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Overview

Two recent algorithms for reconstruction will be presented.

1 Passive reconstruction

Multi-view stereo algorithm
Occlusion modeling

2 Active reconstruction

Camera-projector system
Structured light reconstruction
Large multi-projector immersive projection
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3D Reconstruction

Goal: Establish correspondance between two or more views of a
scene to reconstruct by triangulation.
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3D Reconstruction

Goal: Establish correspondance between two or more views of a
scene to reconstruct by triangulation.

Volumetric reconstruction

Cameras can ”go around” the scene

Allows a full reconstruction

Voxel representation is typical



Occlusion

A point in the scene wich is not directly visible from a camera is
occluded.
Occluded points affect correspondence as they are harder (or
impossible) to match.

Camera separation increase precision, but also occlusion.



Stereo energy formulation

Occlusion depends on the camera configuration and on the depth
variation in the scene.



Stereo energy formulation

Depth configuration

For a set of reference pixels P and a set of depth labels Z, a
depth configuration f is

f : P 7→ Z

The energy function to minimize is

E(f) =
∑
p∈P

e(p, f(p)) +
∑
p∈P

∑
r∈Np

s(p, r, f(p), f(r))

Np is the neighborhood of pixel p.

Can be solved efficiently...

... since e(p, f(p)) is independent over p.



Stereo energy formulation

Depth configuration

For a set of reference pixels P and a set of depth labels Z, a
depth configuration f is

f : P 7→ Z

The energy function to minimize is

E(f) =
∑
p∈P

e(p, f(p)) +
∑
p∈P

∑
r∈Np

s(p, r, f(p), f(r))

Np is the neighborhood of pixel p.

Can be solved efficiently...

... since the smoothing term has a simple 2-clique form.



Visibility Masks

Volumetric visibility

Given a depth configuration f , the visibility of a 3D reference point
q for camera i is

Vi(q, f)

(1 if visible, 0 if not)

Visibility mask

The visibility of point q for N supporting cameras is a vector

V(q, f) =
⊕

i=1...N

Vi(q, f)

(q is always visible in the reference camera)

Visibility is a long-range interaction. Immediate neighbors are
insufficient to compute it.



Visibility

Visibility configuration

For a set of possible visibility masks M, a visibility configuration
g is

g : P 7→M

New energy visibility aware function is

E(f, g) =
∑
p∈P

e(p, f(p), g(p)) + smoothing

A typical matching term is

e(p, z,m) =
m · C(p|z)

|m|
instead of e(p, z) = C(p|z)

3D points p|z is p augmented by depth z

C(q) is a vector of matching costs for each camera

the l1 norm |m| is the number of visible cameras

the case |m| = 0 is interesting...



Depth and Visibility

Let’s try to disentangle visibility and depth...

Geo-consistency

A depth configuration f is geo-consistent with a visibility
configuration g if

g(p) ≤ V(p|f(p), f)

for each components and all p ∈ P.

Intuitively

A geo-consistent depth configuration is still geo-consistent when
removing too many cameras from the visibility.

A new problem

Solve E in depth f and visibility g, with the constraint that f is
geo-consistent with g.
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Solving Depth and Visibility

Some approaches...

All cameras visible

Set g0(p) = (1, 1, . . . , 1) for all p. Solve E(f, g0).
This is equivalent to solving only E(f).

Simultaneous depth and visibility

Test all combinations in Z ×M.
This is an intractable search space.

Reduce the set M
For a given camera configuration, not all masks are possible.
Still, the set is too big, or wrong.

Photo-consistency

Remove cameras that provide photo-inconsistent matches.
Problematic. Some cameras shoud be removed and are not. Space
carving uses this.
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A new implicit occlusion model

Make the dependency temporal

Let f0 be the depth configuration minimizing E(f, g0).
For t > 0, we minimize∑

p∈P
e(p, f t(p),V(p|f t(p), f t−1) + smoothing

where
gt(p) = V(p|f t(p), f t−1)

Intuitively

1 Start solving depth with all cameras visible.

2 Use the current depth configuration to compute new visibility.

3 Solve for depth using the new visibility, and go back to step 2.
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The question that kills...

It’s all nice, but...

Does it converge?

History of visibility

The new visibility mask is multiplied by the previous visibility.
This ensures that once a camera is removed, it is never used again.
This also ensures convergence.

The intermediate depth and visibility configurations are not
geo-consistent, except at convergence.
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Pseudo-visibility

The depth of occluded pixels tends to be underestimated.

These misplaced pixels can wrongly occlude other pixel.

This makes closer objects appear larger.



Pseudo-visibility

Empirical study of misclassification of pixels.

Pseudo-visibility

An occluder should be considered invisible, just like an occluded
pixel.
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Results : Middlebury dataset

The cost function is the same for all algorithms.
The smoothing term is

s(p, r, f(p), f(r)) = λg(p, r)l(f(p, f(r))

where

g(p, r) =

{
3 if |Iref (p)− Iref (q)| < 5
1 otherwise

There is a lot to do to make the matching and smoothing cost
more general.



Results

The algorithms are labelled as C-M where C is the cost function
and M is the minimization algorithm used.

Cost functions

FULL No occlusion modeling
GEO Our method
KAN Improved Nakamura (all left/all right)

Minimization algorithms

MF Maximum-flow
BNV Graph-cuts



Results : Middlebury dataset

Best performance results (select the best λ per image)

8 images used on a single baseline

8 iterations are used in GEO, but change is minimal after 4



Results : Middlebury dataset



Results : Tsukuba

5 images used, single baseline

The right columns removes pixels detected as breaking the
ordering constraint



Results : Middlebury dataset



Results : Noël

An increase of the baseline always increase the ammount of
occlusion.
⇒
We can test the robustness to occlusion by increasing the baseline.

If the results are similar, the occlusion model is good.
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Results : Noël

Relative evaluation

The incompatibility of pixel p between two experimental
conditions i and j is

|fi(p)− fj(p)| > 1

Percentage of incompatible pixels with different baselines.



From Passive to Active

Passive reconstruction has a lot of problems to address

photometric ambiguity

visibility problem (geo-consistency)

To simplify the matching process, we can use a projector.

Control the texture of scene objects

Project codes to simplify correspondence

99% of industrial scanners use some form of active reconstruction



Projecting on anything

The future of projection is simple: project on any surface you wish,
and cover that surface with many projectors.

Ideal case

perfectly aligned projectors

no radial distortion

flat projection surface

Most common distortion:
perspective solved by keystone
adjustment



Projecting on anything

Real life...

Ideal case

non aligned projectors

radial distortion

curved projection surface



Multi-projector Immersion

Cyclorama

9 projectors

120’ circonference
cylinder

10’ high

Half-Sphere

inflated

24’ diameter

6 projectors from outside

file:///home/roys/share/video/cyclorama.avi


Catadioptric camear

The camera represent the observer.
For complete immersion, use a catadioptric camera or a fisheye.



Pixel ratio

Here is the view of the catadioptric camera.
The 1024× 768 projector image (786432 pixels) is compressed into
only 28000 pixels of the camera image (1008× 1017 = 1025136),
which is a compression ratio of 28:1.
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Structured Light patterns

For each projector pixel (x, y) we define a code P (x, y) = x⊕ y
(10+10 bits). A succession of pattern images Pi and their inverse
P i is projected.

Pi(x, y) = biti(P (x, y)) and P i(x, y) = 1− Pi(x, y)



Gray Codes

G(x) = x xor (x >> 1)

For to neighbor pixels x and x + 1, the number of changed bits is
the number of black-white transitions in the pattern images.

x 0 1 2 3 4 5 6 7

P0 0 1 0 1 0 1 0 1
P1 0 0 1 1 0 0 1 1
P2 0 0 0 0 1 1 1 1

Gray code ensure that one bit changes between consecutive codes.

G(x) 0 1 3 2 6 7 5 4

P0 0 1 1 0 0 1 1 0
P1 0 0 1 1 1 1 0 0
P2 0 0 0 0 1 1 1 1



Decoding Structured Light patterns

The camera record pattern Pi as image Ci, and P i as Ci.
To recover the code C(x, y)

C(x, y) =
⊕

i

thresh(Ci(x, y)− Ci(x, y))

where

thresh(v) =

{
1 ifv > 0
0 otherwise

Hummmm....



Decoding Structured Light patterns

Seen as a probability, we could improve the selection in the
ambiguous zone near 0.

Threshold



Decoding Structured Light patterns

Seen as a probability, we could improve the selection in the
ambiguous zone near 0.

Fixed ambiguity



Decoding Structured Light patterns

Seen as a probability, we could improve the selection in the
ambiguous zone near 0.

Progressive ambiguity



Code probability

First unknown bit is 0 / 1 with probability 0.2 / 0.8

Second unknown bit is 0 / 1 with probability 0.4 / 0.6

1 ? 0 1 0 1 0 ? 1.00

1 0 0 1 0 1 0 ? 0.20
1 1 0 1 0 1 0 ? 0.80

1 ? 0 1 0 1 0 0 0.40
1 ? 0 1 0 1 0 1 0.60

1 0 0 1 0 1 0 0 0.08
1 0 0 1 0 1 0 1 0.12
1 1 0 1 0 1 0 0 0.32
1 1 0 1 0 1 0 1 0.48



Markov Random Fields

Sites

Pixels (x, y) of the camera image.

Labels

All codes C(c, y) with non zero probability.
(Codes are real, not Gray)

Smoothness term

Codes of neighboring pixels should be similar.
(Absolute difference of codes)



Markov Random Fields

Sites

Pixels (x, y) of the camera image.

Labels

All codes C(c, y) with non zero probability.
(Codes are real, not Gray)

Smoothness term

Codes of neighboring pixels should be similar.
(Absolute difference of codes)



Markov Random Fields

Sites

Pixels (x, y) of the camera image.

Labels

All codes C(c, y) with non zero probability.
(Codes are real, not Gray)

Smoothness term

Codes of neighboring pixels should be similar.
(Absolute difference of codes)

Solved using Maximum-flow, ICM, ...
(pick your favorite, the labels are 1-D ordered, the problem is easy
to solve)



Example

Two projectors setup

Flat projection surface.

Perspective camera

What the camera sees (with two projectors on):



Example corespondances

Camera to first projector...

Camera → Projector X Camera → Projector Y



Example corespondances

Camera to second projector...

Camera → Projector X Camera → Projector Y



Example inverse correspondences

The Camera-Projector correspondences must be inverted
(carefully).

First projector to Camera...

Projector → Camera X Projector → Camera Y



Example inverse correspondences

The Camera-Projector correspondences must be inverted
(carefully).

Second projector to Camera...

Projector → Camera X Projector → Camera Y



Conclusion

Reconstruction

Occlusion is becoming the dominant problem in stereo

Visibility maps are as important as depth itself

N -camera stereo (N > 2) is a tremendous help

Occlusion can be modelled on top of regular stereo algorithms

Better occlusion benchmarks are needed

...

Immersion

Immersion = multiple projectors and bad pixel ratios

Accurate 3D reconstruction is possible.

...



Example 1

A new camera model for distortion, in between: Bonjour, cet été
un être.



Example 2

Parametric

Pin-hole + radial distortion
Unified catadioptric model
Caustics, Non-Single Viewpoint (NSVP)

Fully general (generic)

One pixel ↔ one sampling ray
Possible NSVP
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Example 3: ovelays

This frame produces

This is 1 avec -

This is 2

This is 2 avec -

This is 3
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Example 4 : more ovelays

Bonjour, c’est une diapo rigolote, n’est-ce pas?
Et en plus!
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Example 5: Alerts

Camera with general radially symmetric distortion:

Distorsion center = principal point

Distortion is radially symmetric but general

Each distortion circle → Sampling Right Viewing Cone

Cones’ axis are aligned on the optical axis

SVP: identical cones’s vertex

NSVP: cones’s vertex only on the optical axis
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Example 6: multi-eq and table

It is not easy to have a gradual table. pause works, but regular ¡¿
does not work well... must be checked...
Class A B C D

X 1 2 3 4
Y 3 4 5 6
Z 5 6 7 8

For some reason, the gradual equation does not work at the same
time as pause.... must be checked...

A = B (1)

= C (2)

= D (3)

Bonjour!
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Example 7 : Only, uncover, visible, invisible

On peut utiliser le only(1) pour seulement la slide 1. et oui.
On peut utiliser le uncover(2) pour voir a la slide 2. et oui.
On peut utiliser le visible(3)

pour seulement la slide 3

. et oui.
On peut utiliser le invisible(4) pour seulement la slide 4. et oui.

Note

Nous sommes à la slide 1.
On va changer de couleur pour la diapo 3!!!
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Example 7 : Only, uncover, visible, invisible

On peut utiliser le only(1) . et oui.
On peut utiliser le uncover(2) pour voir a la slide 2. et oui.
On peut utiliser le visible(3)

pour seulement la slide 3

. et oui.
On peut utiliser le invisible(4)

pour seulement la slide 4

. et oui.

Note

Nous sommes à la slide 4.
On va changer de couleur pour la diapo 3!!!



Example 8 : text box!

Note 1

Nous sommes ici dans un
premier bloc.

a = 1

b = 2 + 2

c = 3 + 3 + 3

d = a + b + c

Note 2

Nous sommes ici. Nous
sommes ici dans un second
bloc.

Et d’ailleur voici un peu de
texte rigolo pour s’amuser.



Example 9 : Les blocks!

Viewing cone-Calibration plane intersection

Plane of known euclidien structure

Dense image-calibration plane matching

Structured light

Intersection shape: calibration ellipse

(Hyperbola case discussed in the paper)

Un autre détail...

Et bien oui, il ne fait pas oublier le code! for(i=0;i<10;i++)
...

Un autre détail...

Et aussi une équation...

10∑
i=0

xi + i2
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Et aussi une équation...
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Example 10: Woobling...

Some text for the first slide.
Possibly several lines long.

On peut aussi faire...



Example 10: Woobling...

Replacement on the second slide. Supressed for handout.

On peut aussi faire...
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