
Master M2 MVA 2015/2016 - Graphical models
Homework 3

These exercises are due on or before Wednesday January 6th, 2016, and should be

submitted on the Moodle. They can be done in groups of two students. The write-up

should be in English. Please submit your answers as a pdf file that you will name

MVA DM3 <your name>.pdf if you worked alone or MVA DM3 <name1> <name2>.pdf with

both of your names if you work as a group of two. Indicate your name(s) as well in the

documents. Please submit your code as a separate zipped folder and name it

MVA DM3 <your name>.zip if you worked alone or MVA DM3 <name1> <name2>.zip with

both of your names if you worked as group of two. Note that your files should weight no

more than 16Mb.

1 HMM - Implementation

We consider the same training data as in the previous homework, provided as the
“EMGaussienne.dat” file (and we will test on the corresponding testing data from
the “EMGaussienne.test” file), but this time we use an HMM model to account for
the possible temporal structure of the data. The data are of the form ut = (xt, yt)
where ut = (xt, yt) ∈ R2, for t = 1, . . . , T . The goal of this exercise is to implement the
probabilistic inference algorithm and the EM algorithm to learn parameters as well
as the Viterbi algorithm. It is recommended to make use of the code of the previous
homework.

We consider the following HMM model : the chain (qt) has K = 4 possible states,
with an initial probability distribution π ∈ R4 and a probability transition matrix
A ∈ R4×4, and conditionally on the current states we have observations obtained from
Gaussian emission probabilities ut|qt = i ∼ N (µi,Σi).

1. Implement the recursions α et β seen in class (and that can be found in the
polycopié as well) to compute p(qt|u1, . . . , uT ) and p(qt, qt+1|u1, . . . , uT ).

2. Using the same parameters for the means and covariance matrix of the 4 Gaus-
sians as the ones obtained in the previous homework, taking a uniform initial
probability distribution π, and setting A to be the matrix with diagonal coef-
ficients Aii = 1

2
and off-diagonal coefficients Aij = 1

6
for all (i, j) ∈ {1, . . . , 4}2,

compute αt and βt for all t on the test data (“EMGaussienne.test” file) and
compute p(qt|u1, . . . , uT ). Finally, represent p(qt|u1, . . . , uT ) for each of the 4
states as a function of time for the 100 first datapoints in the file. Note that
only the 100 first points should be plotted by that filtering should be done with
all the data (i.e. T = 500). This will be the same for the subsequent questions.
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(In Matlab the command subplot might be handy to make long horizontal
plots.)

3. Derive the estimation equations of the EM algorithm.

4. Implement the EM algorithm to learn the parameters of the model (π,A, µk,Σk, k =
1 . . . , 4). The means and covariances could be initialized with the ones ob-
tained in the previous homework. Learn the model from the training data
in“EMGaussienne.dat”.

5. Plot the log-likelihood on the train data “EMGaussienne.dat” and on the test
data “EMGaussienne.test” as a function of the iterations of the algorithm.
Comment.

6. Return in a table the values of the log-likelihoods of the Gaussian mixture
models and of the HMM on the train and on the test data. Compare these
values. Does it make sense to make this comparison ? Conclude. Compare these
log-likelihoods as well with the log-likelihoods obtained for the different models
in the previous homework.

7. Provide a description and pseudo-code for the Viterbi decoding algorithm (aka
MAP inference algorithm or max-product algorithm) that estimates the most
likely sequence of states, i.e. arg maxq p(q1, . . . , qT |y1, . . . , yT )

8. Implement Viterbi decoding. For the set of parameters learned with the EM
algorithm, compute the most likely sequence of states with the Viterbi algo-
rithm and represent the data in 2D with the cluster centers and with markers
of different colors for the datapoints belonging to different classes.

9. For the datapoints in the test file “EMGaussienne.test”, compute the marginal
probability p(qt|u1, . . . , uT ) for each point to be in state {1, 2, 3, 4} for the
parameters learned on the training set. For each state plot the probability of
being in that state as a function of time for the 100 first points (i.e., as a
function of the datapoint index in the file).

10. For each of these same 100 points, compute their most likely state according
to the marginal probability computed in the previous question. Make a plot
representing the most likely state in {1, 2, 3, 4} as function of time for these
100 points.

11. Run Viterbi on the test data. Compare the most likely sequence of states
obtained for the 100 first data points with the sequence of states obtained in
the previous question. Make a similar plot. Comment.

12. In this problem the number of states was known. How would you choose the
number of states if you did not know it ?
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