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Abstract

A new technique for building stochastic clustered-dot screens is being proposed. A large dither matrix comprising
thousands of stochastically laid out screen dots is constructed by first laying out the screen dot centers. Screen do
centers are obtained by placing discrete disks of a chosen radius at free cell locations when traversing the dither
array cells according to either a discretely rotated Hilbert space-filling curve or a random space-filling curve. After
Delauney triangulation of the screen dot centers, the maximal surface of each screen dot is computed and iso-inten:
sity regions are created. This iso-intensity map is converted into an anti-aliased grayscale image, i.e. into an array
of preliminary threshold values. These threshold values are renumbered to obtain the threshold values of the final
dither threshold array. By changing the disk radius, the screen dot size can be adapted to the characteristics of par
ticular printing devices. Larger screen dots may improve the tone reproduction of printers having important dot
gain.
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1. Introduction

Traditional periodic screening based on different angles and frequencies for the different color layers is by far the
most frequently used technique in offset color printing.

Stochastic screening represents an alternative solution for color reproduction (see [Widmer92], [Seybold93],
[Ostromoukhov93], [Eschbach94], [Kang96]). It appeared in the mid 1980s and became popular in the early 1990s
since it offers finer grain compared to traditional screening. It also permits to superimpose more than three layers
without Moirés. This method has shown its usefulness for high resolution devices at relatively high lineatures.
However, it requires the printing process to be controlled in order to keep the dot gain within a given range of tol-
erance.

Today, with the advent of high-resolution desktop color printers (electro-photography, ink-jet) there is a clear need
to re-design existing stochastic screening techniques in order to adapt them to these new devices. This is especiall
the case for electrophotographic color printers which show a non-linear behavior different from the behavior of off-
set printers. Tuning the size of the printed dot according to the printer's characteristics may considerably improve
the tone reproduction curve.

The present article explains the process of building variable-size stochastic screens. We propose methods to build
large size dither matrix which may comprise between 2500 and 10000 stochastically laid out screen dots. In sec-
tion 2, we describe several methods to lay out the dots within the large dither matrix. Once the screen dots are laid
out, i.e. their centers are positioned, we show in section 3 how to create dither threshold levels ensuring a linear dot
growth behavior across all gray levels. In section 4, we draw the conclusions.

2. Screen dot layout within a large dither matrix

Regarding the terminology, we use the term screen dot or simply dot for a set of black pixels clustered around a
center point. We use the term dither cell or simply cell for a dither matrix element containing one threshold level
and being used to generate one pixel of the output image.
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The layout of the dots within a large dither matrix should respect the following requirements:
a) Low frequencies should be avoided, i.e. the most representative frequencies present in the rendered halftone pat

terns should correspond to the screen dot periods.
b) The frequencies present in the rendered halftone patterns should be isotropic, i.e. there should be no stronge

screen frequencies at specific angles.

¢) The produced final dither matrix will cover only a part of the final image. It should therefore, when repeated hor-
izontally and vertically, cover the whole image without creating any discontinuities. The final large dither matrix
should therefore be continuous across its borders, i.e. the matrix should wrap around, horizontally and vertically.

Visiting path: Random Space-Filling Curve

Visiting path: Rotated Hilbert Space-Filling Curve
FXd--"1 i \ \ TSRl SN / R S L
K ], ) 7/:::_ y )l, ) s N / 'f A
5 VTS O < Sea AN
N\ N A , <
(/\ Y P /27 "\ AN ! ‘,'\\\‘
NG - 9" 0 It i
4 AN / “\\ Vo — ’_\\\‘\\\ /’7//
a4 ‘\ X7 'y S<
1 / \\ \ .7 7N
N L. A4 N SN
1 < (_—/J~ —~ — o v - \
7 >0 S~ T AN~ _ )’
Y 32 H _><{ S Rk N 4 \
Fe =\ \ \ - 1 S N \\
,)r\ \ N7 N ‘// \ n )
’ /N \© Z
@ AN L NS /)¥ ) ’
A T 7\ @
Seod . :i:‘ \ [ g 3 . - /I
(@) s G Y/
771 \\ '\ ! h N N //
Z 1\ d! \ T S 1 fr
’ \ \ 1 \ I N
\ A RV /) 7 N g / /,\ ==
\\ A ///, \‘ 1 // \‘ \IT‘ —Ll-—r/’/ k
/ N & \ / 7
Ly . \[ . )
V[ ONS y N7 \ 7 \
T N —— A - «
\ N P N A BN S N
\ T \ a4 N N AN ~
i \\ X \\ ¢ /I\\ Ve Y/ o
/ \ .’ \ ’ ;N TN -
/II \\ P \\ \\)// > /7 ‘\ . 7/ / \—\‘ R
o=~/ N ’ \ - 0 4
Histogram of distances Histogram of distances
between neighbors between neighbors
(b)
distance ance
(pixels) ixels)
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Histogram of Histogram of
screen dot areas screen dot areas
(c)
screen dot screen|dot
area (pixels) area (pixels)
100 200 300 400

0 100 200 300 400 0

Fig. 1. (a) Matrix covered by partially overlapping disks (dotted circles). The disks shown have a ratiudbick solid
lines show the corresponding Delauney triangulation. Thin solid lines show the limits of the screen dots. (b) Histogram of
screen center distances for screen dots generated with a disk radius of 16. (c) Histogram giving the distribution of screen dot

surfaces for screen dots generated with a disk radius of 16.



To layout the centers of the dots, we can define the minimal distance between two dots as thefradlisk. To

obtain a spatial distribution of the positions of the centers of all screen dots within the dither matrix, we propose to
first mark all cells of the dither matrix as free cells. We then defigtang pathenabling us to visit all cells of the

dither matrix. At each visited free cell, we place a discrete disk having a dddicslls All cells covered by such

a disk are marked as occupied. Since the visiting path traverses all matrix cells, the whole matrix becomes covered
by partially overlapping disks (dotted circles in Fig. 1).
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Fig. 2. Dot centers produced by visiting the dither array (a), (b) scanline by scanline, (d), (e) according to the Hilbert space-
filling curve, (g), (h) according to the rotated Hilbert space-filling curve, (j), (k) according to a random space-fillingdurve a
(c), (M), (), (I) the corresponding Fourier Amplitude spectra.



All disk centers become the center of a screen dot. To define the maximal surface of each screen dot, a Delauney
triangulation is applied to the set of centers [Goodman97]. The corresponding Voronoi diagram may have been

used to define the maximal surface coverage of each stochastically laid out screen dot. However, to obtain well
clustered black dots at high intensity levels and well clustered white dots at low intensity levels, an equivalent, but

slightly different scheme is used to create the maximal surface coverage of each screen dot (see section 3).

2.1 Visiting path: scanline by scanline

The properties of the dot distribution will be determined by the visiting path. A naive visiting path scanning the
dither matrix cell by cell and scanline by scanline produces a set of periodically laid out and tightly packed screen
dot centers (Fig. 2a and 2b). The resulting screen is a periodic diagonally oriented screen. The basic screen fre-
guencies are located at particular locations and are therefore not isotropic.

2.2 Visiting path: Hilbert space-filling curve

To improve the dot distribution, we can use as a visiting path the Hilbert space-filling curve [Sagan94]. In that case,
the dither matrix is of size N, where N is a power of two. Since parts of the Hilbert space-filling curve incorporate
some symmetry properties, the resulting dot center distribution is again isotropic (Fig. 2d-f).

2.3 Visiting path: rotated Hilbert space-filling curve

An improved distribution of dot centers is obtained by creating a visiting path made of a Hilbert space-filling curve
rotated by a one-to-one discrete rotation[Ostromoukhov94]. The rotated space-filling path is obtained by rotating a
multiple of the original Hilbert space-filling path with a Pythagorean aatgi®(3/4).

Such a discrete one-to-one rotation is obtained by rotating with a Pythagoream aragén(3/4) = 36.87%and by
applying rounding operations. Let us assume (haf) are the coordinates of the original dither array cells (the
lower-left cell lies at the origin) ana,y) the coordinates of the rotated dither array cells. Then the discrete one-to-

one rotation is expressed by:
_ b
X = roun% EU_E DH

_ a
y = roundE:EElHEDH

wherec = 5, a = 4andb = 3.

To be horizontally and vertically repetitive, any structure such as a matrix or a discrete path to be rotated by a
Pythagorean angle&xr = atan(3/4) must have a horizontal and vertical period which is a multiple of 5
[Ostromoukhov94]. Therefore, one must choose to rotate a dither array made of a single Hilbert curve, of size 5N
by 5N, where N by N is the size of the array containing the Hilbert curve. Fig 3 shows the original 4 x 4 Hilbert
space-filling path and a rotated space-filling path obtained by rotating a multiple of the original Hilbert space-fill-
ing path by the Pythagorean angle atan(3/4) = 36.87°.

The rotated Hilbert space-filling curve is asymmetric. One can observe both in the image space (Fig. 2g and 2h)
and in the Fourier amplitude spectrum (Fig. 2i) that the resulting dot center distribution is almost isotropic.

2.4 Visiting path: Random space-filling curve

Let us explore the results obtained by a random space-filling curve. A random space-filling curve where proximity
of successive cells is not required can be constructed by starting from a list of cells, initially ordered cell by cell
and scanline by scanline. Two cells within this ordered list are randomly selected and permuted. After a number of
permutations, the cell visiting order is completely randomized. There is absolutely no symmetry in the sequence of
visited cells. As expected, one can observe both in the image space (Fig. 2j and 2k) and in the Fourier amplitude
spectrum (Fig. 2l) that the resulting dot center distribution is isotropic. Furthermore, multiples of the basic fre-
guency components are much less pronounced than in the case of the rotated Hilbert space-filling curve visiting
path.

Methods for finding screen dot layout presented in this article differ from other methods known in the art (see for
example [Eschbach90], [Marcu98]).
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Fig 3. (a) Original 4 x 4 Hilbert space-filling path and (b) a rotated space-filling path obtained by rotating a multi-
ple of the original Hilbert space-filling path by the Pythagorean atgi€3/4).

3. Generating the dither matrix with stochastic screen dots

Starting from a set of stochastically distributed screen dot centers, the final dither matrix is obtained with the fol-
lowing steps:

a) Generate a Delauney triangulation of the set of screen dot centers
b) From the Delauney triangulation, define the full surface coverage of each screen dot (maximal surface coverage)
c) Generate iso-intensity lines around each screen dot for a set of different intensity levels (for example for 32



intensity levels)

d) With a standard software package, such as Photoshop, according to the defined iso-intensity lines, create thresh
old levels for all cells of the dither matrix (this corresponds to the generation of a grayscale image according to the

given iso-intensity lines)

e) Renumber the previously generated threshold levels so as to ensure a uniform distribution of threshold levels,
i.e. a flat histogram of the dither threshold levels present in the dither matrix.

Many books describe the Delauney triangulation of a planar set of dots (see [Goodman97]). Once the triangulation
has been carried out, the full surface of each screen dot is determined geometrically by connecting triangle centers
with their respective edge middle points (Fig. 4a).

Iso-intensity lines are determined so as to ensure that the surface within two successive iso-intensity lines grows
linearly with intensity. Therefore, the positions of successive intersections of iso-intensity lines and triangle bound-
aries needs to be appropriately computed, taking into account that the quotient of the surfaces of two scaled trian-
gles is the square of the quotient of their respective side lengths. Figure 4c illustrates the generated iso-intensity
lines defining equally large surfaces for a certain numbers of screen dots.
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Fig. 4. Creation of a stochastic dither matrix using a rotated Hilbert visiting path: (a) maximal screen dot surface
ified iso-intensity lines; and (d) detail of the resulting dither matrix, plotted with a few discrete intensity levels
bounded by iso-intensity curves.



Because of the subsequent renumbering of cells, the iso-intensity lines are allowed to incorporate some variations
and the generated surfaces are allowed to differ slightly one from another. Fig. 4d shows the iso-intensity lines gen-
erated so as to produce screen dots with additional vertices, i.e. smoother screen dots than the screen dots produc
in figure 4c.

The generated iso-intensity line artwork is rasterized into an anti-aliased grayscale image using a standard imaging
software package (for example Adobe PhotoShop). The grayscale levels are an approximation of the desired
threshold levels and represent a surface interpolation of the previously generated iso-intensity lines.

These grayscale levels are renumbered, i.e. identical gray levels are assigned successive numbers. The resultin
renumbered array is the desired dither threshold array: the renumbering process ensures that dither threshold level
are uniformly distributed.

The generated large size dither array is used to create halftones with a stochastic screen dot. The disk radius
defines the minimal distance between the screen dots. The histogram of screen dot center distances shows the
screen dots are apart by a maximal distan@r @fFig. 1b). Histogram 1c gives a histogram of the surface associ-

ated to screen dots, for a disk radiud 6pixels. It shows that the minimal screen dot surface is close to that of a
disk with radiug/2.

Figure 4b shows the dither matrix produced by the random space-filling visiting path. To provide a sharper view of
the screen dots, the dither matrix is plotted with a few discrete intensity levels bounded by iso-intensity curves.

Fig 5a shows a wedge rendered with the dither matrix shown in Fig. 4b (disk mab®)sand Fig 5b shows a
wedge rendered with a dither matrix generated using a disk of ra@iu®bserve the generated stochastic screen
dots: there is no predominant orientation and no low frequency patterns are visible.

(a)

(b)

Fig 5. (a) Grayscale wedge rendered with the dither matrix shown in Fig. 4b, using the rotated Hilbert space-filling curve, disk
radius r=16, printed at 600 dpi. (b) Grayscale wedge rendered with a dither matrix using the rotated Hilbert space-filling curve
disk radius r=8, printed at 600 dpi.

Please note the non-symmetric behavior of the screen dots in highlight and shadow regions. According to the lay-
out of the screen dots (Fig. 4b), the number of white dots is approximatively twice the number of black dots. There-
fore, in highlight regions, black dots have a surface which is twice as large as white dots in corresponding shadow
regions.

4. Conclusions

A new technique for building stochastic clustered-dot screens has been described. A large dither matrix comprising
thousands of stochastically laid out screen dots is constructed by first laying out the screen dot centers. Screen do
centers are obtained by placing discrete disks of the chosenradiuse cell locations when traversing the dither

array cells according to either a discretely rotated Hilbert space-filling curve or a random space-filling curve. After
Delauney triangulation of the screen dot centers, the maximal surface of each screen dot is computed and iso-inten.
sity regions are created. This iso-intensity map is converted into an anti-aliased grayscale image, i.e. into an array
of preliminary threshold values. These threshold values are renumbered to obtain the threshold values of the final
dither threshold array.

The resulting stochastic clustered dot screen incorporates screen dots whose distances vary between the chose
disk radiusr and2r. For the random space-filling curve, the histogram of the screen dot surface is similar to a



Gaussian function. The largest screen dot surface is roughly 3 times larger than the smallest screen dot surface. B
changing the disk radius, the screen dot size can be adapted to the characteristics of particular printing devices.
Larger screen dots may improve the tone reproduction of printers having important dot gain.

The stochastic screens produced using the presented method look like fine mezzotint (see Figs 6 and 7). The pro
posed stochastic screen generation method is of interest for high-resolution office printers: at 1200 dpi, a stochastic
screen generated with a disk of radie8 corresponds to a traditional screen of 150 Ipi. The extension of the pre-
sented method to color images is underway. This extension will also incorporate sophisticated dot gain compensa-
tion methods.
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Fig. 6.A sample image, generated with a dither matrix incorporating stochastic screen dots produced with a disk of radius 16
(random space-filling curve), printed at 600 dpi.



Fig. 7.A sample image, generated with a dither matrix incorporating stochastic screen dots produced with a disk of radius 8
(random space-filling curve), printed at 600 dpi.
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