knowledge of symmetry
theory. Interested readers should consult the introductory texts by Farmer [11] and Weyl [32], references on
symmetry in art and ornament [29, 31], or the new treatment by Conway et al. [5].

5 Periodic tilings

We are particularly interested in the case where a tiling’s symmetry group contains two non-parallel trans-
lations, which we will represent by vectors ~S1 and ~S2 (which are taken to be as short as possible). In such
a case, any integer linear combination n1

~S1 + n2
~S2 represents a translation that brings the tiling into coin-

cidence with itself. We refer to such a tiling as periodic. Every periodic tiling belongs to one of 17 distinct
symmetry groups known as wallpaper groups.

Periodic tilings are very well-behaved, and easy to represent and render in computer graphics appli-
cations. Let T be a periodic tiling with minimal translational symmetries ~S1 and ~S2. Because T repeats
at every integer linear combination of the two translations, we can choose a maximal subset of the plane
containing no redundant information, and draw the tiling by stamping out copies of this subset. A subset of
this kind that is also a topological disk will be called a translational unit of the tiling. A periodic tiling can
be represented using any translational unit, together with ~S1 and ~S2.

A periodic tiling has many possible translational units. The intersection of the tiling with any paral-
lelogram with sides ~S1 and ~S2 is an example. Note that there is always an affine transformation that maps
this parallelogram to a square. This transformation can be applied to the drawing inside the translational
unit to allow it to fit comfortably inside a square texture in graphics memory. By applying the same transfor-
mation to texture coordinates during lookup, it becomes easy to render arbitrary periodic tilings via texture
mapping.

It is also always possible to identify finite patches of tiles that act as translational units (meaning that
every periodic tiling is k-hedral for some finite k). These patches will each have the same overall area as the
parallelograms above. Furthermore, each prototile can occur in only finitely many orientations and reflected
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Figure 4: A trihedral periodic tiling. An example of a parallelogram-shaped translational unit is outlined
with a dashed line. Beneath it, an alternate translational unit made from a patch of tiles is shown. The
S-shaped tile occurs in one direct and one reflected aspect, the 1×3 rectangle occurs in two aspects, and the
1× 2 rectangle occurs in a single aspect.

orientations. We refer to these orientations collectively as the prototile’s aspects, and distinguish the direct
aspects from the reflected aspects when necessary. Figure 4 shows a periodic tiling for which the various
prototiles occur in different numbers of aspects.

The patch-based representation of a periodic tiling is useful when tiles must be drawn explicitly via
a subroutine rather than sampled from a texture. However, we must then address the question of replication:
given a region R of the plane, for which integer pairs (n1, n2) should we draw the tiles translated by n1

~S1 +
n2
~S2 in order to cover R completely with tiles? We can arrive at a suitable approximation of the solution

by re-representing R in a basis formed by ~S1 and ~S2. In this basis translational units are unit squares and
the units to draw are precisely those squares that intersect R. In other words, we need only rasterize the
representation of R in this basis; the coordinates of the interior pixels are precisely the pairs (n1, n2) above.
See Figure 5 for a visualization. This method is only truly correct when the patch is itself a parallelogram;
in practice, it is usually necessary to add one or more rings of additional translational units around the
rasterized pixels of R.

6 Tilings by polygons

In most cases we will be interested in tilings by polygons. All of the important features of tilings we will
encounter in this document are adequately explained in terms of polygonal tilings. Even when we wish to
render tiles with curves edges, those edges will likely be represented as piecewise-linear paths at some stage
in the rendering pipeline.

In a polygonal tiling there can be some confusion between the tiling vertices and edges as described
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Figure 5: The replication algorithm for periodic tilings. The left image shows the tiling to be replicated,
with a superimposed black square representing the desired viewing region. The red parallelograms delineate
translational units of the tiling, based on vectors ~S1 and ~S2. In the middle image, the whole diagram is shown
in a coordinate system where ~S1 and ~S2 are an orthonormal basis. In this coordinate system, translational
units are lattice squares, and it is easy to choose the squares that overlap the viewing region. The chosen
units are drawn in the untransformed image on the right. This algorithm can leave part of the viewing region
unfilled (as seen on the right).

A

B

C

Figure 6: The features of a polygonal tiling. For the tile highlighted in blue, A is a shape vertex but not a
tiling vertex, B is a tiling vertex but not a shape vertex, and C is both a tiling vertex and a shape vertex.
Because the tiling vertices and shape vertices do not coincide, the tiling is not edge-to-edge. The tiling
polygon is shown as a dashed red outline.
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in Section 2 above and the vertices and edges of individual polygons. To avoid confusion, we refer to the
latter features when necessary as shape vertices and shape edges. Shape vertices and edges are properties of
tiles in isolation; tiling vertices and edges are topological properties of the assembled tiling. Although the
features of the tiling occupy the same positions as the features of the tiles, they may break down differently,
as shown in Figure 6. When the two sets of features coincide (that is, when the tiling vertices are precisely
the shape vertices), the tiling is called edge-to-edge.

6.1 Regular and uniform tilings

A regular tiling is an edge-to-edge monohedral tiling of the plane by congruent regular polygons. In the
Euclidean plane, an easy calculation shows that the only regular tilings are the familiar ones by squares,
equilateral triangles, and regular hexagons.

We may then ask about edge-to-edge tilings of the plane using two or more different regular polygons
as prototiles. In general, we can say very little about an arbitrary tiling of this type. To get more predictable
behaviour, we further require that the vertices be indistinguishable, in the sense that any vertex can be
mapped onto any other via a rigid motion that is also a symmetry of the tiling as a whole. Given such a
restriction, we can describe the tiling using a vertex symbol. A vertex symbol is a sequence p1.p2 . . . pn that
enumerates, in order, the regular polygons encountered around every vertex in the tiling. The tilings that can
be described using vertex symbols in this way are called uniform tilings.

In the Euclidean plane, we can enumerate all legal vertex symbols (in the sense that the interior
angles around the vertex sum to 360 degrees) and determine which of them can be extended to legal uniform
tilings of the plane [16, Section 2.1]. The result is a set of eleven distinct periodic tilings, also known as the
Archimedean tilings. We identify them by placing their vertex symbols in parentheses. Among the uniform
tilings the regular tilings are the ones whose vertex symbols are of the form pq: (44) for squares, (36) for
equilateral triangles, and (63) for regular hexagons. (In a vertex symbol, we abbreviate blocks of repeated
values using exponentiation.) Figure 7 shows the eleven Archimedean tilings. These tilings are useful for
decorative and artistic purposes, and lead naturally to further exploration of tilings formed exclusively from
regular or star-shaped polygons.

6.2 Laves tilings

Every Archimedean tiling has a well-defined geometric dual, obtained by replacing every n-sided tile by an
n-valent vertex and vice versa. These dual tilings are monohedral and edge-to-edge, and have the property
that every tiling vertex is regular: the edges leaving the vertex are evenly spaced around it. They are called
the Laves tilings, and they are given labels analogous to their Archimedean duals. The Laves tilings are
depicted in Figure 8. They will prove useful in the next section, where they serve as a set of “defaults” upon
which to describe the more elaborate structure of the isohedral tilings.

7 Isohedral tilings

Let T be a monohedral tiling. For two tiles T1 and T2 in T , there will be at least one rigid motion of the
plane that maps T1 to T2. A special case occurs when the rigid motion is also a symmetry of the tiling. In
this case, when T1 and T2 are brought into correspondence, the rest of the tiling will map onto itself as well.
We then say that the two tiles are transitively equivalent.
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(36) (44) (63) (34.6)

(33.42) (32.4.3.4) (3.4.6.4) (3.6.3.6)

(3.122) (4.6.12) (4.8.8)

Figure 7: The eleven uniform Euclidean tilings, also known as Archimedean tilings. The tiling (34.6) occurs
in left-handed and right-handed forms.

Transitive equivalence is an equivalence relation that partitions the tiles into transitivity classes.
When a tiling has only one transitivity class, we call the tiling isohedral. More generally, a k-isohedral
tiling has k transitivity classes (and may be m-hedral for any m ≤ k). An isohedral tiling is one in which
a single prototile can cover the entire plane through repeated application of rigid motions from the tiling’s
symmetry group. In an isohedral tiling, there is effectively no way to tell any tile from any other, since the
“local views” outward from any two tiles are identical.

Two tiles in the same transitivity class must obviously be congruent, but the converse need not be
true. Figure 9 shows a monohedral tiling with two transitivity classes. The two classes of tiles can be
distinguished by the arrangement of a tile’s neighbours around it. This example also demonstrates that
being k-isohedral is a property of a tiling, not of its prototiles. The underlying shape used as a prototile
in Figure 9 also admits an isohedral tiling. We therefore define a k-anisohedral set of prototiles as a set
of shapes that admits a k-isohedral tiling, but no m-isohedral tiling for m < k. This new definition is
truly tied to the prototiles themselves, and places a lower bound on the complexity of the tilings they admit.
In 1900, Hilbert seemed to take it for granted that no anisohedral prototile can exist [16, Section 9.6]. In
1935, however, Heesch demonstrated an anisohedral prototile [17], reproduced in Figure 10. Since then
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[36] [44] [63] [34.6]

[33.42] [32.4.3.4] [3.4.6.4] [3.6.3.6]

[3.122] [4.6.12] [4.8.8]

Figure 8: The eleven Laves tilings. Each one is the dual of a corresponding Archimedean tiling. The tiling
[34.6] occurs in left-handed and right-handed forms.

many more examples have been found, and the search for k-anisohedral prototiles remains an active area
of research in computational tiling theory [3]. This distinction between k-isohedral and k-anisohedral is a
subtle one, and of greater relevance to tiling theory than to computer graphics. However, I wish to emphasize
it here because it is important not to confuse properties of tilings with properties of prototiles, particularly
in the upcoming section on nonperiodic tilings.

Qualitatively, the isohedral tilings play a valuable role in art and ornamental design. They corre-
spond to an intuitive notion of “regularity” in monohedral tilings: every tile plays an equivalent role relative
to the whole. Despite that constraint, they still permit a wide range of expression. Decorative tilings de-
veloped without explicit mathematical knowledge are frequently isohedral. M.C. Escher developed his own
“layman’s theory” for his regular divisions of the plane [27]; each of his tiling types is equivalent to an
isohedral type. This flexibility, combined with the efficient data structures and algorithms presented below,
permit the isohedral tilings to be used effectively in a variety of computer graphics applications. In this sec-
tion, I present an extended discussion of the mathematical structure of isohedral tilings and computational
techniques for them.
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Figure 9: The “cheese sandwich tiling”, an example of a monohedral tiling that is not isohedral. The tiles
fall into two distinct transitivity classes: the “cheese” tiles and “bread” tiles, examples of which are labeled
respectively A and B in the tiling. Any two bread tiles correspond via a symmetry, as do any two cheese
tiles. But there is no symmetry of the tiling that can make tile A correspond with tile B. This tiling is
therefore 2-isohedral.

Figure 10: Heesch’s anisohedral prototile. No tiling that can be assembled from this shape will be isohedral.
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IH41 IH43 IH44

IH61IH55 IH71

Figure 11: An isohedral tiling type imposes a set of adjacency constraints on the tiling edges of a tile. When
the bottom edge of the square deforms into the dashed line, the other edges must respond in some way to
allow the new shape to tile. The six resulting prototiles tiles here are from six different isohedral types, and
show six of the possible responses to the deformation.

7.1 Isohedral tiling types

By definition, an isohedral tiling is bound by a set of geometric constraints: congruences between tiles must
be symmetries of the tiling. Grünbaum and Shephard show that those geometric constraints can be equated
with a set of combinatorial constraints expressing the adjacency relationships a tile maintains across its
edges with its neighbours. They prove that the constraints yield a division of the isohedral tilings into
precisely 93 distinct types or families, referred to individually as IH1, . . . , IH93 and collectively as IH [16,
Section 6.2]. Each family encodes information about how a tile’s shape is constrained by the adjacencies it
is forced to maintain with its neighbours. In 12 of these types, the adjacency relationships can be realized
only by placing markings on tiles that indicate their orientations. We will primarily be concerned with
the other 81 types, where the combinatorial structure of the tiling can be expressed geometrically through
deformations of the tiling edges. A change to a tiling edge is counterbalanced by deformations in other
edges; which edges respond and in what way is dependent on the tiling type, as shown in Figure 11. In what
follows, we review the classification and notation used with the isohedral tilings.

The combinatorial structure of an isohedral tiling T is an infinite graph whose vertices are the tiling
vertices of T , and where two vertices are connected by an edge if the two corresponding tiling vertices are
connected by a tiling edge. Two isohedral tilings can then be said to be combinatorially equivalent when
their combinatorial structures are isomorphic. Combinatorial equivalence partitions the isohedral tilings
into eleven classes, referred to as combinatorial types, or more commonly as topological types.1 Each
topological type has one of the eleven Laves tilings as a distinguished representative, and we name the type
using the vertex symbol of the corresponding Laves tiling. For example, Figure 12 shows an isohedral tiling
of type IH16. We can see that every tile has six tiling vertices, all of valence three, meaning that IH16 is of
topological type 36.

Every isohedral tiling is both monohedral and periodic, meaning that its behaviour over the entire
plane can be summarized by specifying the aspects of the single prototile that make up a translational unit,
and two linearly-independent translation vectors that replicate that unit over the plane. IH16 has three
aspects, shown in varying shades of blue in Figure 12. These three tiles comprise one possible translational

1The use of the term “topological type” would seem to suggest that the two tilings are topologically, and not combinatorially
equivalent. In fact, for normal tilings the two forms of equivalence are identical [16, Section 4.1] and so both terms are valid.
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T1

T2

Figure 12: An example of an isohedral tiling of type IH16. A single translational unit of the tiling is shown
through the two translation vectors ~T1 and ~T2 and the three coloured aspects.
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Figure 13: Five steps in the derivation of an isohedral tiling’s incidence symbol.

unit with translation vectors ~T1 and ~T2.
The adjacency constraints between the tiling edges of a tile are summarized by an incidence symbol.

Given a rendering of an isohedral tiling, the incidence symbol can be derived in a straightforward manner.
Figure 13 shows five steps in the derivation of an incidence symbol for our sample tiling. To obtain

the first part of the incidence symbol, we pick an arbitrary tiling edge as a starting point, assign that edge a
single-letter name, and draw an arrow pointing counterclockwise around the tile (Step 1). Then, we copy the
edge’s label to all other edges of the tile related to it through a symmetry of the tiling (Step 2). Should the
edge get mapped to itself with a reversal of direction, it becomes undirected and is given a double-headed
arrow. We then proceed counterclockwise around the tile to the next unlabeled edge (if there is one) and
repeat the process (Step 3). The first half of the symbol is obtained by reading off the assigned edge names
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Figure 14: An isohedral tiling of type IH30, shown uncoloured on the left, and with perfect colourings using
two and three colours in the middle and on the right.

(Step 4). A directed edge is superscripted with a sign indicating the agreement of its arrow with the traversal
direction. Here, a plus sign is used for a counterclockwise arrow and a minus sign for a clockwise arrow.

The second half of an incidence symbol records how, for each different label, a tiling edge with that
label is related to the corresponding edge of the tile adjacent to it. To derive this part of the symbol, we copy
the labeling of the tile to its neighbours (Step 5). Then, for each unique edge letter assigned in the first step,
we write down the edge letter adjacent to it in the tiling. If the original edge was directed, we also write
down a plus or minus sign, depending on whether edge direction is respectively preserved or reversed across
the edge. That is, a plus sign is used if the arrows on the two sides of a tiling edge are pointing in opposite
directions, and a minus sign is used otherwise. For the running example, the incidence symbol turns out to
be [a+b+c+c−b−a−; a−c+b+]. Note that the incidence symbol is not unique; edges can be renamed and a
different starting point can be chosen. But it can easily be checked whether two incidence symbols refer to
the same isohedral type.

Every isohedral type is fully described in terms of a topological type and an incidence symbol.
Enumerating all possible topological types and incidence symbols and eliminating the ones that do not result
in valid tilings or that are trivial renamings of other symbols leads to the classification given by Grünbaum
and Shephard.

7.2 Coloured tilings and transitivity

Up to now, we have ignored the possibility of colouring tiles in a tiling. To understand the structure of a
given tiling, we might imagine colour as being superficial, to be disregarded when deciding whether two
tiles are “the same.” It is also possible to take colour into account, adding a layer of richness and complexity
to a tiling. The colouring can have a great deal of structure, particularly when it acts compatibly with the
symmetry-theoretic properties of the tiling [6]. Grünbaum and Shephard provide an extensive account of the
relationship between colouring and tilings [16, Chapter 8]. I briefly restate two important definitions here.
In Section 7.4.1 I will describe a simple representation of colourings for isohedral tilings.

A k-colouring of a tiling is a function c from tiles to the set {1, . . . , k} that assigns an abstract
“colour” c(T ) to each tile T (with the assumption that every colour is used at least once in the tiling). A
colouring is a perfect colouring if every symmetry of the tiling acts as a permutation of the colours. That is,
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IH1 IH64 IH58 IH17

Figure 15: Examples (from left to right) of J, U, S and I edges. In each case, the tiling edge with the given
shape is highlighted in red.

if σ is some rigid motion that maps the tiling onto itself, then two tiles have the same colour if and only if
their images under σ have the same colour. Figure 14 shows two different perfect colourings of an isohedral
tiling.

Just as the isohedral tilings formalize an intuitive notion of regularity, perfect colourings are a natural
way to colour tiles in an orderly way. A perfect colouring of an isohedral tiling operates compatibly with
the tiling’s symmetries.

7.3 Parameterizing the isohedral tilings

Within a single isohedral type, different prototiles are distinguished from each other by their shapes, deter-
mined by the positions of the tiling vertices and the shapes of the curves that join them. In order to move
from the combinatorial description of isohedral tilings to a geometric one, we must understand how inci-
dence symbols dictate the range of possible prototile shapes for a given isohedral type. We parameterize the
space of isohedral tilings by giving, for each type, an edge shape parameterization and a tiling vertex param-
eterization. The former encodes the minimal non-redundant geometric information sufficient to reconstruct
the tiling edges. The latter determines the legal configurations of tiling vertices.

7.3.1 Edge shape parameterization

The constraints on the shapes of tiling edges in an isohedral tiling are simple to describe. Although the
underlying choice of how to represent a curve is left open, the tiling’s symmetries imply a great reduction in
the tiling edges’ degrees of freedom. These constraints can be extracted directly from the tiling’s incidence
symbol. We enumerate the four cases for the structure of a tiling edge. For each case, Figure 15 shows a
tiling with such an edge.

If some directed edge is adjacent to itself without a flip, then a tile’s neighbour across that edge is
adjacent through a half-turn. This rotation forces the edge shape to itself be symmetric through a half-turn
about its centre. We call such an edge an S edge as a visual mnemonic. Only half of an S edge is free; the
other half must complete the rotational symmetry. In an incidence symbol, we can identify an S edge as an
edge name x that is adjacent to x+.

An undirected edge must look the same starting from either end, meaning it must have a line of
mirror symmetry through its midpoint. If an edge name x appears in an incidence symbol without a sign,
and is adjacent to some other edge name y 6= x, then x is free to take on any curve with this bilateral
symmetry. We call it a U edge. Again, only half of a U edge is free.
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If an undirected edge is adjacent to itself, or if a directed edge is adjacent to itself with a change in
sign, that edge must have both S symmetry and U symmetry. The only shape that has both is a straight line,
leading us to call such an edge an I edge.

The remaining case is when a directed edge is adjacent to some other directed edge. Such an edge is
free to take on any shape, and we call it a J edge.

Note also that if an edge x is adjacent to an edge y, then x and y have the same shape (even though
they have different names). In this case, we need only represent one tiling edge, since the other is entirely
constrained to it. Thus, referring back to the derivation presented in Figure 13, the tiling edges of IH16
can be summarized by one curve: the shape of the edge labeled b. Edges labeled a are I edges and have no
degrees of freedom, and edges labeled c are constrained to b.

7.3.2 Tiling vertex parameterization

Like the shape vertices, tiling vertices cannot move entirely independently of each other. Moving one tiling
vertex forces the others to move to preserve tileability. The exact nature of this movement depends on the
tiling type in question. The incidence symbol for a tiling type implies a set of constraints on the tiling
polygon’s edge lengths and interior angles. Any tile of that type will have a tiling polygon that obeys those
constraints.

In a constructive model of isohedral tilings, it is not sufficient merely to recognize the constraints
on the shape vertices: we need a way to explicitly navigate the space of legal tiling polygons. This sec-
tion provides explicit parameterizations of the tiling vertex configurations for IH. They can be derived by
determining angle and length constraints from the incidence symbols and parameterizing the unconstrained
degrees of freedom. In some cases, parameterizations are shared between tiling types: nine tiling types have
squares as tiling polygons (implying a parameterization with zero parameters), and seven have parallelo-
grams (implying two parameters). In all, the 93 isohedral types require 45 different parameterizations.

Diagrams of the tiling vertex parameterization are given in Figures 16 and 17. Figure 18 shows
example tilings of type IH16 that can result from different values of its single free parameter.

These parameterizations can be seen as an elaboration of those provided by Heesch and Kienzle for
the 28 Heesch tiling types [18]. Each Heesch type is identical to one of the isohedral types, and for those
types the parameterizations coincide. The remaining isohedral types have parameterizations where degrees
of freedom are coalesced to yield more symmetric tiling polygons.

7.4 Data structures and algorithms for IH

In this section, I provide more details on how the edge shape and tiling vertex parameterizations can be
developed into a concrete implementation. I discuss Tactile, a library I developed to represent, manipulate
and render isohedral tilings. At the top level, the library provides two classes: IsohedralTemplate, an
abstraction of an isohedral tiling type, and IsohedralTile, an abstraction of a specific prototile. The
template contains information about a tiling type in general, information that doesn’t change from instance
to instance. The prototile refers to a template and contains the information needed to determine the locations,
shapes, and colours of tiles. I describe each of these components in detail, and then show how they can be
used to support efficient editing and viewing.
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Figure 16: The complete set of tiling vertex parameterizations for the isohedral tilings. In each tile, the edge
marked with a red line is the first edge in the tiling type’s incidence symbol. When that first edge is directed,
the red line has an arrowhead. Labelled dotted lines represent parameter values, and are horizontal or vertical
(with the exception of one guide line in the diagram for IH30). Since the diagrams are scale independent,
distances that do not depend on parameters can be taken to have unit length. Tile edges cut with the same
number of short lines have the same length, and edges cut with chevrons are additionally parallel. A single
arc, a small square, and a double arc at vertices represent 60◦, 90◦, and 120◦ angles, respectively.
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Figure 17: The complete set of tiling vertex parameterizations for the isohedral tilings (continued).

7.4.1 Isohedral templates

The templates are derived once ahead of time, and stored in a master file (isohedral.ih) designed to be
computer readable. This file has been publicly available on the internet since 2000, and has been extensively
debugged in that time. A copy can be downloaded from http://www.cgl.uwaterloo.ca/˜csk/
projects/escherization/.

The template file contains one record for each isohedral type. A sample of such a record appears
in Figure 19. It reproduces some of the information tabulated by Grünbaum and Shephard, such as the
topological type (Line 1), the incidence symbol (Line 2), and the number of aspects (Line 4). It also gives
a default colouring (Line 3). The remaining information, the rules section (Lines 5–9), is a symbolic
description of how to compute the tiling’s translation vectors and transformation matrices for its aspects.
We execute the symbolic description and cache the resulting transforms in an IsohedralTile to permit
efficient rendering of tilings. In what follows, I provide more details about the colouring field and
rules section.

The colouring field provides a default rule for assigning colours to tiles (colourings of tilings are
described in Section 7.2). An IsohedralTile may override this default with its own colouring. Here
we follow Escher’s lead and aim to provide perfect colourings. Recall that in a perfect colouring, every
symmetry of the tiling is a permutation of the set of colours.

The actions of all the symmetries can be summarized by giving the permutations associated with
the two translation vectors of the tiling and an assignment of colours to the aspects in a single translational
unit. Successive translations will permute this default assignment appropriately. The colouring field in the
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Figure 18: Some examples of IH16 with different values for the single parameter in its tiling vertex param-
eterization.

template IH16 {
1 topology 3ˆ6
2 symbol [a+b+c+c-b-a-;a-c+b+]
3 colouring (1 2 3) (1 2 3) (1 2 3)
4 aspects 3
5 rules
6 aspect 2 1
7 aspect 3 6
8 translate T1 1,5
9 translate T2 1,3

}

Figure 19: The tiling type information stored for IH16

template gives, in order, the number of colours, the assignment of colours to aspects in a translational unit,
and the permutations of the assignment associated with the two translation vectors. A permutation ρ of the
numbers {1, . . . , n} is very simply represented as a sequence (s1 . . . sn), with ρ(k) = sk.

In particular, consider a tiling with translation vectors
−→
T1 and

−→
T2 and their associated colour per-

mutations ρ1 and ρ2. Let the tiling have n aspects, with the default colours in a translational unit given as
(c1, . . . , cn). Then aspect k in the translational unit located at a

−→
T1 + b

−→
T2 will have the colour ρb

2(ρa
1(ck)).

This encoding can in fact express a superset of the perfect colourings, but it is easy to check empirically
whether a given colouring is perfect.

The rules section gives a collection of rules that, when applied to a tiling polygon, yield rigid
motions (in the form of transformation matrices) for all the aspects of a translational unit, as well as for the
two translation vectors. These transforms cannot be computed ahead of time, as they depend on the tiling
polygon. I speed up the drawing of the tiling by storing these transform matrices in the IsohedralTile
instance, and recomputing them only when the tiling vertices move.

Every tile in an isohedral tiling is surrounded in a consistent way by its neighbours, and so for every
tiling edge there is a well-defined rigid motion that carries the tile on one side of that edge to the tile on
the other side. The motion will either be a half-turn around the edge’s center (in the case of an S edge),
a reflection across the edge (in the case of an I edge), a glide reflection (in the case of some J edges) or a
translation. The kind of transform that applies can be determined from the tiling type’s incidence symbol,
and the numeric values in the transform matrix depend on the positions of the tiling vertices that delimit
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Figure 20: A demonstration of how the colouring information in the isohedral template (for IH21 in this
case) is used to apply colours to tiles. The translational units (each containing six aspects) are outlined in
bold. There are three symbolic colours, {1, 2, 3}, and they are associated respectively with gray, pink, and
blue. On the left, the permutations for the two translation vectors are indicated by showing with arrows
the mapping from original to permuted colours; the permutation’s textual desciption can be read off of the
bottom row of this mapping. On the right, the permutations are applied when moving between translational
units. The colouring for this tiling can be read from the diagram as colouring 3 (1 2 1 2 1 2)
(3 1 2) (2 3 1).

the edge. We call such a rigid motion a “hop” across a tile edge. In a tile with n edges, we can label the
hops unambiguously as H1, . . . ,Hn. Each rule encodes a sequence of hops that, when chained together,
transform a tile to a new aspect or to the same aspect in a neighbouring translational unit.

Aspect 1 is always given the identity matrix as its transform, and the other aspect transforms are
computed from it. In the example, the first rule (Line 6) says that the transform for creating aspect 2 from
the first aspect is the hop across edge 1 of the first aspect — that is, a reflection across the first edge, labelled
a+, in the incidence symbol. We will store H1 as the aspect’s transform matrix. Similarly, the second rule
(Line 7) says that the transform for creating aspect 3 from the first aspect is H6, a reflection about the edge
labelled a-.

The two translation vectors are specified in the same way. Here, we can obtain translation vector
−→
T1

in two hops, first from the first aspect across edge 1 into some neighbouring tile, and from that tile across
edge 5. The resulting transform matrix would beH1H5. Note, however, that this matrix does not necessarily
represent a translation, and so we cannot just take

−→
T1 to be the translational component of that matrix. The

problem is that the matrix may contain internal symmetries of the tile shape, which were accumulated when
composing the hops together. Fortunately, we can still extract the translation in a simple way as the vector
joining the centroids of the transformed and untransformed tiling vertices. This calculation works because
the centroid is independent of internal tile symmetries, operations that merely permute the vertices.

In general, a rule may specify any number of hops to get from the first aspect to another aspect or
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Figure 21: A visualization of how aspect transforms and translation vectors are computed for IH16, using
the information in the rules section of the isohedral template (see Figure 19). In the order that they are
referenced in the template, the aspects are coloured blue, pink, and gray. The edges are numbered as they are
given in the incidence symbol. Each red arrow represents a single hop, a rigid motion that brings a tile into
coincidence with one of its neighbours. The end of every sequence of hops is labeled with the corresponding
rule from the template for IH16 (see Figure 19).

a translation. Each step in the rule names an edge of the tile, and the transform is computed by composing
together the associated hops.

One piece of per-tiling-type information missing from the template file is the set of tiling vertex
parameterizations. When developing this library, I described the parameterizations in code rather than in
a table-driven format. Each is expressed as a C++ class. The file params.py, available at the same
location as isohedral.ih, provides equivalent Python code. An example from params.py is given
in Figure 22. With hindsight, it is clear that the coordinates of the tiling vertices are all linear functions of
the parameters, as are the entries in the hop transformation matrices. In a revised implementation, I would
include coefficients for all these linear functions directly in isohedral.ih.

This representation of isohedral tilings suffers from a flaw related to degenerate edges in the tiling
polygon. If two consecutive tiling vertices are made to coincide, then the hop across their shared edge is
undefined, and any rules that use the degenerate edge give invalid transforms. In a purely mathematical
treatment of the subject there is no problem, because there is no such thing as a degenerate edge in the tiling
polygon. As two adjacent tiling vertices merge, they fuse into a single vertex and the tiling as a whole slips
into a different (but related) isohedral type. The representation given here can manipulate non-degenerate
tiles without any difficulty, but it cannot handle these discontinuous transitions.
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def ih16_params( v0 ):
m = 0.5 / math.sqrt( 3.0 )
T1 = match( Point( 0.5, v0 ), Point( 1, 0 ) )
T2 = match( Point( 0, 0 ), Point( 0.5, v0 ) )

return (
Point( 0.5, -m ),
Point( 1, 0 ),
T1 * Point( 0.5, m ),
Point( 0.5, v0 ),
T2 * Point( 0.5, m ),
Point( 0, 0 ) )

Figure 22: Sample Python code implementing the tiling vertex parameterization for IH16. When called
with a single real parameter v0, the function returns a tiling polygon. The function match takes two points
as arguments and returns a direct rigid motion that maps the unit interval onto the line segment given by the
two points.

7.4.2 Isohedral prototiles

All the information related to a specific isohedral prototile is stored in the IsohedralTile class. A great
deal of data is stored in every IsohedralTile:

• Geometry information includes the parameters for the tiling vertex parameterization, a cached tiling
polygon, and the cached aspect transforms and translation vectors derived from the rules section of
the IsohedralTemplate.

• Shape information contains polygonal paths that make up the non-redundant portion of the tile’s
outline (called the “fundamental edge shapes”). The shape information also includes a cached copy
of the tile’s outline for fast drawing.

• Colouring information contains a colouring (like the one that appears in isohedral.ih) and
actual RGB triples for each symbolic colour.

A callback mechanism ensures that when part of the tile’s description changes (for example, when a
vertex parameter is adjusted), all cached information that depends on it is automatically updated.

Each fundamental edge shape is an array of points representing a path starting at (0, 0) and ending
at (1, 0). Any path description can be used here. My implementation supports piecewise-linear paths and
subdivision curves.

The shape information in the prototile contains a hierarchical model of rigid motions whose leaves
are the fundamental edge shapes. The model makes multiple references to fundamental edges to express the
redundancy inherent in the tile’s outline. To rebuild the tile shape, we apply the tiling vertex parameterization
to obtain the positions of the tiling vertices and use the hierarchical model to construct edge shapes between
them.

There are at most three levels in the hierarchical model between a fundamental edge shape and a
point on the outline of the tile. The first level takes into account the symmetries of U and S edges. Half of
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the U or S edge comes directly from the fundamental edge. The other half is derived from the first half as
needed through rotation or reflection. J edges are passed unmodified through this level, and since I edges
are immutable, all tiles share a single system-wide copy of an I edge.

At the next level up, we recognize that edges with different names in the incidence symbol may still
have related shapes. In IH16, for example, the edge named b+ is adjacent to c+, forcing the two edge
shapes to be congruent. In this case, the two edges share the same shape passed up from the level below.

Finally, the topmost level maps the unit interval to an edge of the tiling polygon; this mapping will
move an edge shape from its normalized coordinate system into a portion of the tile’s outline. At this level,
all edges with the same label in the incidence symbol share a lower-level shape object.

7.5 Beyond isohedral tilings

Before the isohedral tiling types were enumerated, Heesh and Kienzle developed a family of what are now
known as Heesch tilings [18, 27]. Each Heesch type is represented by a symbol that encodes the type of
adjacency across the tiling edges and the order of rotational symmetry (if any) at the vertices. There are
28 Heesch types, corresponding to the “primitive” isohedral types—those in which no non-trivial symmetry
of the tiling maps a tile to itself. In many typical applications the Heesch types are sufficient, since the
internal symmetries of tiles can always be contrived by choosing edge shapes appropriately. In any case, the
isohedral types are at least as flexible, and permit a finer level of discrimination that might be useful in some
contexts.

Since the work of Grünbaum and Shephard on the classification of isohedral tilings of the Euclidean
plane, other tiling theorists have gone on to search for generalizations to related tilings. In particular, a group
led by Dress, Delgado Friedrichs, and Huson pioneered the use of Delaney symbols in the study of what
they call combinatorial tiling theory [9, 19]. A Delaney symbol completely summarizes the combinatorial
structure of a k-isohedral tiling of the Euclidean plane, the hyperbolic plane, or the sphere. They can also
be generalized to tilings in spaces of dimension three and higher. Delaney symbols form the basis for an
efficient software implementation, and Delgado Friedrichs and Huson have created a series of software tools
for exploring, rendering, and editing tilings from their combinatorial descriptions (see the Gavrog project at
http://gavrog.sourceforge.net/ for more information). With some additional work, Delaney
symbols might be used in place of incidence symbols above, offering additional flexibility not described
here.

8 Nonperiodic and aperiodic tilings

Aperiodic tilings have received a great deal of attention over the past few decades, both from tiling theorists
and lay audiences. Perhaps best well known are those invented by Penrose. Two examples are shown in
Figure 23, one constructed from “kites” and “darts” and the other from rhombs of two sizes.

A tiling that is not periodic is called nonperiodic. A frequent but incorrect assumption is that the
notions of aperiodicity and nonperiodicity coincide. In fact, the aperiodic tilings are a very special subset
of the nonperiodic tilings. It is worth clarifying the distinction between the two (which is similar to the
distinction made in Section 7 between k-isohedral and k-anisohedral), showing why the aperiodic tilings
are an active and exciting area of research.

Lack of periodicity is not in itself a very surprising property. It is easy to construct tilings where
every tile shape is unique – consider, for example, the Voronoi diagram induced by an infinite integer lattice
whose points have been jittered randomly. Clearly there can be no hope of periodicity in such a case, but
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(a) (b)

Figure 23: The two famous aperiodic tilings of Penrose. The “kite and dart” tiling is shown in (a) and thin
and thick rhombs in (b).

this fact seems unimpressive. In developing a definition of aperiodicity, we therefore consider only those
nonperiodic tilings with a finite number of prototiles, i.e., those that are k-hedral for some k.

Under this restricted definition, we can still construct very simple nonperiodic tilings. Even a 2-by-1
brick yields an infinite variety, as demonstrated in Figure 24. These tilings seem contrived, however, because
the same brick can easily be made to tile periodically. Nonperiodic tilings become truly interesting when
we take into account all possible alternative tilings that can be constructed from the same set of prototiles.
We call a set of prototiles an aperiodic tile set when the set admits at least one tiling, but none that are
periodic. We can then define an aperiodic tiling as a tiling whose prototiles are an aperiodic tile set. An
aperiodic tiling is one that is “essentially nonperiodic”, in the sense that no rearrangement of its tiles will
achieve periodicity. When used to refer to a particular tiling, aperiocity is therefore a far reaching concept—
it encompasses all possible tilings that can be formed from the same prototiles. As a result, it can be very
difficult to establish the aperiodicity of a set of prototiles. Periodicity is comparatively easy: one need only
exhibit a translational unit.

The Penrose tilings highlight the special behaviour of aperiodic tilings. Consider the tiling in Fig-
ure 23(b). By themselves, the two rhombs do not form an aperiodic tile set; they can be arranged into both
periodic and nonperiodic tilings. What makes the rhombs aperiodic are additional “matching conditions”
that are imposed on them, limiting the adjacencies that may occur in a complete tiling. As discussed in
Section 3, these matching conditions can be expressed in a number of ways. One possibility is to modify
the shapes of the tiles by adding protrusions to the rhomb edges, so that the tiles must snap together like
pieces in a jigsaw puzzle [16, Section 10.3]. A set of protusions that express the matching conditions is
shown in Figure 25. It is these two modified shapes that form an aperiodic tile set, known as the Penrose
tile set P3 (the modified kite and dart are known as P2). Many sets of prototiles must be endowed with
similar matching conditions to enforce aperiodicity. The matching conditions are typically not shown when
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Figure 24: A contrived example of how even a very simple shape may yield nonperiodic tilings. A spiral
path is used to place digits from the binary expansion of π. Each digit is then used to place a pair of bricks,
oriented vertically to represent a 0 and horizontally to represent a 1. The resulting tiling, when extended to
the whole plane, is (probably) nonperiodic, even though the brick prototile could easily be used to construct
periodic tilings. There exist uncountably many nonperiodic tilings based on this prototile.

Figure 25: Sample matching conditions on the rhombs of Penrose’s aperiodic tile set P3. The unmodified
rhombs (indicated by dotted lines) can form many periodic tilings. The puzzle-piece deformations on the
tile edges guarantee that any tiling formed from these new shapes will be nonperiodic.
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Figure 26: A simple example of a substitution tiling, the Kite-Domino tiling by Frettlöh and Baake. The
prototiles are made from edges of side lengths 1 and 2. The diagram on the left shows how each of the
prototiles is composed from smaller tiles. A sample patch of tiles appears on the right.

the tilings are rendered, perhaps leading to the confusion between nonperiodicity and aperiodicity.
In computer graphics applications, true aperiodicity is rarely a requirement. We often ask only that

we can construct large patches of tiles that do not appear too “orderly”. Many algorithms might produce
such patches, as part of tilings that are nonperiodic without being aperiodic. This section will explore both
nonperiodicity and aperiodicity, returning to Penrose tilings after a discussion of substitution systems and
rep-tiles, and an introduction to Wang tiles.

8.1 Substitution tilings and rep-tiles

A square can trivially be divided into four smaller congruent squares. We can then scale the subdivided
figure by a factor of two to obtain four squares congruent to the original. By iterating this procedure, we can
build ever larger patches of squares. Without any appeal to periodicity, The Extension Theorem (Section 3)
tells us that we can in fact tile the plane with squares. Alternatively, we can cover any region of the plane
with squares to any level of subdivision by surrounding the region with a single large square and subdividing
repeatedly, omitting the rescaling operation.

This simple example captures many of the fundamental properties of substitution tilings. In a gen-
eral substitution tiling, one or more prototiles are given, together with rules that assign a patch of tiles to
each prototile. If the prototiles are enumerated as {T1, . . . , Tn}, then the substitution rule for Tk can be
written as {(i1,M1), . . . , (irk

,Mrk
)}, where each pair consists of an index between 1 and n and a similarity

transformation. The rule indicates that Tk should be replaced with rk tiles: a copy of Ti1 transformed by
M1, a copy of Ti2 transformed by M2, and so on. An example of a substitution tiling with two prototiles is
given in Figure 26.

A patch of tiles is constructed by starting with any single tile (or initial patch) and repeatedly ap-
plying the substitution rules to all tiles. If the similarity transformations cause each tile to be replaced by a
congruent union of smaller tiles, then we can apply these rules as above to cover any region of the plane to
any level of detail. We simply choose an initial Ti and transform it so that it surrounds the region. Then we
can apply the substitution rules as many times as desired. A simple recursive implementation that accumu-
lates transformations, similar to the rendering of self-similar curves like the Koch snowflake, can serve as a
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Figure 27: A set of substitution rules for Gähler’s Shield tiling, together with a sample patch of tiles. The
substituted tiles leave indentations and protusions in their parents’ outlines. Each prototile is marked with a
number; the numbers are shown transformed on the right-hand sides of the rules to indicate which prototiles
should be used and how they should be transformed.

drawing algorithm.
Unlike the example in Figure 26, a substitution rule need not replace a tile Ti with a patch of smaller

tiles whose union is congruent to Ti. (Such tilings are referred to as similarity tilings by Grünbaum and
Shephard [16, Section 10.1], and the substitutions are said to be compositions.) The substituted tiles can
extend beyond the parent or leave indentations, as long as those inconsistencies are accounted for by cor-
responding geometry in neighbouring subdivided tiles (see Figure 27). The rules may also produce tiles
that overlap, as long as congruent tiles overlap in their entirety and can be identified with each other (see
Figure 28). This added complexity occasionally requires extra bookkeeping during substitution: there might
exist two prototiles Ti and Tj that are congruent, but distinguished by their indices and the rules associated
with them. Implementing such cases is equally straightforward, but special anotations might be required
when visualizing the substitution rules graphically.

In the special case that n = 1, the single prototile is called a rep-tile. All triangles and parallelograms
are easily seen to be rep-tiles. Two well-known examples are the Chair tiling and the Sphinx tiling; both are
shown in Figure 29. These two rep-tiles produce nonperiodic tilings. Indeed, many substitution systems can
be shown to produce nonperiodic tilings, provided the rules are in some sense unique [16, Theorem 10.1.1].

Polyominoes [14] can serve as a rich source of substitution tilings and rep-tiles. A polyomino is a
finite set of squares, joined edge-to-edge. Many polyominoes are rep-tiles and lead immediately to tilings of
the plane. More generally, if a set of polyominoes can be assembled into any rectangle, then they can serve
as prototiles in a substitution system. We arrange sufficiently many of these rectangles to form a square, and
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Figure 28: A set of substitution rules for Lord’s nonperiodic tiling, together with a sample patch of tiles.
The rules cause tiles to overlap with each other, but in such a way that overlaps happen in their entirety,
avoiding any inconsistencies. A shaded triangle is used to indicate the orientations of substituted tiles.

Figure 29: Two well-known examples of rep-tiles: the Chair tiling on the left and the Sphinx tiling on the
right.
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substitute this square for every unit in each of the prototiles.
A large collection of substitution tilings (including those illustrated in Figures 26–29) is maintained

by Harriss and Frettlöh at http://tilings.math.uni-bielefeld.de/tilings/index.

8.2 Wang tiles and Aperiodicity

In Section 3, I mentioned the Tiling Problem: does a given set of shapes admit any tilings of the plane? A
solution to the tiling problem should take the form of an algorithm that decides in finite time whether or not
any tilings exist.

Let us examine this question in the context of a restricted family of tiles. Wang tiles are square
prototiles with marked edges. The markings are usually indicated by colours, with the understanding that
like colours must meet across edges in any tiling by these tiles. We impose two additional restrictions. First,
tiles must meet edge-to-edge. Second, they must be placed in a tiling by translation only—rotations and
reflections are forbidden. Note that all of these restrictions can be expressed geometrically if desired. Wang
tiles effectively reduce the problem of fitting tiles together to one that is discrete and combinatorial.

As explained by Grünbaum and Shephard, Hao Wang articulated four possible outcomes for any set
of shapes [16, Section 11.3]:

1. They do not admit any tilings.

2. They admit tilings that are always periodic.

3. They admit both periodic and nonperiodic tilings.

4. They admit tilings that are always nonperiodic.

The fourth case is precisely our definition of an aperiodic tile set. Wang conjectured that this situation
could never arise—a reasonable conjecture at the time, but one that we now know to be false. With this
assumption in hand, he was able to formulate an algorithm that would decide the Tiling Problem for marked
square tiles. The algorithm iterates over the positive integers. For each integer m, it constructs all possible
m×m blocks of prototiles. If the given Wang tiles admit any periodic tilings, the algorithm will eventually
find anm for which there exists anm×m translational unit. If not (and assuming that Case 4 is impossible),
the algorithm will encounter an m for which no m×m block can be constructed that is consistent with the
tile markings (the Extension Theorem guarantees the existence of such an m).

In 1966, Berger presented the first aperiodic tile set, a collection of over 20 000 Wang tiles that admit
only nonperiodic tilings. Berger’s discovery invalidates Wang’s algorithm, because the algorithm assumes
that a set of prototiles will tile via a finite translational unit or not at all. It was subsequently shown that
Wang tiles could be used to simulate Turing machines [13], with a set of prototiles tiling the plane if and
only if a corresponding Turing machine never halted. The halting problem is therefore reducible to the tiling
problem, proving that the latter must be undecidable.

Since Berger’s initial discovery, tiling theorists have sought smaller aperiodic sets of Wang tiles.
The current record holder is a set of 13 prototiles [8]. Of course, smaller aperiodic sets exist outside the
restrictions of Wang tiles, as the next section will demonstrate.

In computer graphics, Wang tiles are gaining popularity as a way to cover the plane with tiles while
avoiding obvious repetition [4, 23]. In this context, aperiodicity is irrelevant; what matters is the ability to
produce nonperiodic tilings efficiently. For this purpose, a set of eight Wang tiles can be described over
two colours (or four, if we distinguish between horizontal and vertical occurences of the same colour), as
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Figure 30: A “universal” set of Wang tiles with two edge colours. For any choices of colours to the north
and west of a tile location, there are always two possible tiles that can be placed compatibly in that location.

shown in Figure 30. This set has the property that given a tile location with any two tiles adjacent across
the northern and western borders, there are always two tiles that can be placed in that location without
violating the matching conditions. We can therefore construct an arbitarily large patch of tiles without
obvious repetitions simply by filling the region in row-major order, always choosing randomly from the two
possibilities available at every step. The key in graphics applications is to fill the tiles with information
(textures, sample positions, etc.) that embodies the underlying matching rules. Since the contents of the
tiles are usually computed once ahead of time, it is relatively easy to suppress artifacts further by adding
more tiles. Note that this technique also adapts naturally to three dimensions.

8.3 Penrose tilings

As was mentioned at the beginning of this section, the Penrose tile sets P2 (the “kite” and “dart”) and
P3 (thin and thick rhombs) are both aperiodic with suitable matching conditions (illustrated for P3 in
Figure 25). Of course, proving the aperiodicity of P2 or P3 is difficult. First, one must establish that the
matching conditions prevent the prototile set from admitting any periodic tilings. Then one must show that it
does admit at least one nonperiodic tiling. Details of the proof can be found in Grünbaum and Shephard [16,
Section 10.3].

Of course, for computer graphics purposes we are primarily concerned with the problem of filling
arbitrary regions of the plane with interlocking tiles from either set; the matching rules are only of academic
interest. There are several very different algorithms for laying out Penrose tilings. Some of these algorithms
are themselves sophisticated results in algebra, geometry, and number theory. Details on the so-called
“multigrid” and “lattice projection” methods can be found in the book by Senechal [28].

On the other hand, a rendering approach based on substitution leads to a far simpler implementation.
Figure 31 shows substitution rules for P2 and P3, which can be applied recursively to draw finite patches
of any size. These rules are very efficient in that they never lead to overlapping tiles, which need to be
detected and coalesced. On the other hand, they are less than ideal for filling regions of the plane with tiles.
The substituted tiles do not entirely cover their parents, and so it does not suffice simply to ensure that a
given region is completely surrounded by a single tile—substitution might ultimately leave part of the region
uncovered.

To obtain more control over the substitution process, we can use modified rules based on an analysis
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Figure 31: A set of substitution rules for Penrose’s aperiodic tile sets P2 and P3. These rules are often pre-
sented in the style of the Lord tiling in Figure 28, where overlapping tiles must be pruned after substitution.
Here, the rules fill the plane exactly, without introducing any overlaps. Shaded triangles are used to indicate
the orientations of substituted tiles.

Figure 32: Modified substitution rules for Penrose’s set P2. The kite and dart are each bisected into direct
and reflected copies of isosceles triangles (orientation is indicated by a shaded marking). The substitutions
for both triangles are shown. Repeated substitution exactly fills the initial patch of tiles. On the far right, the
final configuration of kites and darts can be determined consistently from one of the orientations of each of
the two triangles.
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by Robinson, as described by Grünbaum and Shephard. Figure 32 illustrates the process for P2 (a similar
argument applies to P3). Each prototile can be divided into left-handed and right-handed isosceles triangles
by splitting them along lines of mirror reflection. These triangles can be given their own substitution rules.
After any desired number of substitutions, the right-handed triangles can be discarded and the kites and darts
can be recovered consistently from the left-handed triangles alone. The resulting patch will still fail to cover
the entire starting tile, but the indentations can be worked around easily.

What about the shapes of the tiles themselves? The substitution systems above can provide us with a
list of locations at which to draw prototiles. Geometric matching conditions such as those shown in Figure 25
suggest that we are free to choose two arbitrary J edge shapes to make up the outlines of the tiles.

Unfortunately, this interpretation of the possible shapes of Penrose tiles is limited, as can be seen
in Grünbaum and Shephard’s reproduction of Penrose’s aperiodic chicken tiling [16, Figure 10.3.13]. They
overlay the chickens with the corresponding unmodified tiling. The registration of these two tilings reveals
that the chickens have tiling vertices that are different from those of the original tiling! Although these tiling
vertices can be simulated by introducing degeneracies in the form of partially overlapping tile edges, there
is some benefit in being able to parameterize the locations of these vertices directly.

However, we cannot simply provide a tiling vertex parameterization as was done in Section 7.3 for
the isohedral tiling types. In a tiling by P2 or P3, copies of a given prototile will be surrounded in a
finite number of different ways, causing tiling vertices to be located differently around its boundary. But
it is possible to parameterize an extended set of quasivertices, points on a prototile’s boundary that are
tiling vertices anywhere in a tiling, or that are forced into existence by those tiling vertices. Quasivertex
parameterizations are provided for P2 in Figure 33 and for P3 in Figure 34.

Given this extended set of quasivertices, we must revise the original matching conditions to account
for the new tile edges that have been introduced. Taking inspiration from the use of incidence symbols
in isohedral tilings, the possible edge shapes can be specified by labeling the edges around each tile and
indicating adjacency rules for the labels. The edges of the kite and dart can be labeled abcdaefghd and
ghefgcdabf respectively, where the enumerations start at the edges marked with arrows in Figure 33. To
enforce matching between adjacent tiles, we require that the pairs (a, d), (b, h), (c, e), and (f, g) interlock.
In effect, a given kite and dart will have only four non-congruent edge shapes between them. Similarly, we
can label the edges of the thick and thin rhombs respectively as abcdefegabhg and afcdegabhg, with the
requirement that pairs (a, g), (b, e), (c, d), and (f, h) interlock. These labelings of the edges of the Penrose
tiles are shown in Figure 35.

9 Survey

I conclude this document with a brief survey of some previous research and applications in computer graph-
ics that make use of tiling theory.

9.1 Drawing periodic tilings

Software specifically geared towards the construction of tilings of the plane has been around for nearly thirty
years. For the most part, these tools are based on the Heesch tilings, which can be seen as a precursor to the
isohedral tilings in which internal symmetries of tiles are not recognized (see Section 7.5).

Chow had a very successful FORTRAN program [2] that let the user input the portion of a tile’s
boundary that is “independent,” i.e., not constrained to some other part of the boundary through a symmetry
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A = (0, 0)
B = (cos( π

10 ), sin( π
10 ))

C = (0, 1+
√

5
2 )

D = (− cos π
10 , sin

π
10 )

E = A+ r1(cos(θ1 + π
10 ), sin(θ1 + π

10 ))
F = B + r2(θ2 + cos( 7π

10 ), sin(θ2 + 7π
10 ))

G = C + r1(cos(θ1 − π
10 ), sin(θ1 − π

10 )
H = rotate(C,− 2π

5 , H)
I = rotate(C,− 2π

5 , G)
J = rotate(A,− 4π

5 , G)
K = rotate(A,− 4π

5 , F )

A′ = (0, 0)
B′ = (− cos π

10 , sin
π
10 )

C ′ = (0,−1)
D′ = (cos( π

10 ), sin( π
10 ))

E′ = A′ + r2(cos(θ2 + π
2 ), sin(θ2 + π

2 ))
F ′ = B′ + r1(cos(θ1 − π

10 ), sin(θ1 − π
10 ))

G′ = C ′ + r2(cos(θ2 + 7π
10 ), sin(θ2 + 7π

10 ))
H ′ = rotate(C ′,− 2π

5 , G
′)

I ′ = rotate(C ′,− 2π
5 , F

′)
J ′ = rotate(A′,− 4π

5 , F
′)

K ′ = rotate(A′,− 4π
5 , E

′)

Figure 33: A tiling vertex parameterization for generalized Penrose kites and darts, controlled by four real-
valued parameters r1, θ1, r2, and θ2. The vertices are enumerated in counterclockwise order starting at A
for the kite and A′ for the dart. The function rotate(p, θ, q) rotates point q by angle θ about point p.
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A = (sin π
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B = (0, cos π
5 )

C = (− sin π
5 , 0)

D = (0,− cos π
5 )

E = A+ r1(cos( 7π
10 − θ1), sin( 7π

10 − θ1))
F = A+ r2(cos( 7π

10 − θ2), sin( 7π
10 − θ2))

G = rotate(B,− 2π
5 , F )

H = rotate(B,− 2π
5 , E)

I = D + r2(cos(π
2 − θ2), sin(π

2 − θ2))
J = D + r1(cos(π

2 − θ1), sin(π
2 − θ1))

K = rotate(D,− 2π
5 , J)

L = rotate(D,− 2π
5 , I)

M = rotate(D,− 2π
5 , H)

A′ = (sin π
10 , 0)

B′ = (0, cos π
10 )

C ′ = (− sin π
10 , 0)

D′ = (0,− cos π
10 )

E′ = A′ + r1(cos( 6π
5 − θ1), sin( 6π

5 − θ1))
F ′ = B′ + r2(cos( 7π

5 − θ2), sin( 7π
5 − θ2))

G′ = rotate(C ′,− 4π
5 , F

′)
H ′ = D′ + r1(cos( 3π

5 − θ1), sin( 3π
5 − θ1))

I ′ = D′ + r1(cos(π
5 − θ1), sin(π

5 − θ1))
J ′ = rotate(A′, 4π

5 , F
′)

K ′ = rotate(A′, 4π
5 , E

′)

Figure 34: A tiling vertex parameterization for generalized Penrose rhombs, controlled by four real-valued
parameters r1, θ1, r2, and θ2. The vertices are enumerated in counterclockwise order starting at A for the
thick rhomb and A′ for the thin rhomb.
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Figure 35: Edge labels for the tiling edges of the two sets of Penrose tiles, in the spirit of the incidence
symbols used for the isohedral tilings. The kite and dart are shown on the left, and the two rhombs on the
right. (The edge labels are not related between the two sets.) Pairs of labels correspond as described in the
text.

of the tiling. The program then filled in the remaining part of the tile and replicated it in the plane. Chow
also discussed possible applications of his software in manufacturing.

For many years, Kevin Lee has offered a commercial software package called TesselMania! that
makes it easy to draw and decorate Escher-like tilings. His system is geared towards the use of tilings as a
tool for mathematics education, and the most recent version of TesselMania! includes tutorials, games and
puzzles designed for teaching concepts of geometry.

Tupper’s Tess (http://www.peda.com/tess/Welcome.html) has traditionally allowed the
user to create drawings belonging to the frieze and wallpaper groups. Recently, he modified Tess to support
a set of tilings directly. Like TesselMania!, Tess is geared towards pedagogical use.

There exist many software tools for drawings based on symmetry groups. In many such tools it
is easy to draw tilings, but there is no In many of these tools is it easy to draw tilings, but no explicit
use of tiling theory and no tiling-like constraints imposed on the user. The classic example of such a
tool is Kali (http://www.geom.umn.edu/java/Kali/). Weeks’s KaleidoTile (http://www.
geometrygames.org/KaleidoTile/) supports more drawing styles and non-Euclidean symmetry
groups. A popular commercial product is Artlandia’s Symmetry Works (http://artlandia.com/
products/SymmetryWorks/), a plug-in for Adobe Illustrator.

9.2 Drawing nonperiodic tilings

Quasitiler (http://www.geom.umn.edu/apps/quasitiler/) was an application that made it pos-
sible to visualize a wide variety of nonperiodic tilings produced via the “lattice projection method”. These
included tilings by the Penrose rhombs, as well as generalizations of to rotational orders other than five. Qu-
asitiler was originally written for the NeXT computer, and was then given a CGI-based web interface. Unfor-
tunately, the back end is no longer in operation, and so Quasitiler is unavailable. Murray has created a Java
implementation as part of a collection of screensavers (http://screensavers.dev.java.net/).

I have created a simple Java applet for exploring the parameterization of edge shapes and tiling ver-
tices for Penrose tilings, as described in Section 8.3. It is available at http://www.cgl.uwaterloo.
ca/˜csk/software/penrose/.
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9.3 Escher-like tilings

M.C. Escher had a lifelong fascination with tilings of the plane. He spent years filling a notebook with
drawings of tilings by fish, birds, people, and dozens of other lifelike forms [27]. Escher has long been
a source of inspiration for mathematicians and computer scientists; it is natural to ask whether computer
graphics can assist in the creation of Escher-like tilings.

The software mentioned above for drawing tilings can be seen as implementing a “forward” process
of experimentation similar to Escher’s manual work. Starting from a simple tile shape with adjacency rules,
the user can modify edges and the software will enforce constraints that preserve tileability. With skill,
intuition, and luck, the user can eventually produce a tiling in the style of Escher’s drawings.

Is it possible to design an “inverse” algorithm for tile design? In other words, given an arbitrary
“goal shape”, can an algorithm find a monohedral tiling of the plane by a prototile that resembles that shape?
Kaplan and Salesin explored this question in the context of the isohedral tilings [21]. They developed an
“Escherization” algorithm, a continuous optimization that searched over the parameterizations of the shapes
isohedral prototiles as presented in Section 7.3. The objective function for the optimization realized the tile
shape parameters as a polygon, and compared this polygon with the goal shape using an efficient L2 distance
metric [1]. The resulting algorithm could discover attractive Escher-like tilings from a variety of real-world
goal shapes.

In later work, Kaplan and Salesin adapted the Escherization algorithm to several varieties of dihedral
tilings [22]. Escher produced many dihedral tilings by beginning with one of his monohedral systems and
dividing the prototile into two pieces with a path connecting two points on its boundary. They applied the
same technique to the isohedral tilings, augmenting the isohedral shape parameterization with parameters
controlling the end points and shape of a “splitting path”. Here, the objective function constructs the two
prototile shapes, compares each with its respective goal shape, and returns the maximum of the two com-
parisons. They showed that by restricting this representation to the special case of Dress’s “Heaven and Hell
patterns” [10], they could produce metamorphoses in the style of Escher’s Sky and Water. They also applied
the same optimization framework to build Escher-like tilings based on the shape parameterizations of the
Penrose tilings in Section 8.3.

Escher also created a small number of carved wooden sculptures featuring spherical interpretations
of his tesselations. Using these as a starting point, Yen and Séquin created an “Escher Sphere Construction
Kit” [33], a system that allows the user to design ornamental spherical tilings much as one could cre-
ate Euclidean tilings in the drawing tools above. Their software was based on Grünbaum and Shephard’s
classification of the isohedral tilings of the sphere [15], analogous to the planar classification discussed in
Section 7.1. As an added feature, the tilings they create could be exported to rapid prototyping hardware
and constructed as real artifacts.

9.4 Sampling

Recently, substitution tilings have emerged as a powerful technique for generating fast sampling patterns
with blue noise properties. Typically, a single sample location or a set of sample locations is pre-computed
for each tile. Given a probability distribution (such as an importance map), a sampling pattern is then
generated by selectively applying the substitution rules selectively to individual tiles where greater sample
density is needed.

Ostromoukhov et al. used this approach with Penrose tiles, demonstrating their technique in an en-
vironment mapping application [26]. They selectively apply rules from a substitution system derived from
the Penrose rhombs, and place a sample in each remaining tile. Precomputed perturbation vectors are used
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to displace the samples to improve their distribution, based on the local configuration around each tile.
Most recently, Ostromoukhov presented a new sampling method based on selective subdivision of polyomi-
noes [25]. The polyominoes avoid frequency-domain artifacts that arose in the use of Penrose tiles.

Kopf et al. developed a sampling method based on recursive subdivision of Wang tiles [24]. They
generate a set of progressive Poisson distributions over each tile, which can be used for fine-grained control
of sample density. Coarser changes can be handled by subdividing tiles. They can make random choices
when placing every Wang tile in a grid, suppressing obvious repetition.

9.5 Texture generation

Another popular use of Wang tiles is to create non-repeating arrangements of textures or geometry. In
these applications, each tile is decorated with a small fragment of an overall pattern, and tiles are joined
together to extend the pattern over a large region. Clearly, a single tile can be decorated with a unrolled
toroidal design to create a periodic pattern. In these techniques, the challenge is to ensure that an entire
collection of decorated tiles can meet smoothly across their boundaries in multiple distinct configurations.
This smoothness is usually achieved by representing a matching condition as a fragment of a pattern that
straddles a tiling edge. Each Wang tile is then constructed by assembling the four fragments associated with
its edge colours and merging those fragments somehow in the tile’s interior.

Stam was the first to consider the use of Wang tiles for texturing [30]. He used a recursive subdividion
scheme: a set of 16 Wang tiles, each with a substitution rule that satisfied the matching conditions. A
recursive algorithm was therefore necessary to generate patches of tiles.

Cohen et al. used the simpler set of eight Wang tiles shown in Figure 30 [4], recognizing that the
ability to assemble tiles stochastically is more relevant for graphics applications than true aperiodicity. The
introduced the scanline algorithm for placing tiles, in which each new tile is chosen from the possibilities
that are compatible with previously placed neighbours to the north and west. They also articulated the
corner problem: Wang tiles with simple matching conditions have no control over their diagonal neighbours,
a property which can lead to artifacts near tiling vertices. They solve this problem by augmenting the
matching conditions with additional colour information for tile vertices, effectively increasing the number
of colours used in the matching conditions. The combination of edge colours and vertex colours forces them
to generate many different tiles. They apply their technique to texture synthesis and primitive distribution.
More recently, Fu and Leung showed how this approach could be adapted to a quad-based parameterization
of an arbitrary surface [12].

Lagae showed that s similar approach could be applied to Wang tiles in which matching conditions
are expressed purely at the vertices rather than the edges. In their technique, a tile’s vertices are given
colours; four tiles meeting around a tiling vertex must have the same colour at that vertex. In this scheme, it
is easier to control the continuity of information across tile corners (as well as edges). They also show that
Wang tiles can be looked up with “random access”: the identity of any tile in the plane can be computed
numerically without first laying out all tiles to the north and west of it. A hash function is used to compute
vertex colours reliably anywhere in the plane. The tile for a particular lattice square can be chosen based on
the colours at its vertices.
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Wang Tiles with SignsWang Tiles with Signs

• Example Tiling: Matching both color and sign

18

• More Example:
Non-Euclidean surface

Wang Tiles with SignsWang Tiles with Signs
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19

What’s next?What’s next?

c
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- d
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-
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-
- b

+

+

-
-

e
+

+

-
- f

+

-
+ - g
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-
+ - h

+

-
+ -

• How can we consistently orientate tiles 
on the quad-based geometry?

20

Orientate the TilesOrientate the Tiles

2

5

3

|V | = 6 , | E | = 12 

1 2

5

6

3 4

Unfolded view of a dual graph

• Dual graph on quad-based geometry
– Each Quad → A vertex in graph
– Each Connection → An edge in graph

21

1 2

5

6

3 4

2

5

3

1 2

5

6

3 4

2
3

5

Fleury’s algorithm

P1 P2 P3

v1 v2 v3

Orientate the TilesOrientate the Tiles
• Dual graph: make it a directed graph

– Generate cycles or paths

22

P1 P2 P3

v1 v2 v3-+ -+
- +

-

+
P2

Orientate the TilesOrientate the Tiles
• After making a directed graph

– Assign signs on edges:
+ve for out-going and –ve for incoming

– Each quad: exactly two +ve and two –ve signs

23

1 2
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3 4
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3 4
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3 4+
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+
+

-
-

+

-
- +

-
+

+

-
-
+

- +- +- +- +

A valid sign 
assignment on a cube

Orientate the TilesOrientate the Tiles
P1 P2 P3

v1 v2 v3
-+ -+• Example: Cube

24

• Example: Cube

1 2
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Orientate the TilesOrientate the Tiles
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A valid sign 
assignment on a cube
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• More Example

Orientate the TilesOrientate the Tiles
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26

• Sign assignment on Bunny:

TilingTiling

c
+

+
-

- d
+

+
-

-

a
+

+
-

- b
+

+
-

-
+ =

+

+

-
-

Arrows on tiles 
indicate the signs

27

• More examples on sign assignment

TilingTiling

28

• Tiling and Rendering

ResultsResults

+ =

29

• Switching textures - switch the pointer to tile set

ResultsResults

+

Same sign and
tile assignment

Takes no time to change texture!
30

• Reusable and Pre-computable!!!

ResultsResults

Same tile set
No need to re-synthesizeJust change

the object

+
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31

Rendering Results: BunnyRendering Results: Bunny

32

Rendering Results: Holes3Rendering Results: Holes3

33

Rendering Results: ArmadilloRendering Results: Armadillo

34

Rendering Results: LauranaRendering Results: Laurana

35

Outline of my partOutline of my part
• Motivation
• Texture Tiling on Surfaces
• More Applications!!!

– Bump-mapped Tiles
– BTF Tiles
– Poisson disk Tiles

36

#2 - Bump-mapped tiles
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37

Bump-mapped tilesBump-mapped tiles

Normals in tile space Normals in object space

• Normals are in the texture/tile space           
Need to be transformed to object space

Rendering Result

38

Bump-mapped tilesBump-mapped tiles
• Per-tile tangent basis transform (TBN) 

to transform the normals from 
texture/tile space to object space

X

Y
Z

Bump-mapped tile
in object space

TBN
Transform

TBN
Transform

F X

Z

YL in tile space

V in tile spaceL in object space V in object space

Tile space

39

Results: Bump-mapped tilesResults: Bump-mapped tiles

No Bump-mapped tiles With Bump-mapped tiles

40No Bump-mapped tiles With Bump-mapped tiles

Results: Bump-mapped tilesResults: Bump-mapped tiles

41

#3 - BTF tiles

42

BTF TilingBTF Tiling
• How about making BRDF or BTF tiles?

– Higher quality and more realistic lighting effects
– View dependent and light dependent
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43

Technical ChallengesTechnical Challenges
• The BTF data is very large in size
• The BTF Tile Synthesis is hard

– It’s 6D, as compared to 2D for color textures
– Each pixel has a 4D BRDF

44

Any Solution?Any Solution?
• For the BTF data

– Solution step 1: Double SH compression
– Solution step 2: Quantization

• For the BTF tile synthesis
– Solution: A new tile synthesis method that 

incrementally generates the BTF tile set

45

BTF Tiles #1BTF Tiles #1
Real-world 

Material
BTF 

Acquisition

BTF 
Compression

Tile Set 
Synthesis

BTF Tiling & 
Rendering

Synthetic 
Material

…
>3000

samples

BTF Texture

A stack of images captured 
at different L and V

-V

46

BTF Tiles #2BTF Tiles #2
Real-world 

Material
BTF 

Acquisition

BTF 
Compression

Tile Set 
Synthesis

BTF Tiling & 
Rendering

Synthetic 
Material

…

>3000 
samples

…

BTF 
Compression

25 x 25

SH coefficients

47

BTF Tiles #3BTF Tiles #3
Real-world 

Material
BTF 

Acquisition

BTF 
Compression

Tile Set 
Synthesis

BTF Tiling & 
Rendering

Synthetic 
Material

Sample BTF Texture
1. BTF on tile corners
2. BTF on tile edges
3. BTF on tile frames
4. BTF on tile interior

48

Tile setReal-world 
Material

BTF 
Acquisition

BTF 
Compression

Tile Set 
Synthesis

BTF Tiling & 
Rendering

Synthetic 
Material

BTF Tiles #4BTF Tiles #4
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49

ResultsResults
• Reusable: Same tile set on different models

50

ResultsResults
• Again, let’s switch the BTFs

BTF tile sets

51

ResultsResults
• Switching tile sets

52

#4 – Poisson disk tiles

53

How about point distribution?How about point distribution?
• Applications:

– Pattern distribution, BTF sample, geometry, etc.

54

Our ApproachOur Approach
First, make it a dual surface
All tile junctions are shared by exactly 4 quads

Now, all corners meet four edges!!!

Tri-tile

Quad-tile

Quin-tile
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55

Then, create a dual tile set: Interior tiles

Dual Poisson-disk TilingDual Poisson-disk Tiling

56

Then, dual tiling on 2D plane

Dual Poisson-disk TilingDual Poisson-disk Tiling

57

Tiling on
surface 
param.

Dual Poisson-disk TilingDual Poisson-disk Tiling

58

Results: Distribute PatternsResults: Distribute Patterns

59

Results: BTF holesResults: BTF holes

60

Results: Geom. TexturesResults: Geom. Textures
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61

Conclusion: One Formula!Conclusion: One Formula!

• Color texture tiles
• Bump-mapped tiles
• BTF Tiles
• Dual Poisson

-disk tiles

Data Tile set+ Surface Tiling+ Applications

62
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• Texture Tiling on Arbitrary Topological Surfaces using Wang Tiles.
Chi-Wing Fu and Man-Kang Leung, EGSR 2005.

• Tileable BTF.
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• Dual Poisson-Disk Tiling: An Efficient Method for Distributing Features on Arbitrary Surfaces.
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64

Backup SlidesBackup Slides

65

For polycube models:For polycube models:
• Number of cycles: 3
• Number of colors per cycle: 3
• Number of tiles = 32 x 32 x 6
• An example tile set:

– Either 6 RGB textures OR
– 6 index texture (2 RGB int. Tex.)

+ 1 RGB data texture
Using OpenGL texture rect.
Resolution: (64x9) x (64x9)

66

Two example Tile setsTwo example Tile sets
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67

For polycube models:For polycube models:
• Corresponding Results:

68

BTF Tiles #1BTF Tiles #1
Real-world 

Material
BTF 

Acquisition

BTF 
Compression

Tile Set 
Synthesis

BTF Tiling & 
Rendering

Synthetic 
Material

Sample BTF Texture
1. BTF on tile corners
2. BTF on tile edges
3. BTF on tile frames
4. BTF on tile interior

69

BTF Tiles #2BTF Tiles #2
Real-world 

Material
BTF 

Acquisition

BTF 
Compression

Tile Set 
Synthesis

BTF Tiling & 
Rendering

Synthetic 
Material

One BTF edge
for each color in Wang tiles

1. BTF on tile corners
2. BTF on tile edges
3. BTF on tile frames
4. BTF on tile interior

70

BTF Tiles #3BTF Tiles #3
Real-world 

Material
BTF 

Acquisition

BTF 
Compression

Tile Set 
Synthesis

BTF Tiling & 
Rendering

Synthetic 
Material

Synthesize BTF Borders
with edges as boundary

1. BTF on tile corners
2. BTF on tile edges
3. BTF on tile frames
4. BTF on tile interior

a

71

BTF Tiles #4BTF Tiles #4
Real-world 

Material
BTF 

Acquisition

BTF 
Compression

Tile Set 
Synthesis

BTF Tiling & 
Rendering

Synthetic 
Material

A BTF Tile

1. BTF on tile corners
2. BTF on tile edges
3. BTF on tile frames
4. BTF on tile interior

72

Dual Poisson-disk TilingDual Poisson-disk Tiling
Now, create a dual tile set:

– Corner tiles Edge tiles Interior tiles
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1

Sampling Systems Sampling Systems 

Based on NonBased on Non--Periodic Tilings Periodic Tilings 

Victor OstromoukhovVictor Ostromoukhov

University of MontrealUniversity of Montreal

2

3

Presentation OutlinePresentation Outline

• Motivations

• Importance Sampling System Based 

on Penrose Tiling 

• Sampling with Polyominoes

• 2D Low-Discrepancy Sequences 
Based on Dodecagonal Tiling

• Conclusions and Challenges

4

What is Even Distribution?What is Even Distribution?

In Nature

5

What is Even Distribution?What is Even Distribution?

In Human Eye

RodsRods ConesCones

Distribution of Distribution of 

Cones and RodsCones and Rods

Light

Light

Retina Optic Nerve

Rod
Cone

Ganglion 

Cells

Amacrine 

Cells

Horizontal 

Cells

Bipolar 

Cells

6

Blue-Noise SamplingBlue-Noise Sampling

Fourier Fourier 
SpectrumSpectrum
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7

Problem StatementProblem Statement

high

low

Given:

• Importance Density  

I(x,y)

8

Problem StatementProblem Statement

Find:

• Discrete Sample Distribution 

Locally Proportional to I(x,y)

9

Importance Sampling System 
Based on Penrose Tiling
Importance Sampling System 
Based on Penrose Tiling

• Extension to Penrose Tiling

• Fibonacci Number System

• Adaptive Subdivision

• Structural Indices

• Corrective Vectors Lookup Table

Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. (2004) Fast  hierarchical 
importance sampling with blue noise properties. ACM Transactions on 

Graphics, 23(3). Proc. SIGGRAPH 2004.

Ref:

10

Penrose Tiling: MilestonesPenrose Tiling: Milestones

• Circa 1200 AD, Fibonacci (Leonardo of Pisa)

Rabbit Sequence, Fibonacci Numbers

• 1619, Johannes Kepler

Harmonice Mundi, 5-fold Tiling Problem

• 1974, Sir Roger Penrose

Pentaplexity, Penrose Tiling

• 1984, Dan Shechtman et al.

Discovery of Quasi-Crystals

Diffraction
Pattern

11

Penrose Tiling: 
Definition by Production Rules
Penrose Tiling: 
Definition by Production Rules

12

Penrose Tiling:
Definition by Production Rules
Penrose Tiling:
Definition by Production Rules
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13

Penrose Tiling:
Definition by Production Rules
Penrose Tiling:
Definition by Production Rules

14

Penrose Tiling:
Definition by Production Rules
Penrose Tiling:
Definition by Production Rules

15

Penrose Tiling:
Definition by Production Rules
Penrose Tiling:
Definition by Production Rules

16

Penrose Tiling:
Definition by Production Rules
Penrose Tiling:
Definition by Production Rules

17

Penrose Tiling:
Definition by Production Rules
Penrose Tiling:
Definition by Production Rules

18

Penrose Tiling:
Definition by Production Rules
Penrose Tiling:
Definition by Production Rules

Iteration N
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19

Penrose Tiling: 
Definition by Production Rules
Penrose Tiling: 
Definition by Production Rules

Ref: “Tilings and Patterns” by B. Grunbaum and G.C. Shephard

Iteration N+1

20

Penrose Tiling: VerticesPenrose Tiling: Vertices

Iteration N

21

Penrose Tiling: VerticesPenrose Tiling: Vertices

Iteration N+1

22

Extension of Penrose TilingExtension of Penrose Tiling

Original Our Extension

23

Extension of Penrose TilingExtension of Penrose Tiling
a

b

c

d

e

f

24

Extension of Penrose TilingExtension of Penrose Tiling
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25

Extension of Penrose TilingExtension of Penrose Tiling

26

Fibonacci Number SystemFibonacci Number System

27

Fibonacci Number SystemFibonacci Number System

28

Fibonacci Number SystemFibonacci Number System

29

Fibonacci Number SystemFibonacci Number System

30

Fibonacci Number SystemFibonacci Number System

• Binary Number System:

• Fibonacci Number System:

• Fibonacci Numbers:

Ref: “The Art of Computer Programming, Vol. 1,” by D.E. Knuth
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31

Fibonacci Number SystemFibonacci Number System

Binary Number System Fibonacci Number System

32

Fibonacci Number SystemFibonacci Number System

Pentagonal
Tiles Only

33

Fibonacci Number SystemFibonacci Number System

Iteration 5Iteration 4

34

Adaptive SubdivisionAdaptive Subdivision

Importance Density Function

35

Adaptive SubdivisionAdaptive Subdivision

36

Corrective Vectors
Lookup table
Corrective Vectors
Lookup table
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37

Corrective Vectors
Lookup table
Corrective Vectors
Lookup table

38

Corrective Vectors
Lookup table
Corrective Vectors
Lookup table

Before Correction After Correction

39

Offline Lloyd’s Relaxation: 

init pts + basis frames

Offline Lloyd’s Relaxation: 

init pts + basis frames

40

Offline Lloyd’s Relaxation: 

init pts + basis frames

Offline Lloyd’s Relaxation: 

init pts + basis frames

41

Offline Lloyd’s Relaxation: 

iter 1

Offline Lloyd’s Relaxation: 

iter 1

42

Offline Lloyd’s Relaxation: 

iter 2

Offline Lloyd’s Relaxation: 

iter 2
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43

Offline Lloyd’s Relaxation: 

iter 3

Offline Lloyd’s Relaxation: 

iter 3

44

Offline Lloyd’s Relaxation: 

iter 4

Offline Lloyd’s Relaxation: 

iter 4

45

Offline Lloyd’s Relaxation: 

iter 5

Offline Lloyd’s Relaxation: 

iter 5

46

Offline Lloyd’s Relaxation: 

iter 6

Offline Lloyd’s Relaxation: 

iter 6

47

Offline Lloyd’s Relaxation: 

iter 7

Offline Lloyd’s Relaxation: 

iter 7

48

Offline Lloyd’s Relaxation: 

iter 8

Offline Lloyd’s Relaxation: 

iter 8
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49

Offline Lloyd’s Relaxation: 

iter 9

Offline Lloyd’s Relaxation: 

iter 9

50

Offline Lloyd’s Relaxation: 

iter 10

Offline Lloyd’s Relaxation: 

iter 10

51

Offline Lloyd’s Relaxation: 

iter 11

Offline Lloyd’s Relaxation: 

iter 11

52

Offline Lloyd’s Relaxation: 

iter 12

Offline Lloyd’s Relaxation: 

iter 12

53

Presentation OutlinePresentation Outline

• Motivations

• Importance Sampling System Based 

on Penrose Tiling 

• Sampling with Polyominoes

• 2D Low-Discrepancy Sequences 
Based on Dodecagonal Tiling

• Conclusions and Challenges

54

PolyominoesPolyominoes

Ref: Sampling with Polyominoes [SIGGRAPH’07]
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55

Rectifiable polyominoesRectifiable polyominoes

56

Self-similar (A-rep) rectifiable 

polyominoes, or reptiles

Self-similar (A-rep) rectifiable 

polyominoes, or reptiles

9922--rep or 81rep or 81--rep Grep G--hexominoeshexominoes
Area scaling factor      = 9Area scaling factor      = 922 == 8181

57

-rep rectifiable polyominoes, 

or reptiles

-rep rectifiable polyominoes, 

or reptiles

Infinite planeInfinite plane

�� Unique production ruleUnique production rule

According to “Tilings and According to “Tilings and 
Patterns” [Grunbaum & Patterns” [Grunbaum & 
Shephard ‘86]Shephard ‘86]

•• Fills the entire plane Fills the entire plane 

nonnon--periodically periodically 

•• SelfSelf--similaritysimilarity

58

81-rep G-hexominoes81-rep G-hexominoes

Infinite planeInfinite plane

Different neighborhoodsDifferent neighborhoods

�� Problem of finding Problem of finding 
geometrical neighborhoods geometrical neighborhoods 

((structural indices)structural indices)

Different neighborhoodsDifferent neighborhoods

59

Apparent ChaosApparent Chaos

Different colors =Different colors =
Different neighborhoods =Different neighborhoods =

Different Different structural indicesstructural indices

60

Finding structural indicesFinding structural indices



11

61

Finding structural indicesFinding structural indices

62

Finding structural indicesFinding structural indices

63

Finding structural indicesFinding structural indices

WellWell--determineddetermined
neighborhoodsneighborhoods

64

Finding structural indicesFinding structural indices

65

OptimizationOptimization

Decomposition process:Decomposition process:

•• Production rules Production rules 

•• Structural indices characterize local geometrical Structural indices characterize local geometrical 

neighborhoods neighborhoods 

•• Mapping of structural indices (finite number)Mapping of structural indices (finite number)

�� Tiles with similar geometrical neighborhoods Tiles with similar geometrical neighborhoods 

(structural indices) behave similarly(structural indices) behave similarly

66

Optimization IOptimization I

PatchPatch
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67

Optimization IOptimization I

SubdivisionSubdivision

68

Optimization IOptimization I

Random dotsRandom dots
within each polyominowithin each polyomino

Red: movable dotsRed: movable dots
Blue: immovable dotsBlue: immovable dots

69

Optimization IOptimization I

RelaxationRelaxation

70

Optimization IOptimization I

RelaxationRelaxation

71

Optimization IOptimization I

RelaxationRelaxation

72

Optimization IOptimization I

RelaxationRelaxation
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73

Optimization IOptimization I

RelaxationRelaxation

74

Optimization IOptimization I

RelaxationRelaxation

75

Optimization IOptimization I

RelaxationRelaxation

76

Optimization IOptimization I

RelaxationRelaxation

77

Optimization IOptimization I

RelaxationRelaxation

78

Optimization IOptimization I

RelaxationRelaxation
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79

Optimization IOptimization I

Black: final result Black: final result 
after 10 relaxationsafter 10 relaxations

Blue: immovable dotsBlue: immovable dots

80

OptimizationOptimization

81

Run-time pseudo-codeRun-time pseudo-code

82

Results – constant densityResults – constant density

83

Results – variable densityResults – variable density

84

Sampling on a sphereSampling on a sphere

HEALPix spherical mapping [Gorski et al. 2005]

• 12 Equiareal high-level quads 

• Jacobian-preserving mapping 

– Subdivision into equiareal quads

• Low distortion
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85

Sampling on a sphereSampling on a sphere

Pentominoes with two subdivision rules  

. . .. . .. . .. . .. . .. . .. . .. . .

Square patches of 20 pentominoes on 10x10 squares  Square patches of 20 pentominoes on 10x10 squares  

86

Sampling on a sphereSampling on a sphere

Pentominoes on 12 HEALPix quads 

10x10 grid 10x10 grid 
on each quadon each quad

20 pentominoes 20 pentominoes 
on each quadon each quad

20 pentominoes 20 pentominoes 
on a 10x10 squareon a 10x10 square

87

Sampling on a sphereSampling on a sphere

Subdivision and optimization

Level 1Level 1 Level 2Level 2
(after one subdivision)(after one subdivision)

Level 2Level 2
(dots only)(dots only)

88

Sampling on a sphereSampling on a sphere

An arbitrary importance (spot) function

89

Presentation OutlinePresentation Outline

• Motivations

• Importance Sampling System Based 

on Penrose Tiling 

• Sampling with Polyominoes

• 2D Low-Discrepancy Sequences 
Based on Dodecagonal Tiling

• Conclusions and Challenges

90

Dodecagonal TilingDodecagonal Tiling
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91

Dodecagonal Tiling, Triangles and 
Squares-Based Production Rules
Dodecagonal Tiling, Triangles and 
Squares-Based Production Rules

92

Dodecagonal Tiling, Voronoi Polygons-
Based Production Rules
Dodecagonal Tiling, Voronoi Polygons-
Based Production Rules

93

Dodecagonal Tiling, Applying Voronoi 
Polygons-Based Production Rules
Dodecagonal Tiling, Applying Voronoi 
Polygons-Based Production Rules

94

ConclusionsConclusions

TileTile--based Sampling allows:based Sampling allows:

• Very good low-noise low-artifact sampling distribution

• Very fast

• Simple and easy to implement

95

ChallengesChallenges

•• Fast tileFast tile--based multibased multi--dimensional samplingdimensional sampling

•• Looking for optimum between the size of preLooking for optimum between the size of pre--
calculated data and the qualitycalculated data and the quality

96

N-Dim Optimal SamplingN-Dim Optimal Sampling

Source: Multidimensional Adaptive Sampling and Reconstruction for Ray Tracing 
T. Hachisuka, W. Jarosz, R. Weistroffer, K. Dale, G. Humphreys, M. Zwicker, and H. Wann Jensen (SIGGRAPH 2008) 
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97

ChallengesChallenges

•• Fast tileFast tile--based multibased multi--dimensional samplingdimensional sampling

3D: Polycubes3D: Polycubes

NN--D: ???D: ???

98

ChallengesChallenges

•• Fast tileFast tile--based multibased multi--dimensional samplingdimensional sampling

•• Looking for optimum between the size of preLooking for optimum between the size of pre--
calculated data and the qualitycalculated data and the quality

99

Thank you!Thank you!
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for Non-Photorealistic Rendering
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T ileT ile--Based MethodsBased Methods
inin

NonNon--Photorealistic RenderingPhotorealistic Rendering
andand

Landscape Landscape ModelingModeling

JOHANNES KOPFJOHANNES KOPF
UNIVERSI TY OF KONSTANZUNIVERSI TY OF KONSTANZ

OutlineOutline

• Part One: Wang Tiles

– Texture synthesis on tiles

– Simple point distributions

• Part Two: Recursive Tiles

– Definition, algorithm, etc.

– Applications: Non-photorealistic rendering,
Texture painting

Wang TilesWang Tiles

T ile Set

T iling

Michael Cohen, Jonathan Shade, Stefan Hiller, Oliver 
Deussen
Wang Tiles for Image and Texture Generation
Proceedings of SIGGRAPH 2003

1.) Square tiles
2.) Colored edges
3.) Match colors
4.) Don’t rotate

Stochastic Tiling AlgorithmStochastic Tiling Algorithm

…

…

Why Wang Tiles?Why Wang Tiles?

Wang TilesPeriodic Tiling

Why Wang Tiles?Why Wang Tiles?



• 2 horizontal and vertical colors = 8 tiles

• 3 horizontal and vertical colors = 18 tiles

• C horizontal and vertical colors = 2 x C2 Tiles

Wang TilesWang Tiles Wang Tiles for Texture SynthesisWang Tiles for Texture Synthesis

Texture Texture 
SampleSample Wang Tile SetWang Tile Set

Wang Tiles for Texture SynthesisWang Tiles for Texture Synthesis Wang Tiles for Texture SynthesisWang Tiles for Texture Synthesis

Wang Tiles for Texture SynthesisWang Tiles for Texture Synthesis Wang Tiles for Texture SynthesisWang Tiles for Texture Synthesis



Wang Tiles for Texture SynthesisWang Tiles for Texture Synthesis Wang Tiles for Texture SynthesisWang Tiles for Texture Synthesis

Wang Tiles for DistributionsWang Tiles for Distributions Wang Tiles for DistributionsWang Tiles for Distributions

Poisson Disc Distributions

Wang Tiles for DistributionsWang Tiles for Distributions
Hiller, Deussen, Keller
T iled Blue Noise 
Samples
Proceedings of VMV 
2001

Wang Tiles for DistributionsWang Tiles for Distributions



Wang Tiles for DistributionsWang Tiles for Distributions

Single Tile (160 plants)

8 Wang Tiles (20 plants each)

Progressive & Recursive TilesProgressive & Recursive Tiles

So far: only constant density

Coming up: non-uniform density

More MotivationMore Motivation OverviewOverview

• T ile based method

– Wang tiles infinite non-periodic tilings

– Progressive sets       non-uniformity

– Recursive tiles       adaptive subdivision

Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, Dani 
L i schinski
Recursive Wang Tiles for Real-Time Blue Noise
Proceedings of SIGGRAPH 2006

Progressive Point SetsProgressive Point Sets
Michael McCool, Eugene Fiume
Hierarchical Poisson Disk Sampling 
Distributions
Proceedings of Graphics Interface ‘92

Progressive Point SetsProgressive Point Sets



Progressive TileProgressive Tile Progressive Wang TilesProgressive Wang Tiles

Progressive Wang TilesProgressive Wang Tiles Progressive Wang TilesProgressive Wang Tiles

Progressive Wang TilesProgressive Wang Tiles Progressive Wang TilesProgressive Wang Tiles



Progressive Wang TilesProgressive Wang Tiles Progressive Wang Tiles SummaryProgressive Wang Tiles Summary

• So far:

– Progressive Wang Tile set

– Non-periodic

– Non-uniform

• Coming up next:

– Overcoming bounded maximum density

Recursive Wang TilesRecursive Wang Tiles Recursive Wang TilesRecursive Wang Tiles

Progression Progression && RecursionRecursion ResultsResults

• T ile construction: approx. 10 mins

• Runtime:

– Extremely fast (6,000,000+ points/s)

• GPU implementation: MUCH faster

– Non-uniform density

– Local random access to infinite patterns

– Constant memory footprint

– Cost ~ Integral over density in local window



Application: NPRApplication: NPR

Real-Time Stippling Demo

Application: Texture PaintingApplication: Texture Painting

• Wang Tiles for Poisson disk point sets

• Non-uniform density using
progressive and recursive tiles

• Applications

– Non-photorealistic rendering

– Object instancing

• Download tile set & source code

ConclusionConclusion ThanksThanks

Questions?Questions?
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Lagae, A. and Dutré, P. A procedural object distribution function. ACM Transactions on
Graphics, 24(4):1442–1461, 2005a.
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