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Abstract.  In this paper, the major direct solutions to the three point perspective pose estimation
ptoblems are reviewed from a unified perspective beginning with the first solution which was published
in 1841 by a German mathematician, continuing through the selutions published in the German
and then American photogrammetry literature, and most recently in the current computer vision
literature. The numerical stability of these three point perspective solutions are also discussed. We
show that even in case where the solution is not near the geometric unstable region, considerable
care must be exercised in the calculation. Depending on the order of the substitutions utilized,
the relative error can change over a thousand to one. This difference is due entirely to the way
the calculations are performed and not due to any geometric structural instability of any problem
instance. We present an analysis method which produces a numerically stable calculation.

| 1 Introduction

} Given the perspective projection of three points
constituting the vertices of a known triangle
i 3D space, it is possible to determine the
position of each of the vertices. There may
be as many as four possible solutions for point
positions in front of the center of perspectivity
. and four corresponding solutions whose point
: positions are behind the center of perspectivity.
¢ In photogrammetry, this problem is called the
three point space resection problem,

¢ This problem is important in photogrammetry

as well as in computer vision, because it has a va-
riety of applications, such as camera calibration
(Tsai 1987), object recognition, robot picking,
and robot navigation (Linnainmaa et al. 1988; .
Horaud 1987; Lowe 1987; Dhome 1988) in com-
puter vision and the determination of the loca-
tion in space from a set of landmarks appear-
ing in the image in photogrammetry (Fischler
and Bolles 1981). Three points is the minimal
information to solve such a problem. It was
solved by a direct solution first by a German
mathematician in 1841 (Grunert 1841) and then
refined by German photogrammatrists in 1904
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and 1925 (Miller 1925). Then it was indepen-
dently solved by an American photogrammatrist
in 1949 (Merritt 1949).

The importance of the direct solution became
less important to the photogrammetry commu-
nity with the advent of iterative solutions which
could be done by computer. The iterative so-
lution technique which was first published by
Church (1945, 1948), needs a good starting value
which constitutes an approximate solution. In
most photogrammetry situations scale and dis-
tances are known to within 10% and angle is
known to within 15°. This is good enough for
the iterative technique which is just a repeated
adjustment to the linearized equations. The
technique can be found in many photogramme-
try books such as Wolf (1974) or the Manual of
Photogrammetry (Slama 1980).

- The exact opposite is true for computer vision

problems. Most of the time approximate solu-
tions are not known so that the iterative method
cannot be used. This makes the direct solution
method more important in computer vision. In-
deed, in 1981 the computer vision community
independently derived its first direct solution
(Fischler and Bolles 1981). And the commu-
nity has produced a few more direct solutions
since then. -.

In this paper, first, we give a consistent treat-
ment of all the major direct solutions to the
three point pose estimation problem. There is
a bit of mathematical tedium in describing the
various solutions, and perhaps it is worthwhile
to put them all in one place so that another
vision researcher can be saved from having to
redo the tedium himself or herself. Then, we
compare the differences of the algebraic deriva-
tions and discuss the singularity of all the solu-
tions. In addition to determining the positions
of the three vertices in the 3D camera coor-
dinate system, it is desirable to determine the
transformation function from a 3D world coor-
dinate system to the 3D camera coordinate sys-
tem, which is called the absolute orientation in
photogrammetry. Though many solutions to the
absolute orientation can be found in photogram-
metry literature (Schut 1960; Schonemann 1966;
1970; Wolf 1974; Slama 1980; Horn 1988; and
Haralick et al. 1989) we present a simple linear

solution in Appendix I to make the three point :
perspective pose estimation solution complete.;:
Second, we run experiments to study the nof-
merical stability of each of these solutions and :
to evaluate some analysis methods described in -
Appendix II to improve the numerical stability
of the calculation. It is well-known that round- -
ing errors accumulate with increasing amounts
of calculation and significantly magnify in some
kinds of operations. Furthermore, we find that
the order of using these equations to derive the
final solution affects the accuracy of numerical
results. The results show that the accuracy can .
be improved by a factor of about 10%. Since the
accumulation of rounding errors will be propa-
gated into the calculation of the absolute orien-
tation problem. As a result the error would be
very serious at the final stage. In the advent of
better sensors and higher image resolution, the
numerical stability will play a2 more dominant
role in the errors of computer vision problem.

Finally, we summarize the result of hundreds
of thousands experiments which study the nu-
merical behaviors of the six different solution
techniques, the effect of the order of equation
manipulation, and the effectiveness of analysis
methods. These results show that the analy-
sis techniques in Appendix Il are effective in
determining equation order manipulation. The
source codes and documentation used for the
experiments in the paper is available on a
CDROM. The interested readers can send a
request to the Intelligent Systems Laboratory at
the University of Washington.

R

2 The Problem Definition

Grunert (1841) appears to have been the first
one to solve the problem. The solution he gives
is outlined by Miiller (1925). The problem can
be set up in the following way which is illustrated
in Figure 1. _

Let the unknown positions of the three points
of the known triangle be :

Ti
P1, P2, and Py P = (‘H-) ' i= 152a3‘
&4
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Fig. 1 lllustrates the geometry of the three point space
fesection problemn. The triangle side lengths a,b and ¢ are
known and the unit vectors ji, j», and j; are known. The
problem is to determine the lengths s;,s;, and sy from
which the 3D vertex point positions py,ps, and p; can be
immediately determined,

Let the known side lengths of the triangle be

a = |lp2 ~ psf|
b= |lp1 ~ ps|
e = [lpy —p2|.

We take the origin of the camera coordinate
frame to be the center of perspectivity and the
image projection plane to be a distance f in
front of the center of perspectivity. Let the
gbserved perspective projection of p;,py,py be
?!ﬁ; 934 respectivcly;

o= (:“) i=1,23.

By the perspective equations,

{

= Ty
u=f o

f vy = L

unit vectors pointing from the center of

ek

i 1 u;

r_!- vif, i= 1,2,3

: !e ;; ﬂ'i- + U‘- + P f

r .

respectively. The center of perspectivity to-
 gether with the three points of the 3D triangle
form a tetrahedron. Let the angles at the center

! pectivity to the observed points p;, p,, ps are

of perspectivity opposite sides a, b, ¢ be a, 8, and
7. These angles are given by

coso = jz - j3
cos B = j; - j3
COS7Y = j1* ja
where ji, j2, and j3 are unit vectors given by

Uy
. 1 2
= ;;I_LE +v§+f" (?)
: .1 B o

Let the unknown distances of the points
P1,P2,p3 from the center of perspectivity be
81,82, and sg, respectively. Then s; = ||pf],i =
1,2,3. To determine the position of the points
p1,p2, p3 With respect to the camera reference
frame, it is sufficient to determine s;,s,, and
83 since

Py sijh i= 1s2;3-

3 The Solutions

There are six solutions presented by Grunert
(1841), Finsterwalder (1937), Merritt (1949),
Fischler and Bolles (1981), Linnainmaa et al.
(1988), and Grafarend et al. (1989), respec-
tively. In this section we first give the deriva-
tion of the Grunert solution to show how the
problem can be solved. Then, we analyze what
are the major differences among the algebraic
derivation of these solutions before we give the
detailed derivations for the rest of solutions.
Finally, we will give comparisons of algebraic
derivation among six solutions.

Grunert’s Solution

Grunert proceeded in the following way. By the
law of cosines, ;

8§+8§—282830080=32 (1)
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s + 83 — 28y83cos 3 = b? )
8% + 8% —28185c08y = ¢ 3)
Let
82 = us; and s3 = vs;. (4)
Then
s}(u® + v* — 2uvcos ) = a’
s3(1 + v? — 2vcos f) = b*
831 + u* — 2ucosy) = &
Hence,
;. a?
P17 W+ of — Zuvcosa
_ b
1+ v?—2vcosf
2
" 1+ u? — 2ucosy ®)
from which
u? + ~% -2 a
b’ v UvCOs
2a* a®
+Fv_cosﬁ-§ =0 (6)
A &
2 €.z e
u b2v +21:b2005,3
—2ucosqr+b2;);c2 ={. )
From equation (6)
v — a? 2q? a
2 2 i =
u 3 v A-Zuuc?sa bzveosﬁ+ h

This expression for u? can be substituted into
equation (7). This permits a solution for u to
be obtained in terms of v.

(~1+l"1¢)_t -2(25) owﬂv-l-1+‘:-',f_ ®)

2{cos y—vcosa)

This expression for u can then be substituted
back into the equation (6) to obtain a fourth
order polynomial in v.

A + AP + AP + Aju+ Ao=0  (9)

where

_(a*=-¢ 2 a2,
T

2 _ 2 2
A4)= (1+E-—bzi) —%0082')’.

This fourth order polynomial equation i
have as many as four real roots. By equd
tion (8), to every solution for v there will be 3
corresponding solution for u. Then having v
ues for u and v it is an easy matter to determig
a value for s, from equation (5). The valu
for s, and sy are immediately determined
equation (4). Most of the time it gives tw
solutions (Wolfe et al. 1991).

Outline of the Differences of Algebraic Derivatio

As we can find in the Grunert solution, §

procedure to solve the problem is first to redu
three unknown variables s;, sz, and s3 of 4.
quadratic equations (1), (2) and (3) into tW
variables u and v, and then further reduce
variables « and v into one variable v from whig
we find the solutions of v and substitute théj
back into equation (5) and equation (4) to obtd
81, 82, and s3. Though all six solutions main
follow the outline mentioned above, there:
several differences from the algebraic deri
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point of view. We classify the differences from
the following aspects.

- Change of variables
Linnainmaa et al. use s; = u + cos~ys, and
83 = v + cosfls; instead of s = us; and
83 = vs; which are used by others.

Different pairs of equations
There are three unknowns in the three equa-
tions (1), (2), and (3). After the change of
variables is used, any two pairs of equations
can be used to eliminate the third variable.
For example, Grunert uses the pair of equa-
tions (1) and (2) and the pair of equations (2)
and (3) and Merritt uses the pair of equa-
tions (1) and (2) and the pair of equations (1)
and (3).

Approaches. of further variables reduction
When reducing two variables into one vari-
able, Grunert and Merritt use substitution.
Fischler and Bolles and Linnainmaa et al.
use directly elimination to reduce the vari-
ables. Finsterwalder and Grafarend et al.
introduce a new variable ) before reducing
the variables.

The flow chart shown in Figure 2 gives a sum-
mary of the differences of algebraic derivation
of six solutions in a unified frame. In the flow
chart we start from the three equations (1), (2),
and (3), make different change of variables, use
different pairs of equations, do further variable
reduction by different approaches, if necessary,
solve the new variable, then we have six different

solution techniques.

Finsterwalder’s Solution

Finsterwalder (1903) as summarized by Finster-
walder and Scheufele (1937) proceeded in a
‘manner which required only finding a root of a
cubic polynomial and the roots of two quadratic
polynomials rather than finding all the roots of
@ fourth order polynomial. Finsterwalder mul-
tiplies equation (7) by X and adds the result to
Equation (6) to produce

Au’ + 2Buv + Cv* + 2Du+ 2Ev+ F =0
(10)

where the coefficients depend on X:
A=1+)
B = —cosa

B-a® &
C="Z2 0%

D = —)cosvy
4

e
E= (32- +A§)0086

—a? b2 — 2
penf a(850).

Finsterwalder considers this as a quadratic
equation in v. Solving for v,

v

- -2(.Bu+E]:k\/4(Bu%§")’—4C{As’+2Du+F)

_ —(Bu+E)t+/(B?- AC)w3+2(BE—CD)u+tE*—CF
= b £ 3

(11)
The numerically stable way of doing this com-

putation is to determine the small root in terms
of the larger root.

—sgn(Bu +
Yigrge = _"_""—gn( Cu E) [lBu + E’
++/(B*-AC)*+2(BE-CD)u+E—CF)
_C
vamau Auhfyg

Now Finsterwalder asks, can a value for A
be found which makes (B? — AC)u? + 2(BE —
CD)u + E* — CF be a perfect square. For
in this case v can be expressed as a first or-
der polynomial in terms of u. The geometric
meaning of this case is that the solution to (10)
corresponds to two intersecting lines. This first
order polynomial can then be substituted back
into equation (6) or (7) either one of which
yields a quadratic equation which can be solved
for u, and then using the just determined value
for u in the first order expression for v, a value
for v can be determined. Four solutions are pro-
duced since there are two first order expressions
for v and when each of them is substituted back
into equation (6) or (7) the resulting quadratic
in u has two solutions.

The value of A which produces a perfect
square satisfies

(B* ~ AC)w? + 2(BE — CD)u + E* — CF.
= (up + g)’. (12)
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Fig.l'ﬂmwcdifmmuofaﬂgemaﬁvaﬁommmgsksduﬁmwehﬁqm

Sy% + 557 - 2883 cost = 0 (1)
$1% +532- 25153 cos B=0 @
812+ 522-28182(:057 =0 (3
Change $5y = us, 85, = U+ COSYS,
Va?ifa bles 53 = V8, 53 = v+ cosPs,
Py NS
Different Pairs| w2 w2 | an]an | an
of Bxuations e lamn |l aniaen | an
Further Varia- gk Elimina- | | Intod Elimina-
ble Reduction Rotgint tion e new \r:rcica;lc o
Set a Set an
Solve the New!| perfect | | eigen-
Variable square | | system
nto into N
ZETO Zero Lol
Y Y ¥ y ¥
ﬂ : Grunert | Merritt | Fischier | Finster- | Grafar- {Linnain- I
%géll’llﬁ?(:rllu - o &i Bolles “:anliler end eatr al ma: :tnal oy
o
Hence, 5 each side and dividing all terms by a cof
B - AC = 7 C there results :
BE-CD=pq C(AF - D?) + BQ2DE — BF) - AE* =
E? - CF=¢.
Since P = (pg)? o : or expressed as a determinant
2 _ AR = _ 2 A B D
(B? - AC)(E® - CF) = (BE — CD) - -
After expanding this out, canceling a B°E” on D E F
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This is a cubic equation for \:
GX+HX+IA+J=0 (14)
where
G = #(*sin® 8 — b*sin’ 4) :
H = b - a®)sin’y + (& + 2a%) sin’ 8
+ 2b%c*(~1 + cos awcos Acos v)
I =b* ¥ — *)sin’ o + a®(a? + 2¢%) sin® B
+ 2a%6%(—1 + cos a.cos A cos 7)
J = a’(a®sin’ 8 - b*sin’ ).
Solve this equation for any root ). This deter-
mines p and gq:

p=+vB2- AC

- a0 2055 -5
¢ =sgn(BE — CD)W/E*-CF
= sgn( —msa(§ + A9§)eosﬂ

(B3 ) o)

o/ ($+268) oo - (B -x) (800 (22)).
(15)

Then from equation (11)
v =[—(Bu+ E)*(pu + ¢))/C
=[-(BFpu—-(EF9)/C
=um + n,

where
m = [-B+p]/C
and
n = [-(E ¥ q)]/C.
Substituting this back into equation (7) and sim-
plifying there results
(* = mc*)u? + 2(E(cos B — n)m — b cosy)u
—n? + 2Pncos B+ P~ 2 =0.  (16)

Hence, _
e —(c*(cos B — n)m — b*cos )

()

The numerically stable way to calculate u is to
compute the smaller root in terms of the larger
root. Let

A= -me
B = c*(cos B — n)m — b® cos y
C = —cn® + 2ncos B + B — &

then
Utarge = ig;@[im + VB - ACI

C
Aul“ge '

Usmall =

Merritt’s Solution

Merritt (1949) unaware of the German so-
lutions also obtained a fourth order polyno-
mial. Smith (1965) gives the following deriva-
tion. for Merritt’s polynomial. He multiplies
equation (1) by #, multiplies equation (2) by a?
and subtracts to obtain

a’s} — b%s3 + (a® — b%)s? — 2a%s,83cos B
+ 2b%s583 cos a = 0.
Similarly, after multiplying equation (1) by ¢,

and equation (3) by a® and subtracting there
results

a’s} + (a® — )8} — P83 — 2a%s,85 08y
+ 2028283 cosa =0,

Then using the substitution of equation (4)
we obtain the following two equations.

—b*u? + (a® — b*)v? — 2a%cos Bv

+ 2b% cosouv + o’ = 0 (18)
(a® = *)? — 2v? — 2a%cosyu
+ 2% cosouy + a® = 0. (19)

From equation (18),

3 _ 2a’cos fv — 2b cos auv + b2u? — g?
v = 4
B

(20)
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Substituting this expression for v? into equa-
tion (19) and simplifying to obtain
(a® = b% — *)u? + 2¢% cos auv
+ 2(b° — a®) cos yu — 2¢% cos Bv
+a? -+ =0, (21)
From (21),
o 6’—a’—c’+{b’+c’—a’ju’+2(a’—b’)mm‘

# o8 ce—cos f1)

Substituting this expression for v into equa-
tion (19) produces the fourth order polynomial
equation
Byu' + Bst® + Byu® + Biu + By,=0 (22)
where
By = (1* + ¢ — a?)? - 4’ cos’ a
By =K —-2B, COs 7y
By = Bs + By — 2K cosy
+ 4c*(cos’ a + cos? 3 + cos®
—2cosacos Bcosy — 1)
By = K — 2By cosy
By = (a’ + & — %)% — 4a*PFcos?’ 5
and

K =2(6* + & - a®)(a® + & - b*) cosy
+4c%(a? + b — ¢*) cos acos .

Merritt solves for the roots of a fourth order
polynomial

m‘+caz3+cgzﬁ+c1¢+co=0
in the following way. Add

(3)=
to each side

2
zt + 32’ + (%) z?
. .
= - — ez —cp + (%) z?
or

Now add

r3)o

to each side. There results

[5,(“%)%]’

= [—02+ (3)2+A]..-.’+ [—c1+4\%]= |

2

—-¢ + T.

Choose X so that the right hand side is a perfedf
square.

-+ (@) 2]+ [ 43

—c + ’\T = (mz + n)’.
This means that

—c2+(3)2+)u=m’

2
—c1+/\-qi=2mn
2

2
_q)+%=n2

or

oo @ o [-ar

_ (—cl +2Ac,/2)’_

This is a cubic which can be solved for any
root /\0. R

Substituting the root ) into the equation prg:
dilcis _ g

ey, M)’
[a:(z+ 5) + ?] = (mz + n)?
from which there arises the two quadratics
z(z+ 9;) £ 22 wiibowring

2 2
which each can be solved for the two roots.
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Fischler and Bolles® Solution

Fischler and Bolles (1981) were apparently not
aware of the earlier American or earlier German
solutions to the problem. From Equation (5),
they obtain

2
v? + 2(— cos au)v + (1 - %) u?

2 aﬂ

2a

+ g CO8 Ayt 5 0. (24)
Equation (23) is identical to equation (6) but

equation (24) is different from equation (7) since

it arises by manipulating a different pair of equa-

tions than was used to obtain equation (6).
Multiply (23) by

a?

2 2 o
(l-—- '2?)“2+ %cos'yu——-,

multiply (24) by

a

uz—ﬁ
and subtract to produce
- [(@® =8 — Al + 2(07 - a*) cos yu
!‘ +(a® - ¥ + Ao + 26% cos a®
+ (2(c* - a®) cos B — 412 cos a cos ) u?
+ [4a® cos Bcos v + 2(b? - c*)cosalu
~2a’cos g = 0. (25)

2c%(cos ou — cos B)v + (a? — B2 — cF)u?
+2(8° —a®)cosqyu+ a? — B+ 2 =0
(26)
Finally, multiply (25) by
L - 2¢%(cos au — cos §),

multiply (26) by
[(a® % — P)u? + 2(¥” — a®) cos yu + (a® -2+ )]
and subtract to eliminate v. This produces the
fourth order polynomial equation

Deu' + Dau® + Dy + Diu+ Dy =0 (27)
where

Dy = 48 cos® o — (a? ~ b — )2
Dy = —4c2(a? + B — ) cos a cos 3
— 8b%¢? cos® e cos vy
+4(a? — b* — ?)(a® - %) cosy
Dy = 4c%(a® - ) cos? 8
+8c%(a® + b?) cos o cos Fcosy
+ 4B — &) cos?a
-2a® -8 - P)(a® - + &)
—4(a® - b*)% cos? v
Dy = —8a%¢? cos® Bcosy
— 42 (Y - *)cosacos B
—4a’Pcosacos S
+4(a® — b*)(a® — b* + c*) cosy
Dy = 4a*c? cos® B — (a® - B* + 2)?
Corresponding to each of the four roots of

equation (27) for u there is an associated value
for v through equation (26) or equation (25).

Grafarend, Lohse, and Schaffrim’s Solution

Grafarend, Lohse, and Schaffrim (1989) aware
of all the previous work, except for the Fischier-
Bolles solution, proceed in the following way.
They begin with equations (1), (2), and (3) and
seek to reduce them to a homogeneous form.
After multiplying equation (3) by

—a?

2

and adding the result to equation (1) there
results

2 2
—%a¥+ (1—%)3§+3§

2
a
+ 2§alsgcos'r —2cosasys3 =0,

(28
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After multiplying equation (3) by
b2

)
and adding the result to equation (2), there
results
2
(1 - ;) 8 — %sg + 83 + 2% COS 78182
—2cos 38,83 = 0. (29)

Next they use the same idea as Finsterwalder.
They multiply equation (29) by A and from it
subtract equation (28) to produce

(81 82 Ja)A (8;) =0 (30)

83

where

PAP-) (W—al)cosy
= =1 —Xcosp

A= L—g)—"w'“’ - &—%-w - cosa

—Xcosf cosa -1+

Now, as Finsterwalder did, they seek a value
of )\ which makes the determinant of A zero.
Setting the determinant of A to zero produces
a cubic for A. For this value of A the solu-
tion to equation (30) becomes a pair of planes
intersecting at the origin.

They let p = 83/81 and ¢ = 83/81 and rewrite
the homogeneous equation (30) in s;, 52, and s3
as a non-homogeneous equation in p and g.

(@® — & - NA)p* + 28 cos apg + (=1 + N)¢
+2(—a? + Ab?)cosyp — 2)¢? cos fBq
+a2—,\(bzﬂ-c2_)=0 (31)

Now since |A| = 0, and assuming

Feosae  A(-1+))
a?—c -2  Feosa #

a value for (py,go) exists such that (31) can be
written in the homogeneous form

(@ — ¢ = ) (p - o)’
+ 2¢* cos a(p — po)(g — )
+A(=1+Ng-0)? =0 (32)

where
A cos B A(-1+3)|
—cosy(—a? + Ab?)  cPcosa ,-.i'*
= cosa ca(—l + /\) . il
a?—c2 = 2*  fceosa =
& cosa A cos E
a® — 2 - \? —cosy(—a® + \P?)|
= Zoosa A(-1+N)]

@ - -2 Feosa

Rotating the coordinate system by angle ¢
that the cross term can be eliminated, 6 my
satisfy p

2 cosa i
a? — A + &)’ _-
Define the new coordinate (#/,¢) by

P\ _ ( cosd sind) (p-m
qd —sing cosf/ \g—q /)
Then in terms of the new coordinate systd

(¢, ¢'), equation (32) becomes
Ap? + Bd* =0 (@

tan26 =

where

A=
B = PP MPAN (o el l
= > 7

0 -2+ M-t /[@ AP+ AP+ cona} |
: .

We choose the negative root square term fof
and the positive root square term for B when!
value of 26 falls in the first and third quads
and choose the positive root square term fof
and the negative root square term for B wi
the value of 20 falls in the second and fou

quadrant. A
Assuming B/A < 0, (35) results in ]
P = tKdq
where
-B
K= T

Using (34) there results
plcos 0 + K sin 6] + qfsin @ + K(— cos O)}

+ [~po(cos 8 + K sin §)
+ go(—sin 6 K cos§)] = 0.
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Equation (36) is a function of A. For any A
equation (36) degenerates into a pair of straight
lines intercepting in p, g plane. All possible
combinations of any two As out of \;, Ag, and
A3 will give a real solution for p’ and ¢’. Then
we solve p and ¢. Finally, from equation (1),
(2), and (3)

; |
o= \/1 + p? ~ 2pcos y i

a? 40
"’:Ju(g)?-z(g)ma o

_ b?
83-414'(%)2—2(%)008;6. (41)

However, there is a simple method proposed by
Lohse (1989). Instead of translating and rotat-
ing equatlon (31), one can solve the quadratic
equation in (31) to get 2 p and ¢ relation by
usmg different A. Once the relation of p and
¢ is obtained it can be substituted into (28) to
solve for s;. There are 15 possible solutions.
Since we are only interested in real solutions,
we only use real X to solve (31).

Linnainmaa, Harwood, and Davis’ Solution

Linnainmaa, Harwood, and Davis (1988) give
another direct solution. They begin with equa-
tions (1), (2), and (3) and make a change of
variables. A

83 = u + cosysy (42)
83 =v + cos B85y (43)

equations (2) and (3) become
4 (1 —cos? B)s? + v* = b* (44)
(1 - cos?y)s? + u? = &2, (45)

Substituting (42), (43), (44), and (45) into (1)
re results
" 6}(2c0s? v — 2cos arcos Bcosy + 2cos? - 2)
; —-2cosauv + & + b - a?
+ 2us;(cosy — cos acos 3)
+ 2vs)(cos B — cosacos ) = 0. (46)

Letting
@ =1-cosy
@=1-cos’g
@ = 2(cos’y — cosacos Scosy  (47)
 +cos’B-1)
q4=c2+b2—a2

g5 = 2(cos acos 3 — cos )
gs = 2(cos acosy — cos 3)

there resuits
Qs + ot = & (48)
@8 +vP = (49)
38t — 2co8 omv + gq = gyus; + ggus;. (50)
Then they square equation (50) and simplify,
obtaining
18] + o8 + 13 = (r;sf + r5)uv (51)

where

Ty =d+4q1qzcosza+q1q§+qzq§

r2 = 2g3q4 — 4(P @ + B’q) cos’
— g5 — bge

3 = g& + 4 cos? ab’c?

rq = 4cos gy + 2g5q¢

r5 = 408 aeqy.

Then to eliminate the uv term, they square
equation (51) and simplify to obtain

tes] + tgsd + 148t + tas’ + 4, =0 (52)
where

ts =1} —riqig
tg = (52 @ + Pq)ri — 2rrsqige + 2ri7y
bzczr‘ - rﬁqlqg + 2r4r5b2q1

+ 2‘!"4!"502 @+ 2rrs
ty = (bqu + Ago)rd + 2rary — WP cPryrs
ity = "s —_ rsbzcz

t‘ —1"2

Equahon (52) is considered as a 4th degree
equation in s7. Since s, must be positive, there
are at most 4 solutlons to equation (52). Once a
value for s; has been determined, equations (48)
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and (49) can be solved for two values of v and
v. Each of these can then be substituted into
equation (42) and (43) to obtain the positive
solutions for s; and s3.

Comparisons of the Algebraic Derivations

The main difference between the Grunert solu-
tion and the Merritt solution is that they use
different pairs of equations. As a result, the co-
efficients in their fourth order polynomials are
different. However, if we replace b with ¢, ¢
with b, B with v, and v with 3 in equation (9),
then we can obtain equation (22). Therefore,
from the algebraic point of view, their solutions
are identical. But Merritt converts the fourth
order polynomial into two quadratics instead
of solving it directly. The difference between
Fischler and Bolles’ and Grunert’s solution is
that the former just multiplies some terms to
two pairs of equations and then subtracts each
other without expressing one variable in terms
of the other.

Grunert and Merritt use the substitution to
reduce the two variables into one variable. The
advantage of the substitution approach is that
it is pretty trivial. But there exists a singular
region when the denominator is zero in equa-
tions (8) and (21). This is discussed more fully
in the next subsection. Fischler and Bolles and
Lin nainmaa et al. use direct elimination to
reduce the variables. Though the approaches
are not trivial, it does not generate any singular
point during the derivation.

Linnainmaa et al. use s; = u + cos<ys; and
83 = v+cos Bs; as the change of variables. Nat-
urally, this leads to another different derivation
to the problem. Although we consider equa-
tion (52) as a fourth order equation in 83, the
complexity of the coefficients is much higher
than that of Grunert’s fourth order equation.

Finsterwalder and Grafarend et al. introduce
the same variable, but they use different ap-
proaches to solve A. Finsterwalder solves equa-
tion (10) for v and seeks a A to make the term
inside the square root be a perfect square. Gra-
farend et al. actually rewrite the quadratic equa-
tions into matrix form (s; s 53)P(s; 83 83)° = 0
and (81 87 83)Q(s1 s2 s3)* = 0, then try to solve

the elgcnsystcm (51 82 83)(P — AQ)(81 52 83) =0l
which is another form of equation (30). . \
this point these two approaches are algebraie
equivalent.

Singularity of Solutions

It is well-known that there exist some geometr
structures for the three point space resectiof
on which the resection is unstable (Thompsd
1966) or indeterminate (Smith 1965). For
unstable geometric structure, a small chang
in the position of the center of pe
will result in a large change in the position §
three vertices. For the indeterminate geometf
structure, the position of three vertices canil§
be solved. Besides the singularity caused
geometric structures, there also exist some i
gularities caused by the algebraic derivatiopy
solutions. In the following paragraphs wec'
give detailed explanations and examples. . &
The danger cylinder is a typical case for
unstable geometric structure and refers m :
geometric structure where the center of perspg
tivity is located on a circular cylinder pass
through the three vertices of a triangle and hd
ing its axis normal to the plane of the triang
An illustration of the danger cylinder is shog
in Figure 3.a. The reason for the instability &
be explained as follows. Instead of determini
the position of three vertices, we fix them §
let the coordinates of the center of perspect?
be unknown, (z,y,2), as in the resection 'g
lem. Since the problem is mainly to solve™
three unknown variables sy, s;, and s, theré
actually no difference between fixing the vertig
or the center of perspectivity. Now the va
of sy, 85, and s3 are functions of z,y, z. Rewg
equations (1), (2), and (3) into fi(z,y, z) 3
fﬂ(a:: Y, z) 0 and fS(zs U z) 0 and take
derivatives. We then have -

=o(3)- (8)
——AB df;
y—un

r—I = zZ—2
A=\|z-z3 Y- 2—2 |,
T—T3 Y—UYs 2323

where
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Fig. 3b. An illustration of the concylic case.

0 83—83C080F  83—83COBOY
B = 11—3.30::-,3 0 3-8 mﬁ +

8 —8§3CO087Y 824 COBYY 0

and p; = :: , t=1,2,3 as defined before are

x
' the position of three vertices of the triangle in
the camera coordinate frame.

To make the system stable the dz, dy, dz must
have no solutions other than zeros; that is, ma-
trices A and B must be non-singular. The
determinant of matrix A is proportional to the
volume of a tetrahedron formed by three ver-
tices and the center of perspectivity. As long
& these four points are not coplanar the ma-
trix A is nonsingular. When the matrix B is
singular; that is, where the determinant of B
is zero, we can expand the determinant of B
and express s,, s;, 83, Cosa, cos 3, and cosvy in
terms of z,y, z. Then we can obtain an equation
that represents the equation of a circular cylin-
der circumscribing three vertices of the triangle
with its axis normal to the plane of the triangle.
For example, let the center of perspectivity be

' 2
located at the origin, p; = (g), P2 = (z), and
10

10
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10
B will be a zero vector; that is, the matrix B is
singular. '

When the center of perspectivity and the ver-
tices of a triangle are concylic as shown in Fig-
ure 3.b, the resection problem is indeterminate,
Note that the problem cannot be solved when
the five coefficients of equation (9) are all equal
to zeros; that is, the four point are concylic. For
example, let three side lengths a = b = ¢ and
three angles o = v = 60° and 8 = 120°, then all
coefficients of polynomials of six solutions will
be equal to zeros.

The singularity in the algebraic derivation can
occur in the Grunert, Finsterwalder, Merritt,
Grafarend et al. solutions when the denom-
inator term in the formula equals zero. For
example, let three side lengths a = b = ¢ and
three angles a = v = g = 60°, ie. an equi-
lateral triangle parallel to the image plane with
the triangle center at z axis, then s,, s, and s3
must equal one and thus v or u equals to one.
As a result the denominator (cos~y — v COS &)
in the Grunert solution and (ucosa — cos 8) in
the Merritt solution equal zero. Hence, both
solutions have a singularity.

=g
p3 = ( z). Then the second row of the matrix

Determination of the Absolute Orientation

Once the position of three vertices of the trian-
gle is determined, the transformation function
which governs where the 3D camera coordinate
system is with respect to the 3D world coordi-
nate system can be calculated.

The problem can be stated as follows, Given
three points in the 3D camera coordinate system
and their corresponding three points in the 3D
world coordinate system, we want to determine
a rotation matrix R and translation vector T’
which satisfies

pi=Rp;+T i=1,23 (54)

whetre p; = (:) i=1,2,3 are the points in the
5
%
3D camera coordinate system, p| = (;;) i=
o

1,2,3 are the points in the 3D world coordinate
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Table I. The summary of characteristic of six solutions.

Authors Features Algebraic singularity

Grunert 1841 Direct solution, solve Yes
a fourth order polynomial

Finsterwalder 1903 Form a cubic ial and Yes
find the roots of two quadratics

Merritt 1949 Direct solution, solve Yes
a fourth order polynomial

Fischler and Bolles 1981  Another approach to form No
a fourth order polynomial

Linnainmaa et al. 1988 Generate an elghth _ No
order p

Grafarend et al. 1989 Form a cubic polynomial and Yes

find intersection of two quadratics

system, R is a 3 by 3 orthonormal matrix, i.e.,
RRt = I, and T = (:) The problem can

‘.l
be solved by a linear (Schut 1960), an iterative
(Wolf 1974; Slama 1980), or noniterative closed-
form solution (Horn 1988). We give a simple
linear solution in Appendix I.

4 T!nExpeﬂments

To characterize the numerical sensitivity of the
six different 3 point resection solutions we per-
form experiments. The experiments study the
effects of rounding errors and numerical insta-
bility of each of these six different solutions in
both single and double precision mode. In ad-
dition, we examine the relation of the equation
manipulation order. This is -accomplished by
changing the order in which the three corre-
sponding point pairs are given to the resection
procedure.

‘Since singularities and unstable structures ex-
ist in the three point perspective pose estimation
problem, we wanted to know how often it can
happen in the testing data. To isolate these sin-
gularities and unstable structures, we ran 100000
experiments on the Grunert solution, because it
has both algebraic and geometric singularities.
Then we screened out the singular cases by
picking those trials whose error is larger than a
certain value.

4.1 Test Data Generation

The coordinates of the vertices of the 3D trian-

gle are randomly generated by a uniform
dom number generator. The range of the @
and z coordinates are within [-25, 25], [4
25], and [f + a, b] respectively. Since the i
plane is located in front of camera at the ¥
tance of focal length, f, the z coordinate m
be larger than the focal length. So a > 0§
b> f+a. The a and b are used as paramete
test the solution under different sets of 4éf
Projecting the 3D spatial coordinates into?
image frame we obtain the perspective im
coordinates u and v. g

4.1.1 Permutation of Test Data. To test the
merical stability of each resection technigif
permute the order of the three vertices 6@
angle and the order of the perspective projée
of the 3D triangle vertices. Assume the o
order of vertices is 123 for vertex one, vertéy
and vertex three, respectively, then the othg

permutations are 312, 231, 132, 321, and
The permutation of triangle vertices meaa§
muting in a consistent way the 3D trianglg
lengths, the 3D vertices and the correspal
2D perspective projection vertices. 4

4.2 The Design of Experiments

In this section we will summarize the pe
ters in the experiments discussed in Appes
The experimental procedure of experintel
be presented too. The parameters ant
ods involved in accuracy and picking, th
permutation are denoted by '
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N; - the number of trials = 10000

N, — the number of trials = 100000

P - different number of precisions = 2

d; - the first set of depths along z axis

dg the second set of depths along z axis
= Y1y S| - the worst sensitivity

vnlue for all coefficients.

Sun = 310 |5%| - the worst normalized

sensitivity value for all coefficients.

€ware = Y iu0 €ware; — the worst absolute

error for all coefficients

€urre = 3 i_q €wrre; — the worst relative

error for all coefficients

Eoware = i 1Si X €yare,] — the worst poly-

nomial zero drift due to the

absolute error

i =Y s |85, X €wrre,| — the worst poly-

nomial zero drlft due to the

relative error

- where §; = 2| _ = —§|

+asz’ + ajz + ap, and S’ TS B
and e€yqr, are the total rclativc and absolute
rounding errors propagated from the first to the
- last mathmetical operations of each coefficient
of the polynomial P.

P=a4a: + az2?®

- 4.2.1 The Design Procedures. The experimenfal
procedures and the characteristics to be studied
are itemized as follows:

Step 0. Do the following steps N times.

Step 1. Generate the coordinates of vertices of

P the 3D triangle.

-2 <z <25

-2 <y <25

For z coordinate there are several

sets to be tested.

1.di = {(a,b) | (a,b) € {(0,5),

(4,20)}, f = 1}

2.d, = {(a,b) | (a,0) € {(0,5),

: (4,20),(24,75)}, f = 1}

Step 2. For single and double precision do the
resection calculation.

Btep 3. Permutation of the vertices. Let the
original vertex order be 123 (vertex one,
vertex two and vertex three, respec-
tively), then we permute the order as

where i = 1,2,3

312, 231, 132, 321, and 213.

~Step 4. For each of the resection techniques, de-

termine the location of the 3D vertwes
if the calculation can succeed.

Step 4.1. For any calculation which has suc-
ceeded record the absolute distance
error (ADE) associated with each
permutation. The mean absolute
distance error (MADE) is defined
as follows:

n
€

i=1 e

Ejl_

where n is the number of experi-
ments and

¢4=2“,., (en+ezt+es)

=1/ (@ —201)*+{yeis ~v ) + (21 —201)°}
2=V ((Far—2a) +(vez—pis) '+ (eiz—2a)’}
eis=A/ ((Tas—mia)* +{yeis—ths)*+(2ais—23)°)

and (zs,¥a, 25)° is the calculated
point coordinates and the (z;, y;, %)’
is the correct generated point coor-
dinates. The error standard devia-
tion is expressed as follows:

8d = _1_],__&__2"; (E‘ i )2

(n-1)

Step 5. This procedure is only applied to Gru-
nert’s solution

Step 5.1. Calculate the sensitivity of zero w.r.t.
cach coefficient and total sensitivity
for all coefficients based on the dis-
cussion in A.2.3.

Step 5.2. Calculate the worst absolute and rel-
ative rounding errors. for each coef-
ficient based on the discussion in
A24. The number of significant
digits is the same as the mantissa
representation of machine for multi-
plication and division. For addition
and subtraction the possibly lost sig-
nificant digits in each operation must
be checked.
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Step 5.3. Calculate the polynomial zero drift.

Step 5.4. Record the values of the sensitiv-
ity S, the normal sensitivity S,
the worst absolute rounding error
€ware, the worst relative rounding er-
TOT €yrre, the worst polynomial zero
drift due to absolute rounding error,
and the worst polynomial zero drift
due to relative rounding error €zurre
for each permutation.

Step 5.5. Based on the smallest value of €,qre,
Eyrres Sws Sums Eswares OT Egwrre. Picks
the corresponding error generated
by the corresponding permutation
and accumulate the number of its
rank in the six permutation. Rank
each permutation in terms of the er-
ror associated with the permutation.
The rank one is associated with the
smallest error and the rank six is
associated with the largest error.

Step 6. Check for singular cases.
Redo the whole procedure again by
changing N; to N; and d; to d;
and use Grunert’s solution only. If
the largest absolute distance error is
greater than 1077 redo steps 5 and
record the corresponding values for
the, large error cases.

S Resunlts and Discussion

In this section we discuss the results of the
experiments. ~ The software is coded in the

Table II. Results of random permutation of six solutions in double precision

and single precision.

C language and the experiments are run of
both a Sun 3/280 workstation and a Vax 850
computer. Unless stated otherwise, the resulf§
in the following paragraphs are obtained fron
the Sun 3/280. Table II shows the results @
random permutation of six different solutiong
From Table II we find that Finsterwalder’s solt
tion (solution two) gives the best accuracy an
Merritt’s solution gives the worst resulf
Grunert’s solution (solution one), Fischler’s g
lution (solution four) and Grafarend’s (solutic
six) are about the same order and give the seé
ond best accuracy. The reasons for the bettg
results can be explained in terms of the order{
polynomial and the complexity of computatidi
Linnainmaa’s solution (solution five) generdf
an eighth order polynomial. Though it docs
have to solve the eighth order polynomial;
complexity of the coefficients of Linnainma
solution is still higher than that of oth§
Finsterwalder’s solution only needs to solvé
third order polynomial. The higher order pd
nomial and higher complexity calculations té
to be less numerically stable. However, M
ritt’ s solution also ‘converts the fourth order pg

problem, but it glves a worse result. Thi
because the conversion process itself is nott
most numerically stable. An experiment wh
directly solves Merritt’s fourth order polynon
was conducted. A Laguerre’s method was
to find the zeros of a polynomial. The rés
are similar to that of Grunert’s solution.

The histogram of the absolute distance orf

Mean absolute :
Algorithms Precision  distance error Standard deviation
Sol. 1 (Grunert) D.P 0,19¢-08 0.16e-06
: S.P 0.31e-01 0.88¢—00
Sol. 2 (Finsterwalder) D.F. 0.22e-10 0.90e—09
SP 0.8%¢-02 0.51e-01
Sol. 3 (Merritt) D.P. 0.11e-05 0.64e—04
S.P. 0.28¢-01 4.15¢-00
Sol. 4 (Fischler) D.P. 0.62¢—-08 0.5%e—-06
S.P. 0.14e-01 0.34e-00
Sol. 5 (Linnainmaa) D.P. 0.74e—-07 0.61e~05
SP. 0.32¢-01 0.82e-00
Sol. 6 (Grafarend) D.P. 0.46e-08 0.43e-06
SP 0.20e--01 0.75¢-01

r—
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Table III. The best and the worst mean absolute distance error in single precision.

The best  Standard  The worst Standard

Algorithms MADE deviation MADE deviation
Sol. 1 (Grunert) 0.10e—03  0.25¢—02 0.81e—01 1.45e—00

" Sol. 2 (Finsterwalder)  0.74e—04  0.12e—02 0.59e—01 1.71e—00
Sol. 3 (Merritt) 0.17e~02  0.54e-01 1.29¢~00 8.53¢-00
Sol. 4 (Fischler) 0.87e—04  047¢-03  0.40e-01 0.47e-00
Sol. 5 (Linnainmaa) 0.16e—02  0.14e—-00  0.11e—00 2.16e—-00
Sol. 6 (Grafarend) 0.77e—04  0.14¢—02  0.94e—01 2.75¢—00

(ADE) of 10000 trials are shown in Figure 4.
From the histogram of the ADE we can see all
the solutions can give an accuracy to the order
of 107 in double precision. The populations
of high accuracy results of solution one and
solution four are larger than that of solution
two. But the population of less accuracy for
solution one and solution four also is a little bit
more than that of solution two.

- As we can expect, the double precision calcu-
lation gives a much better results than the single
precision calculation. For single precision most
of the solutions give the accuracy of the ADE
fo the order of 10~°. Generally speaking, the
results of double precision are about 107 times

better than the results of single precision. In
the single precision mode the root finder sub-
routine fails in several cases and thus brings
up the MADE. Therefore, if possible, double
precision calculation is recommended for the
3-points perspective projection calculation.

The best MADE and the worst MADE of
six permutations for the double precision and
the single precision are shown in Table III and
Table IV, The best results are about 10* times
better than the worst results. Finsterwalder’s so-
lution, Grunert’s solution and Fischler’s solution
give the same best accuracy.

Because Grunert’s solution has the second
best accuracy and is easier to analyze, we use it
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Table IV The best and the worst mean absolute distance error in double precision,

The best Standard  The worst Standard
Algorithms MADE deviation MADE deviation
Sol. 1 (Grunert) 0.4le—12  0.90e-11 0.60e—08 0.26e—-06
Sol. 2 (Finsterwalder)  0.34e-12  0.73e—11 0.20e—09 0.51e-08
Sol. 3 (Merritt) 0.26e—-10  0.15e-08 0.18e~04 0.13e—02
Sol. 4 (Fischler) 0.69¢—12  0.19e-10 0.13e-07 0.69%¢—06
Sol. 5 (Linnainmaa) 0.35e-11  0.24e-09 0.36e—-06 0.23¢~-04
Sol. 6 (Grafarend) 0.44e-12  0.16e-10 0.88e—08 0.48¢e—06

to demonstrate how analysis methods can dis-
criminate the worst and the best from the six
permutations. The analysis methods can be ap-
plied to the other solution techniques as well. In

the following paragraphs we discuss the results
of analysis.

For each trial there are six permutation by
which the data can be presented to the resection
technique. In the controlled experiments where
the correct answer are known, the six resection
results can be ordered from least error (best
pick) to the highest error (worst pick) using the
square error distance between the correct 3D
position of the triangle vertices and the calcu-
lated 3D position of the triangle vertices. The
fraction of times each selection technique selects
the data permutation giving the best (least) er-
ror to the worst (most) error for two different
depths are plotted in Figures 5 and 6. The
histogram of the absolute distance error of the
six selection methods is shown in Figure 7. Fig-
ures 5 and 6 show that the drift of zeros is
not affected by the absolute error (i.e. WS)
or the relative error (i.e. WRRE). The worst
sensitivity (i.e. WS) and the worst relative error
(i.e. WRRE) do not permit an accurate choice
to be made for the picking order. The worst
normalized sensitivity produces the best results
and ean effectively stabilize the calculation of
the coefficients of the polynomial.

The absolute drift of polynomial zeros is
changed by both the absolute error of coeffi-
cients and the sensitivity of the polynomial zero
with respect to the coefficients. Thus, the €uare
methods can suppress the probability of pick-
ing the worst result from the six permutations.
Both the relative error of coefficients and the

Table V. The comparison of the mean absolute distancg!
error of randomly order, the best and the worst and
mean absolute distance error picked by the €pores €urril
Suws Swn, Esurre AN €spare for two different depths.

Picking methods Mean absolute Distance error
Depth l<z<$ S5<r<20
Random order 0.19¢—-08 0.16e-06
The best 0.41e—~12 0.19e—-11
The worst 0.60e—08 0.87e—08
Eware 0.99e—-11 0.34e—09

[ — 0.40e—08 0.31e—08
Sw 0.15¢—08 0.75e~09 =
Swn 0.89¢-12 0.58e-11 ]
i 0.90e—~12 0.11e-10
Esware 0.93e-12 0.11e—-10 f

worst normalized sensitivity of the polynon
zero with respect to the coefficients give |
relative drift of the zeros. Hence, the ¢4
method also gives a pretty good accuracy. |
comparisons of the MADE of randomly ord
the best and the worst and the MADE »~f
by the €wares Ewrres Sws Swns Esorre ANA Espare
two different depths are shown in Table Vi€

The goal is to achieve the best accuracy.
accuracy of the best permutation is aboi
ten thousand times better than the acciif
obtained by the worst case and the accuraeif
tained by choosing a random permutation::
Suns €swares and €g,-. methods have :
mately a half of the accuracy obtained by}
best permutation. Any of these three meth
can be used to choose a permutation order wi
gives reasonably good accuracy. Howevét]
worst normalized sensitivity only involve§
sensitivity calculation. So it is a good i
to quickly pick the right permutation. Al
the histograms of probability of Sy, €t
€surre dO not have very high value arousd
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Probability picked by VARE
1

1 2 8 4 8 &
The kinds of picks.
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Histogram generated by WARE

Histogram generated by WRRE

Histogram generated by ¥S
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Fig. 7. Shows histograms of the absolute distance error of six selection methods in log. scale.

best pick, they still have a very accurate absolute
distance error compared to the best absolute dis-
tance error. This reveals that in many cases the
accuracy of six permutations are too close to be
discriminated. .

In order to study the frequency with which sin-
gularities and instabilities may happen we pick
the large error cases whose absolute distance
error is greater than 10~7, run more trials and
add different depths for Grunert’s technique.
Around each singularity we find a region within
the parameter space leading to large absolute
distance errors in the Grunert solution, diverging
with decreasing distance to the point of singular-
ity. Because the real singularities may seldomly
happen in the numerical calculation, most cases
we only have to deal with very large errors in
the vicinity of singular points in the parameter
space. Because the set of the vicinities of all
singularities in the parameter space does not
have the full symmetry of permutation group,
we always can find a better parametrization of
our experiment. Our task is to define an ob-
jective function on the parameter space, which
allows us to select a parametrization from the six

-122-!! -6.75 -4
ADE in log. scale

-1§ -12.2 -9.§ -6.75 4

ADE in log. scale

possible parametrizations, which has the smd
est absolute distance error to the exact soluti
The results are shown in Table VIIL :
Table VI and Table VII whose resultl:
obtained from the Vax 8500 running VMS op
ating system contain the statistics of the absoli
distance error of the different selection methi
for the three different depth cases, based om
sample of all 100000 experiments in Table!
and based on the subsample of large error od
in Table VII. The sample size for this casé
about 69 for the first depths, about 96 forl
second depth and about 495 for the large d
Table VII shows that the singular cases doj
really happen in these experiments becausél
mean ADE is about 102, However, in thesd
ity of singular points the error is much il
compared to that of Table VI The resulf
Table VII also show that the selection metf
work fine in these cases. -3
When the experiments of Table VI and: I
VII are run in the Sun 3/280, results arel
ilar to these obtained from the VAXS5((
the magnitude differences in numerical:;
racy of results between two systems arer
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Ti!ka]’.Thesameas'lhbleV.Butitruuslmtﬁahandﬁﬂiﬂmediﬁmntdepth&

Depth [1...5] Depth [5...20 Depth [25....

Picking MADE Std. ‘dev. MADE Std. dev. MADE S:g]dev.
Random  222¢—-07 6.58¢—05 4.49¢-09 6.11e~07 1.44e-07  1.72e—05
Best 6.69¢e—12  1.79¢-09  2.01e—12  2.41e—10 4.18e—11  3.88¢-09
Worst 1.6%e~06  4.39e-04  7.14e—07  1.90e—04 1.61e—04  5.50e—02
Eware 1.06e—08  331e-06 4.4%-10 624e~08  3.70e—07 1.14e~04
[— 1.68¢—06  4.39e-04  631e—07 1.88¢e—04  1.83¢-06  3.8le—04
Sw 5.99¢-09 1.33e—06  5.98¢—07 1.88e~04 1.34e-08  2.13e—06
Swn 9.18¢—12  1.88¢—09  3.76e—12  3.55¢~10 243e—10  3.89e-08
Egware 7.64e~12  1.80e~09  3.66e—12 4.17e—-10  1.2le-10  1.18¢e—08
€gwrre 7.57e-12  1.80e—09  4.16e—-12  4.53e-10  1.21e—10 1.17e-08
Table VII, The same as Table VI. But it only considers large error cases,

_ Depth [1...5] Depth [5...20} Depth [25...75]
Picking MADE Std. dev. MADE Std. dev. MADE Std dev.
Random 135605  6.35¢-05  403¢—06  257c—05 12204 34303
Best 7.23e—08  5.16e—07  2.43¢—09  1.64e—-08 1.37e~08  2.38e—07
Worst 1.18e—04  5.78¢—04  2.59e—03  252e-02 5.43¢-02 1.20e--00
Eware 6.76e—07  4.30e—06  2.94e—07 121e-06 9.56e-06  2.08¢—04
€urre 6.02¢—05  3.18¢-04  258e—03 25202 1.29¢—04  2.43e-03
Sw 6.21e-06  4.70e-05 1.14e-07  5.25¢-07 1.09¢-04  2.42e—03
Swn 5.42e=07  423e—06 8.02¢~09 44908 2.18¢-08  2.97e—07
€sware 520e-07 4.23e-06  7.93e—09  4.43e-08 1.78e—0B  2.87e—07
Equrre 5.20e-07  4.23e-06 8.01e—-09  4.49—09 1.73e~08  2.87e—07

an order of one except in worst cases with
- depth[5...20] and depth[25...75] and in Sw case
with depth[5...20] whose magnitude differences
are an order of two and three, respectively.

6 Conclusions

We have reviewed the six solutions of the three
| point perspective pose estimation problem from
a-unified perspective. We gave the comparisons
of the algebraic derivations among the six solu-
tions and observed the situations in which there
may be numerical instability and indeterminate
tolutions. We ran hundreds of thousands of ex-
periments to analyze the numerical stability of
the solutions. The results show that the Finster-
walder solution gives the best accuracy, about
0~ in double precision and about 102 in sin-
gle precision. We have shown that the use of
different pairs of equations and change of vari-
‘dbles can produce different numerical behaviors.
- We have described an analysis method to almost

always produce a numerically stable calculation
for the Grunert solution. The analysis method
described here can pick the solution’s accuracy
about 0.9 x 107%2, which is very close to the
best accuracy 0.41 x 1072 that can be achieved
by picking the best permutation each trial and
about thousand times better than 0.19 x 10~%
which is achieved by picking the random per-
mutation.
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Appendix I: A Simple Linear Solution for the
Absolute Orientation

Let us restate the problem. Given three points
in the 3D camera coordinate system and their
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corresponding three points in the 3D world co-
ordinate system, we want to determine a rota-
tion matrix R and translation vector T Whlcl‘l
satisfies

p=RE+T =123 (al)

where p; = (:) i = 1,2,3 are the points in the
B

<
3D camera coordinate system, p, = (y;) i=
o

1,2,3 are the points in the 3D world coordinate
system, R is a 3 by 3 orthonormal matrix, ie.,

RRE=1I and T = G‘,)
i

In order to solve the problem linearly we
express the rotation matrix as follows

T11712713
R= | rarars
31732733

Then, equation (a.1) is an underconstraint sys-
tem of 9 equations in 12 unknowns. However, as
stated in Ganapathy (1984) those unknowns in
the rotation matrix are not independent. There
exist some constraints as follows

rfl+rf2+rf3 = r§1+r§3+r§3 - r§1+r§2+f§s =1

o T3 =TTy — ety
a3 = T12¥31 — 11?32
T3z = T2z — 712t

(a:2)

Since three vertices of the triangle are copla-
nar, with the constraints above we can assume
z =0, i = 1,2,3. Thus, equation (a.1) can be
written as

3."'r11$$+r13y‘( + &,
Yi =z +rpy + i,
z = Tz + ey +ts

In terms of matrix form we have

i=123

AX =B

where g
/2, ¥, 0 0 0 0 10 0\
0 0 & % 0 001 0]|]
0 0 0 0 « ¢ 00 1]
Z oy, 00 0 0 100§

A=|0 0 #, ¥ 0 0 01 0]
0 0 0 0 2 % 00 1/

2 g5 0 0 0 0 10 0f]

0 0 « % 0 0010
\0 0 0 0 o 3 00 1/
e _

X =[ry riaran vz v Tag b5 te 2]
= [z1 41 21 22 Y2 22 23 ys 2]

The matrix A will not be singular as long
the three points are not collinear. ne
has a unique solution. After the vectof}
solved, equation (a.2) can be used to sol§
ro3 and rag. :

Appendix II: The Numerical Accuracy

Solutions
A.1 The Problem Definition

In general, all the solutions given in Seg
can be used to solve the three point per§
resection problem. However, the bek
the numerical calculations are differenti
different solution techniques. Furtherdif
each solution technique the numerical bgl
will be different when the order of the &
manipulation or variables is differentAgH
ample, if we let s; = us; and s3 = vy
of 83 = us) and 83 = V8, then the: ¢oe
of equation (9) will be changed. Theserél
can be reflected by replacing a with &; by
a with 3 and 8 with . As a result, it m@
the numerical accuracy of the final resul
The order of the equation manipulafi@
bined with choosing different pairs of e
for substitution can produce six different
ical behaviors for each solution. Toi '_
these effects we preorder the 2D p
prolectlon and the corresponding. m
the six different possible permutationiig
In this appendix we describe som
methods that can be used to determi
merical stability of the solutions and
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determining a good order in which to present the
three corresponding point pairs to the re section
- procedure.

L A2 The Analysis—A Rounding Error Consider-
ation

There are several sensitivity measures which can
be used. They include the numerical relative
and absolute errors, and the drift of polynomial
- zeros. We are mainly concerned about how
the manipulation order affects the rounding er-
| Tor propagation and the computed roots of the
- polynomial. Since both the absolute rounding
error and the relative rounding error may af-
fect the final accuracy, we consider both factors,
The sensitivity analysis focuses on the roots of
- the polynomial formed by the three-point per-
spective solutions. In contrast, the polynomial
- zero drift considers both the errors and the sen-
sitivity of polynomial zero. However, all factors
can affect the numerical results. Each of these
measures will be used to ‘predict sensitivity in
terms of the mean absolute error.

| A.2.1 The Effect of Significant Digits. In this

| analysis all computations are conducted in both
single precision and double precision for the six
techniques, The quantity measured is the mean
absolute distance error for each precision.

i A.22 The Histogram of the Mean Absolute Dis-
- fance Error.  The histogram analysis will give
 the distribution of the absolute distance error.
- A technique may give a large number of highly
accurate results, but produce a few large errors
| due to degenerate cases; others may give accu-
- rate results to all trials without any degenerate
cases. The analysis of the histogram of the er-
rors will help us to discriminate between which
¢ techniques are uniformly good from those which
are only good sometimes.

A2.3 The Sensitivity Analysis of Polynomial Ze-
 ros. The global accuracy is affected by the side
lengths, the angles at the center of perspectivity
with respect to side lengths, and the permutation
order in which the input data is given. These

effects will appear in the coefficients of the com-
puted polynomial and affect the stability of the
zeros of the polynomial. For an ill-condition
polynomial a small change in the value of a co-
efficient will dramatically change the location of
one or more zeros. This change will then prop-
agate to the solution produced by the 3 point
perspective resection technique. The sensitivity
of the zeros of a polynomial with respect to
a change in the coefficients is best derived by
assuming the zero location is a function of the
coefficients (Vlach and Singhal 1983). Thus for
j-th zero z; of the polynomial P(ag, ay,...,an,z)
= Gp2" +ap18™ ! + .- dayz+ag we represent

P(aos L PRI« " E(Go, Aly-s. !an))lsail, =0
Differentiating with respect to a; gives

9P | 0P dz
O0a; Oz da;

T=z;

Rearranging the equation gives

s
r=xy g

where ag,ay,...,a, are the coefficients of the

polynomial, z; is the j-th zero of polynomial.
Consider the total sensitivity, S, of all the

coefficients on a particular zero. We have

S= is,-
i=0

To avoid the cancellation among positive and
negative terms, we take the absolute value of
each term and consider the worst case. We
express the worst sensitivity S, by

S = Z I'gi'
=0

A large sensitivity of the zero with respect to the
cocfficients may lead to a large error in the final
result. Laguerre’s method is used to find the
zeros of polynomial. It has advantage of first
extracting the zeros with small absolute values
to better preserve accuracy in the deflation of
the polynomial and can converge to a complex

S;=——

da;

z=z
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zero from a real initial estimate. The accuracy
for the iterative stop criterion is the rounding
error of the machine.

A.2.4 The Numerical Stability.  Discussion in
most numerical books show how calculations
involving finite-digit arithmetic can lead to sig-
nificant errors in some circumstances. For ex-
ample, the division of a finite-digit result by
a small number, i.e., multiplying by a relative
large number, is numerically unstable. Another
example is the subtraction of large and nearly
equal numbers which can produce an unaccept-
able rounding error. In order to study how large
a rounding absolute error can be produced by
the mathematical operation, we will calculate the
worst absolute and relative error for each kind
of arithmetic operation. Let fI be the float-
ing point mathematical operator. Hence, the
rounding error produced by fI on two numbers
which themselves have rounding error or trun-
cation error (Wilkinson 1963) can be modeled
as follows:

FI@ + ) = (11 + €51) + 22(1 + €2))(1 + ¢;)

=(m +2 1+ + €
( 1 2)( €r " ; " zl

Tg
* 3(1 + 29 Eﬂ)
~8) = (z1(1 + €1) — z2(1 + ex2))(1 + €;)

~ !
& (x;—2z)l1+e€ + €
( 1 2)( €r T, — T2 xl

Tq )
) — Zg
FUZ % ﬁg) = 31:\73(1 + 631)(1 + 632)(1 + Er)
2 rza(l + 6 + €51 + €2)

21\ _ z(l+en) )
(3) S
= (3—2)(1 +e +en —Egz)

~05x 109 < ¢ <05 x 104

(&

where d is the number of significant digits of
fl(®1 + 22); ¢ is relative error introduced by
each operation; the relative errors of z; and
zy are €;; and e,» respectively, and these are
propagated from the previous operations. The

higher order terms are very small, thus they _
omitted. -
5
DEFINITION. A sequence (OP,,OP;,...,0P, 3
of binary mathematical operators from the clasig
addition, subtraction, multiplication and divisig
applied to a series of numbers (zy, 2, . ..,Zn) i
at a time is given as follows: el

OP::.l (zh xﬂ-l).f(ezn €xiprd Er)
= 2(1 + €total)

where f is a function of €., ¢;,, and €, en'
result of the operation assuming infinite precis
computation and € is the total relative e
propagated from the first operation to the lasiig
eration. Hence, (1 + €io1a1) is the result ofl
calculation using finite precision. 'Similarly, ‘e
the relative error of ;; €, is the relative error
Titis

We consider the worst case for each operatil )
ie., ¢ = 0.5 x 10179, Thus, the worst relu
rounding error(eyrr,) is expressed by

€wrre; = €total
and the worst absolute rounding error(eysry
given
€ware; = £ X €total :
The €yare, and €yrre, Will be accumulated fore
of the coefficient. As in the sensitivity of4

section we expect a large relative or
error lead to a large final error,

A.2.5 Polynomial Zero Drift. The zero§
tivity helps us to understand how a permui
of the polynomial coefficients affects thei
The worst relative and absolute error pros
quantitative measurement of errors. Thel
of a polynomial zero from its correct vithi
pends on both sensitivity and error vafi
In this paragraph we will give the defimifi
polynomial zero drift. Define the nomf
sensitivity S; of zero with respect to a'®
cient by ’

and the function =

z's-sj = W(Go, Glyeery an)
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Then, the worst normalized sensitivity (S,,) is
given by
Sun =Y 153
i=0
The polynomial zero drift can be expressed as

follows:
2. 8z
dﬂ:lx-lj = Z a

E i=0
. Divide both sides of the above equation by
and in terms of normalized sensitivity we obtain

DA

T= 5 i=0

dz

T

Consider the worst absolute drift case due to
the absolute rounding error we have

Coware = Z;ls,- X €ware;|

and the worst relative drift case due to the
relative rounding error we have

Cowrre = ZIS: X Eurre|
) i=0

As discussed above the final error is éxpcctcd in
proportion to the value of the worst drift €,ure
and €qugre.
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