
bbat24

This module contains predefined batteries of statistical tests for sequences of uniform
random numbers in the interval [0, 1) with at most 24 bits of resolution. To test a RNG for
general use, one could first apply the small and fast battery SmallBird. If it passes, one
could then apply the more stringent battery Bird.

The batteries described in this module will write the results of each test (on standard
output) with a standard level of details (assuming that the boolean switches of module
swrite have their default values), followed by a summary report of the suspect p-values
obtained from the specific tests included in the batteries. It is also possible to get only the
summary report in the output, with no detailed output from the tests, by setting the boolean
switch swrite_Basic to FALSE.

#include "unif01.h"

extern int bbat24_NTests;

The maximum number of p-values in the array bbat24_pVal. For small sample size, some of
the tests in the battery may not be done. Furthermore, some of the tests computes more than
one statistic and its p-value, so bbat24_NTests will usually be larger than the number of tests
in the battery.

extern double bbat24_pVal[];

This array keeps the p-values resulting from the battery of tests that is currently applied (or
the last one that has been called). It is used by any battery in this module. The p-value of the
j-th test in the battery is kept in bbat24_pVal[j − 1], for 1 ≤ j ≤ bbat24_NTests.

extern char *bbat24_TestNames[];

This array keeps the names of each test from the battery that is currently applied (or the last
one that has been called). It is used by any battery in this module. The name of the j-th test
in the battery is kept in bbat24_TestNames[j − 1], for 1 ≤ j ≤ bbat24_NTests.

The batteries of tests

void bbat24_SmallBird (unif01_Gen *gen);
void bbat24_SmallBirdFile (char *filename);

Both functions applies SmallBird, a small and fast battery of tests, to a RNG. The func-
tion bbat24_SmallBirdFile applies SmallBird to a RNG given as a text file of floating-
point numbers in [0, 1). The file will be rewound to the beginning before each test. Thus
bbat24_SmallBird applies the tests on one unbroken stream of successive numbers, while
bbat24_SmallBirdFile applies each test on the same sequence of numbers. No test requires
that gen returns more than 24 bits of resolution.

The following tests are applied:

179



1. smarsa_BirthdaySpacings with N = 1, n = 5 ∗ 106, r = 0, d = 221, t = 3, p = 1.

2. sknuth_Collision with N = 1, n = 5 ∗ 106, r = 0, d = 216, t = 2.

3. sknuth_Gap with N = 1, n = 2 ∗ 105, r = 16, Alpha = 0, Beta = 1/256.

4. sknuth_SimpPoker with N = 1, n = 4 ∗ 105, r = 18, d = 64, k = 64.

5. sknuth_CouponCollector with N = 1, n = 5 ∗ 105, r = 0, d = 16.

6. sknuth_MaxOft with N = 1, n = 2 ∗ 106, r = 0, d = 105, t = 6.

7. svaria_WeightDistrib with N = 1, n = 2 ∗ 105, r = 21, k = 256, Alpha = 0, Beta
= 1/8.

8. smarsa_MatrixRank with N = 1, n = 50000, r = 0, s = 24, L = k = 48.

9. sstring_HammingIndep with N = 1, n = 5 ∗ 105, r = 0, s = 24, L = 240, d = 0.

10. swalk_RandomWalk1 with N = 1, n = 106, r = 0, s = 24, L0 = 120, L1 = 120.

void bbat24_RepeatSmallBird (unif01_Gen *gen, int rep[]);

This function applies specific tests of SmallBird on generator gen. Test numbered i in the
enumeration above will be applied rep[i] times successively on gen. Those tests with rep[i]

= 0 will not be applied. This is useful when a test in SmallBird had a suspect p-value, and one
wants to reapply the test a few more times to find out whether the generator failed the test or
whether the suspect p-value was a statistical fluke. Restriction: Array rep must have one more
element than the number of tests in SmallBird.

void bbat24_Bird (unif01_Gen *gen);

Applies the battery Bird, a suite of stringent statistical tests, to the 24-bit generator gen. The
battery includes the classical tests described in Knuth [63] as well as many other tests. None
of the tests assume that gen returns more than 24 bits of resolution. On a PC with an AMD
Athlon 64 Processor 4000+ of clock speed 2400 MHz running with Red Hat Linux, Bird will
require around ?? 1 hour of CPU time. Bird uses approximately 235 ?? random numbers.

The following tests are applied:

1. smarsa_SerialOver with N = 1, n = 5 ∗ 108, r = 0, d = 212, t = 2.

2. smarsa_SerialOver with N = 1, n = 3 ∗ 108, r = 0, d = 26, t = 4.

3. smarsa_CollisionOver with N = 10, n = 107, r = 0, d = 220, t = 2.

4. smarsa_CollisionOver with N = 10, n = 107, r = 4, d = 220, t = 2.

180



5. smarsa_CollisionOver with N = 10, n = 107, r = 0, d = 210, t = 4.

6. smarsa_CollisionOver with N = 10, n = 107, r = 14, d = 210, t = 4.

7. smarsa_CollisionOver with N = 10, n = 107, r = 0, d = 32, t = 8.

8. smarsa_CollisionOver with N = 10, n = 107, r = 19, d = 32, t = 8.

9. smarsa_CollisionOver with N = 10, n = 107, r = 0, d = 4, t = 20.

10. smarsa_CollisionOver with N = 10, n = 107, r = 22, d = 4, t = 20.

11. smarsa_BirthdaySpacings with N = 5, n = 2 ∗ 107, r = 0, d = 221, t = 3, p = 1.

12. smarsa_BirthdaySpacings with N = 5, n = 2 ∗ 107, r = 0, d = 216, t = 4, p = 1.

13. smarsa_BirthdaySpacings with N = 3, n = 2 ∗ 107, r = 0, d = 29, t = 7, p = 1.

14. smarsa_BirthdaySpacings with N = 3, n = 2 ∗ 107, r = 7, d = 29, t = 7, p = 1.

15. smarsa_BirthdaySpacings with N = 3, n = 2 ∗ 107, r = 14, d = 28, t = 8, p = 1.

16. snpair_ClosePairs with N = 200, n = 50000, r = 0, t = 2, p = 0, m = 4.

17. snpair_ClosePairs with N = 10, n = 106, r = 0, t = 3, p = 0, m = 20.

18. snpair_ClosePairs with N = 10, n = 106, r = 0, t = 4, p = 0, m = 30.

19. snpair_ClosePairs with N = 5, n = 106, r = 0, t = 7, p = 0, m = 30.

20. snpair_ClosePairsBitMatch with N = 4, n = 4 ∗ 106, r = 0, t = 2.

21. snpair_ClosePairsBitMatch with N = 2, n = 4 ∗ 106, r = 0, t = 4.

22. sknuth_SimpPoker with N = 1, n = 4 ∗ 107, r = 0, d = 16, k = 16.

23. sknuth_SimpPoker with N = 1, n = 4 ∗ 107, r = 20, d = 16, k = 16.

24. sknuth_SimpPoker with N = 1, n = 107, r = 0, d = 64, k = 64.

25. sknuth_SimpPoker with N = 1, n = 107, r = 18, d = 64, k = 64.

26. sknuth_CouponCollector with N = 1, n = 4 ∗ 107, r = 0, d = 4.

27. sknuth_CouponCollector with N = 1, n = 4 ∗ 107, r = 22, d = 4.

28. sknuth_CouponCollector with N = 1, n = 107, r = 0, d = 16.

29. sknuth_CouponCollector with N = 1, n = 107, r = 20, d = 16.

30. sknuth_Gap with N = 1, n = 108, r = 0, Alpha = 0, Beta = 1/8.

31. sknuth_Gap with N = 1, n = 108, r = 20, Alpha = 0, Beta = 1/8.

181



32. sknuth_Gap with N = 1, n = 5 ∗ 106, r = 0, Alpha = 0, Beta = 1/256.

33. sknuth_Gap with N = 1, n = 5 ∗ 106, r = 16, Alpha = 0, Beta = 1/256.

34. sknuth_Run with N = 1, n = 5 ∗ 108, r = 0, Up = TRUE.

35. sknuth_Run with N = 1, n = 5 ∗ 108, r = 10, Up = FALSE.

36. sknuth_Permutation with N = 1, n = 5 ∗ 107, r = 0, t = 10.

37. sknuth_Permutation with N = 1, n = 5 ∗ 107, r = 10, t = 10.

38. sknuth_CollisionPermut with N = 5, n = 107, r = 0, t = 13.

39. sknuth_CollisionPermut with N = 5, n = 107, r = 10, t = 13.

40. sknuth_MaxOft with N = 50, n = 500000, r = 0, d = 10000, t = 5.

41. sknuth_MaxOft with N = 40, n = 500000, r = 0, d = 10000, t = 10.

42. sknuth_MaxOft with N = 30, n = 500000, r = 0, d = 10000, t = 20.

43. sknuth_MaxOft with N = 30, n = 500000, r = 0, d = 10000, t = 30.

44. svaria_SampleProd with N = 1, n = 107, r = 0, t = 10.

45. svaria_SampleProd with N = 1, n = 107, r = 0, t = 30.

46. svaria_SampleMean with N = 107, n = 20, r = 0.

47. svaria_SampleCorr with N = 1, n = 5 ∗ 108, r = 0, k = 1.

48. svaria_AppearanceSpacings with N = 1, Q = 107, K = 108, r = 0, s = 24, L = 12.

49. svaria_AppearanceSpacings with N = 1, Q = 107, K = 108, r = 12, s = 12, L = 12.

50. svaria_WeightDistrib with N = 1, n = 2 ∗ 106, r = 0, k = 256, Alpha = 0, Beta
= 1/8.

51. svaria_WeightDistrib with N = 1, n = 2 ∗ 106, r = 8, k = 256, Alpha = 0, Beta
= 1/8.

52. svaria_WeightDistrib with N = 1, n = 2 ∗ 106, r = 16, k = 256, Alpha = 0, Beta
= 1/8.

53. svaria_WeightDistrib with N = 1, n = 2 ∗ 106, r = 20, k = 256, Alpha = 0, Beta
= 1/8.

54. svaria_SumCollector with N = 1, n = 2 ∗ 107, r = 0, g = 10.

55. smarsa_MatrixRank with N = 1, n = 106, r = 0, s = 24, L = k = 48.

182



56. smarsa_MatrixRank with N = 1, n = 106, r = 16, s = 8, L = k = 48.

57. smarsa_MatrixRank with N = 1, n = 50000, r = 0, s = 24, L = k = 240.

58. smarsa_MatrixRank with N = 1, n = 50000, r = 16, s = 8, L = k = 240.

59. smarsa_MatrixRank with N = 1, n = 2000, r = 0, s = 24, L = k = 960.

60. smarsa_MatrixRank with N = 1, n = 2000, r = 16, s = 8, L = k = 960.

61. smarsa_Savir2 with N = 1, n = 2 ∗ 107, r = 0, m = 220, t = 30.

62. smarsa_GCD with N = 1, n = 108, r = 0, s = 24.

63. swalk_RandomWalk1 with N = 1, n = 5 ∗ 107, r = 0, s = 24, L0 = L1 = 72.

64. swalk_RandomWalk1 with N = 1, n = 107, r = 16, s = 8, L0 = L1 = 72.

65. swalk_RandomWalk1 with N = 1, n = 5 ∗ 106, r = 0, s = 24, L0 = L1 = 600.

66. swalk_RandomWalk1 with N = 1, n = 106, r = 16, s = 8, L0 = L1 = 600.

67. swalk_RandomWalk1 with N = 1, n = 5 ∗ 105, r = 0, s = 24, L0 = L1 = 6000.

68. swalk_RandomWalk1 with N = 1, n = 105, r = 16, s = 8, L0 = L1 = 6000.

69. scomp_LinearComp with N = 1, n = 120000, r = 0, s = 1.

70. scomp_LinearComp with N = 1, n = 120000, r = 23, s = 1.

71. scomp_LempelZiv with N = 10, k = 25, r = 0, s = 24.

72. sspectral_Fourier3 with N = 50000, k = 14, r = 0, s = 24.

73. sspectral_Fourier3 with N = 50000, k = 14, r = 16, s = 8.

74. sstring_LongestHeadRun with N = 1, n = 1000, r = 0, s = 24, L = 107.

75. sstring_LongestHeadRun with N = 1, n = 300, r = 16, s = 8, L = 107.

76. sstring_PeriodsInStrings with N = 1, n = 3 ∗ 108, r = 0, s = 24.

77. sstring_PeriodsInStrings with N = 1, n = 3 ∗ 108, r = 5, s = 15.

78. sstring_HammingWeight2 with N = 100, n = 108, r = 0, s = 24, L = 106.

79. sstring_HammingWeight2 with N = 30, n = 108, r = 16, s = 8, L = 106.

80. sstring_HammingCorr with N = 1, n = 5 ∗ 108, r = 0, s = 24, L = 24.

81. sstring_HammingCorr with N = 1, n = 5 ∗ 107, r = 0, s = 24, L = 240.

82. sstring_HammingCorr with N = 1, n = 107, r = 0, s = 24, L = 1200.

183



83. sstring_HammingIndep with N = 1, n = 3 ∗ 108, r = 0, s = 24, L = 24, d = 0.

84. sstring_HammingIndep with N = 1, n = 108, r = 16, s = 8, L = 24, d = 0.

85. sstring_HammingIndep with N = 1, n = 3 ∗ 107, r = 0, s = 24, L = 240, d = 0.

86. sstring_HammingIndep with N = 1, n = 107, r = 16, s = 8, L = 240, d = 0.

87. sstring_HammingIndep with N = 1, n = 107, r = 0, s = 24, L = 1200, d = 0.

88. sstring_HammingIndep with N = 1, n = 106, r = 16, s = 8, L = 1200, d = 0.

89. sstring_Run with N = 1, n = 109, r = 0, s = 24.

90. sstring_Run with N = 1, n = 109, r = 16, s = 8.

91. sstring_AutoCor with N = 10, n = 109, r = 0, s = 24, d = 1.

92. sstring_AutoCor with N = 5, n = 109, r = 16, s = 8, d = 1.

93. sstring_AutoCor with N = 10, n = 109, r = 0, s = 24, d = 24.

94. sstring_AutoCor with N = 5, n = 109, r = 16, s = 8, d = 8.

void bbat24_RepeatBird (unif01_Gen *gen, int rep[]);

Similar to bbat24_RepeatSmallBird above but applied on Bird.

184


