
Master M2 MVA 2015/2016 - Graphical models - HWK 2

These exercises are due on November 11th 2015 and should be submitted on the Moodle.

They can be done in groups of two students. The write-up should be in English. Please

submit your answers as a pdf file that you will name MVA DM1 <your name>.pdf if you

worked alone or MVA DM1 <name1> <name2>.pdf with both of your names if you work as a

group of two. Indicate your name(s) as well in the documents. Please submit your code

as a separate zipped folder and name it MVA DM1 <your name>.zip if you worked alone or

MVA DM1 <name1> <name2>.zip with both of your names if you worked as group of two.

Note that your files should weight no more than 16Mb.

1 Entropy and Mutual Information

1. Let X be a discrete random variable on a finite space X with |X | = k.

(a) Prove that the entropy H(X) is greater than or equal to zero, with equality
only when X is a constant.

(b) Denote by p the distribution of X and q the uniform distribution on X .
What is the relation between the Kullback-Leibler divergence D(p‖q) and
the entropy H(X) of the distribution p?

(c) Deduce an upper bound on the entropy that depends on k.

2. We consider a pair of discrete random variables (X1, X2) defined over the finite
set X1 × X2. Let p1,2, p1 and p2 denote respectively the joint distribution, the
marginal distribution of X1 and the marginal distribution of X2. The mutual
information I(X1, X2) is defined as

I(X1, X2) =
∑

(x1,x2)∈X1×X2

p1,2(x1, x2) log
p1,2(x1, x2)

p1(x1)p2(x2)
.

(a) Prove that I(X1, X2) ≥ 0.

(b) Show that I(X1, X2) can be expressed as a function of H(X1), H(X2) and
H(X1, X2) where H(X1, X2) is the entropy of the random variable X =
(X1, X2).

(c) What is the joint distribution p1,2 of maximal entropy with given marginals
p1 and p2?

2 Conditional independence and factorizations

1. Prove that X⊥⊥Y | Z if and only if p(x|y, z) = p(x|z) for all pairs (y, z)
such that p(y, z) > 0, using only the three following axioms (a) the defini-

1



tion of conditional independence, (b) the definition of conditional probability
via p(a, b) = p(a|b)p(b) and the summation rule

∑
a p(a|b) = 1.

2. Consider the directed graphical model G on the right. Write
down the implied factorization for any joint distribution p ∈
L(G). Is it true that X⊥⊥Y | T for any p ∈ L(G)? Prove
or disprove.

3. Let (X, Y, Z) be a r.v. on a finite space. Consider the following statement:

“If X⊥⊥Y | Z and X⊥⊥Y then (X⊥⊥Z or Y⊥⊥Z).”

(a) Is this true if one assumes that Z is a binary variable? Prove or disprove.

(b) Is the statement true in general? Prove or disprove.

3 Distributions factorizing in a graph

1. Let G = (V,E) be a DAG. We say that an edge i→ j ∈ E is a covered edge if
and only if πj = πi ∪ {i}; let G′ = (V,E ′), with E ′ = (E\{i → j}) ∪ {j → i}.
Prove that L(G) = L(G′).

2. Let G be a directed tree and G′ its corresponding undirected tree (where the
orientation of edges is ignored). Recall that by the definition of a directed tree,
G does not contain any v-structure. Prove that L(G) = L(G′).

4 Implementation - Gaussian mixtures

The file “EMGaussian.data” contains sample of data xn where xn ∈ R2. The goal of
this exercise is to implement the EM algorithm for certain mixtures of K Gaussians
in Rd (here d = 2 and K = 4), for i.i.d. data. (NB: in this exercise, no need to prove
any of the formulas used in the algorithms except for question (b)).

The choice of the programming language is yours (we however recommend Matlab,
Scilab, Octave, Python or R). The source code should be handed in along with results.
However all the requested figures should be printed on paper or part of a pdf file which
is turned in, with clear titles that indicate what the figures represent. The discussions
may of course be handwritten.
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(a) Implement the K-means algorithm. Represent graphically the training data,
the cluster centers, as well as the different clusters. Try several random initial-
izations and compare results (centers and distortion measures).

(b) Consider a Gaussian mixture model in which the covariance matrices are pro-
portional to the identity. Derive the form of the M-step updates for this model
and implement the corresponding EM algorithm (using an initialization with
K-means).

Represent graphically the training data, the centers, as well as the covariance
matrices (an elegant way is to represent the ellipse that contains a certain
percentage, e.g., 90%, of the mass of the Gaussian distribution).

Estimate and represent (e.g. with different colors or different symbols) the
latent variables for all data points (with the parameters learned by EM).

(c) Implement the EM algorithm for a Gaussian mixture with general covariance
matrices. Represent graphically the training data, the centers, as well as the
covariance matrices.

Estimate and represent (e.g. with different colors or different symbols) the
latent variables for all data points (with the parameters learned by EM).

(d) Comment the different results obtained in earlier questions. In particular, com-
pare the log-likelihoods of the two mixture models on the training data, as well
as on test data (in “EMGaussian.test”).
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