Probabilistic clustering and the EM algorithm

Guillaume Obozinski

Ecole des Ponts - ParisTech

Master MVA

EM 1/2

Outline

Clustering

2 The EM algorithm for the Gaussian mixture model

M 2/2

Clustering

4/27

Supervised, unsupervised and semi-supervised learning

Supervised learning

Training set composed of pairs $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}.$

 \rightarrow Learn to classify new points in the classes

Unsupervised learning

Training set composed of pairs $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$.

- \rightarrow Partition the data in a number of classes.
- \rightarrow Possibly produce a decision rule for new points.

Transductive learning

Data available at train time composed of

train data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ + test data $\{\mathbf{x}_{n+1}, \dots, \mathbf{x}_n\}$

 \rightarrow Classify all the test data

Semi-supervised learning

Data available at train time composed of labelled data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ + unlabelled data $\{\mathbf{x}_{n+1}, \dots, \mathbf{x}_n\}$

→ Produce a classification rule for future points

5/27

Clustering

- Clustering is word usually used for unsupervised classification
- Clustering techniques can be useful to solve semi-supervised classification problem.

Clustering is not a well-specified problem

- Classes might be impossible to infer from the distribution of X alone
- Several goals possible:
 - Find the modes of the distribution
 - Find a set of denser **connected** regions supporting most of the density
 - Find a set of denser convex regions supporting most of the density
 - Find a set of denser ellipsoidal regions supporting most of the density
 - Find a set of denser round regions supporting most of the density

EM 6/2

K-means

Key assumption: Data composed of K "roundish" clusters of similar sizes with centroids (μ_1, \dots, μ_K) .

Problem can be formulated as: $\min_{\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K} \frac{1}{n} \sum_{i=1}^n \min_k \|\mathbf{x}_i - \boldsymbol{\mu}_k\|^2.$

Difficult (NP-hard) nonconvex problem.

K-means algorithm

- Draw centroids at random
- 2 Assign each point to the closest centroid

$$C_k \leftarrow \left\{ i \mid \|\mathbf{x}_i - \boldsymbol{\mu}_k\|^2 = \min_j \|\mathbf{x}_i - \boldsymbol{\mu}_j\|^2 \right\}$$

3 Recompute centroid as center of mass of the cluster

$$\mu_k \leftarrow \frac{1}{\mid C_k \mid} \sum_{i \in C_k} \mathbf{x}_i$$

4 Go to 2

EM 7/2

K-means properties

Three remarks:

- K-means is greedy algorithm
- It can be shown that K-means converges in a finite number of steps.
- The algorithm however typically get stuck in local minima and it practice it is necessary to try several restarts of the algorithm with a random initialization to have chances to obtain a better solution.
- Will fail if the clusters are not round

EM 8/2

K-means++, (Arthur and Vassilvitskii, 2007)

Algorithm

• Choose first center μ_1 uniformly among data points

For k = 2...K

- Let $D_i^2 = \min_{j < k} ||x_i \mu_k||_2^2$
- Choose the next center among $\{x_1, \ldots, x_n\}$ with probability $\propto D_i^2$.

endFor

 \rightarrow Solution is $\log(K)$ optimal.

See Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. Proceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms.

EM 9/2

The Gaussian mixture model and the EM algorithm

EM

11/27

Jensen's Inequality

Consider a function $f: \mathbb{R}^d \to \mathbb{R}$

 \bullet if f is **convex** and if X is a random variable, then

$$\mathbb{E}\big[f(X)\big] \ge f\big(\mathbb{E}[X]\big)$$

② if f is **strictly convex**, we have equality in the previous inequality if and only if X is constant almost surely.

EM 12/2

Entropy

Let X a r.v. with values in the finite set \mathcal{X} and p(x) = P(X = x).

Quantity of information of the observation x

$$I(x) := \log \frac{1}{p(x)}$$

Definition of entropy

$$H(X) := E[I(X)] = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

Remarks:

- Convention: $0 \log 0 = 0$
- H defined either with natural log or the log in base 2 (i.e. log_2).
- log₂ is better for coding interpretations
- In this course we will use the natural logarithm.

EM 13/2

Kullback-Leibler divergence

Definition

Let p and q be two finite distributions on \mathcal{X} finite. The Kullback-Leibler divergence is defined by

$$D(p \parallel q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = E_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right]$$
$$= \sum_{x \in \mathcal{X}} \frac{p(x)}{q(x)} \left(\log \frac{p(x)}{q(x)} \right) q(x) = E_{X \sim q} \left[\frac{p(X)}{q(X)} \log \frac{p(X)}{q(X)} \right]$$

The KL divergence is *not* a distance: it is not symmetric. If $\exists x \in \mathcal{X}$ with q(x) = 0 and $p(x) \neq 0$ then $D(p \parallel q) = +\infty$.

EM 14/2

Kullback-Leibler divergence

Proposition

 $D(p \parallel q) \ge 0$ and equality holds if and only if p = q.

Proof.

W.l.o.g assume q(x) > 0 everywhere.

 $\mathbf{0} \ y \mapsto y \log y$ is convex so by Jensen's inequality, we have

$$D(p \parallel q) = E_q \left[\frac{p(X)}{q(X)} \log \left(\frac{p(X)}{q(X)} \right) \right] \ge E_q \left[\frac{p(X)}{q(X)} \right] \log E_q \left[\frac{p(X)}{q(X)} \right] = 0$$

since

$$E_q\left[\frac{p(X)}{q(X)}\right] = \sum_{x \in \mathcal{X}} \frac{p(x)}{q(x)} q(x) = \sum_{x \in \mathcal{X}} p(x) = 1.$$

② $D(p \parallel q) = 0$ iff there is equality in Jensen's inequality

- $\Rightarrow p(x) = cq(x) \text{ q-a.s.},$
- \Rightarrow but summing this last equality over x implies that c=1,
- \Rightarrow in turn implies that p = q.

EM 15/2

Differential entropy and KL

Let X be a r.v. with distribution P and density p w.r.t. a measure μ .

Differential entropy:

$$H_{\text{diff}}(p) = -\int_{\mathcal{X}} p(x) \log(p(x)) d\mu(x)$$

Differential Kullback Leibler Divergence

$$D_{\text{diff}}(p \parallel q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} d\mu(x)$$
$$= E_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right]$$

- $H_{\text{diff}}(p) \not\geqslant 0$
- $H_{\text{diff}}(p)$ depends on the reference measure μ .
- $\Rightarrow H_{\text{diff}}(p)$ does not capture intrinsic properties of P.
 - However, $D_{\text{diff}}(p \parallel q)$ does not depend on μ .

EM 16/2

Gaussian mixture model

- \bullet K components
- \bullet z component indicator

•
$$z = (z_1, \dots, z_K)^{\top} \in \{0, 1\}^K$$

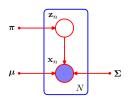
•
$$z \sim \mathcal{M}(1, (\pi_1, \dots, \pi_K))$$

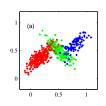
$$\bullet \ p(z) = \prod_{k=1}^K \pi_k^{z_k}$$

•
$$p(\mathbf{x}|\mathbf{z}; (\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)_k) = \sum_{k=1}^K z_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

•
$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Estimation: $\underset{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k}{\operatorname{argmax}} \log \left[\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$





EM 17/2

Applying maximum likelihood to the Gaussian mixture

Let
$$\mathcal{Z} = \{ z \in \{0, 1\}^K \mid \sum_{k=1}^K z_k = 1 \}$$

$$p(\mathbf{x}) = \sum_{z \in \mathcal{Z}} p(\mathbf{x}, z) = \sum_{z \in \mathcal{Z}} \prod_{k=1}^{K} \left[\pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]^{z_k} = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Issue

- The marginal log-likelihood $\tilde{\ell}(\theta) = \sum_{i} \log(p(\mathbf{x}^{(i)}))$ with $\theta = (\boldsymbol{\pi}, (\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)_{1 < k < K})$ is now complicated
- No hope to find a simple solution to the maximum likelihood problem
- By contrast the complete log-likelihood has a rather simple form:

$$\tilde{\ell}(\theta) = \sum_{i=1}^{M} \log p(\mathbf{x}^{(i)}, \mathbf{z}^{(i)}) = \sum_{i, k} z_k^{(i)} \log \mathcal{N}(x^{(i)}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{i, k} z_k^{(i)} \log(\pi_k),$$

EM 18/2

Applying ML to the multinomial mixture

$$\tilde{\ell}(\theta) = \sum_{i=1}^{M} \log p(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}) = \sum_{i,k} z_k^{(i)} \log \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{i,k} z_k^{(i)} \log(\pi_k),$$

- If we knew $z^{(i)}$ we could maximize $\tilde{\ell}(\theta)$.
- If we knew $\theta = (\boldsymbol{\pi}, (\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)_{1 \leq k \leq K})$, we could find the best $\boldsymbol{z}^{(i)}$ since we could compute the true a posteriori on $\boldsymbol{z}^{(i)}$ given $\mathbf{x}^{(i)}$:

$$p(z_k^{(i)} = 1 \mid \mathbf{x}; \theta) = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}^{(i)}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

- \rightarrow Seems a chicken and egg problem...
 - In addition, we want to solve

$$\max_{\theta} \sum_{i} \log \left(\sum_{\boldsymbol{z}^{(i)}} p(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}) \right) \quad \text{and not} \quad \max_{\substack{\theta, \\ \boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(M)}}} \sum_{i} \log p(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)})$$

• Can we still use the intuitions above to construct an algorithm maximizing the marginal likelihood?

EM 19/2

Principle of the Expectation-Maximization Algorithm

$$\frac{\log p(\mathbf{x}; \boldsymbol{\theta})}{\log p(\mathbf{x}; \boldsymbol{\theta})} = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) = \log \sum_{\mathbf{z}} q(\mathbf{z}) \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{q(\mathbf{z})}$$

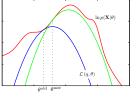
$$\geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{q(\mathbf{z})}$$

$$= \mathbb{E}_q[\log p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})] + H(q) =: \mathcal{L}(q, \boldsymbol{\theta})$$

- This shows that $\mathcal{L}(q, \theta) \leq \log p(\mathbf{x}; \theta)$
- Moreover: $\theta \mapsto \mathcal{L}(q, \theta)$ is a **concave** function.
- Finally it is possible to show that

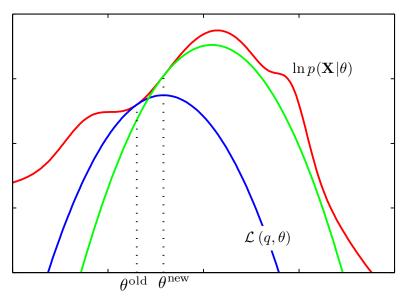
$$\mathcal{L}(\mathbf{q}, \boldsymbol{\theta}) = \log p(\mathbf{x}; \boldsymbol{\theta}) - KL(\mathbf{q}||p(\cdot|\mathbf{x}; \boldsymbol{\theta}))$$

So that if we set $q(z) = p(z \mid \mathbf{x}; \boldsymbol{\theta}^{(t)})$ then $L(q, \boldsymbol{\theta}^{(t)}) = p(\mathbf{x}; \boldsymbol{\theta}^{(t)}).$



EM 20/27

A graphical idea of the EM algorithm



M = 21/2

Expectation Maximization algorithm

Initialize $\theta = \theta_0$

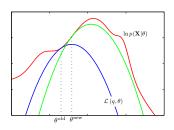
WHILE (Not converged)

Expectation step

$$2 \mathcal{L}(q, \theta) = \mathbb{E}_q \big[\log p(\mathbf{x}, \boldsymbol{z}; \boldsymbol{\theta}) \big] + H(q)$$

Maximization step

ENDWHILE



$$\boldsymbol{\theta}^{\mathrm{old}} = \boldsymbol{\theta}^{(t-1)}$$

$$\boldsymbol{\theta}^{\mathrm{new}} = \boldsymbol{\theta}^{(t)}$$

EM 22/2

Expected complete log-likelihood

With the notation: $q_{ik}^{(t)} = \mathbb{P}_{q_i^{(t)}}(z_k^{(i)} = 1) = \mathbb{E}_{q_i^{(t)}}[z_k^{(i)}]$, we have

$$\begin{split} \mathbb{E}_{q^{(t)}} \left[\tilde{\ell}(\boldsymbol{\theta}) \right] &= \mathbb{E}_{q^{(t)}} \left[\log p(\boldsymbol{X}, \boldsymbol{Z}; \boldsymbol{\theta}) \right] \\ &= \mathbb{E}_{q^{(t)}} \left[\sum_{i=1}^{M} \log p(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}; \boldsymbol{\theta}) \right] \\ &= \mathbb{E}_{q^{(t)}} \left[\sum_{i,k} z_k^{(i)} \log \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{i,k} z_k^{(i)} \log(\pi_k) \right] \\ &= \sum_{i,k} \mathbb{E}_{q_i^{(t)}} \left[z_k^{(i)} \right] \log \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{i,k} \mathbb{E}_{q_i^{(t)}} \left[z_k^{(i)} \right] \log(\pi_k) \\ &= \sum_{i,k} q_{ik}^{(t)} \log \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{i,k} q_{ik}^{(t)} \log(\pi_k) \end{split}$$

EM 23/2

Expectation step for the Gaussian mixture

We computed previously $q_i^{(t)}(\boldsymbol{z}^{(i)})$, which is a multinomial distribution defined by

$$q_i^{(t)}(\boldsymbol{z}^{(i)}) = p(\boldsymbol{z}^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta}^{(t-1)})$$

Abusing notation we will denote $(q_{i1}^{(t)}, \ldots, q_{iK}^{(t)})$ the corresponding vector of probabilities defined by

$$q_{ik}^{(t)} = \mathbb{P}_{q_i^{(t)}}(z_k^{(i)} = 1) = \mathbb{E}_{q_i^{(t)}}\big[z_k^{(i)}\big]$$

$$q_{ik}^{(t)} = p(z_k^{(i)} = 1 \mid \mathbf{x}^{(i)}; \boldsymbol{\theta}^{(t-1)}) = \frac{\pi_k^{(t-1)} \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})}{\sum_{j=1}^K \pi_j^{(t-1)} \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_j^{(t-1)}, \boldsymbol{\Sigma}_j^{(t-1)})}$$

EM 24/2

Maximization step for the Gaussian mixture

$$\left(\boldsymbol{\pi}^t, (\boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})_{1 \leq k \leq K}\right) = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{q^{(t)}} \big[\tilde{\ell}(\boldsymbol{\theta})\big]$$

This yields the updates:

$$\boldsymbol{\mu}_{k}^{(t)} = \frac{\sum_{i} \mathbf{x}^{(i)} \, q_{ik}^{(t)}}{\sum_{i} q_{ik}^{(t)}}$$

$$\boxed{ \boldsymbol{\mu}_k^{(t)} = \frac{\sum_i \mathbf{x}^{(i)} \, q_{ik}^{(t)}}{\sum_i q_{ik}^{(t)}}, \quad \boxed{\boldsymbol{\Sigma}_k^{(t)} = \frac{\sum_i \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_k^{(t)}\right) \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_k^{(t)}\right)^\top q_{ik}^{(t)}}{\sum_i q_{ik}^{(t)}} }$$

and
$$\pi_k^{(t)} = \frac{\sum_i q_{ik}^{(t)}}{\sum_{i,k'} q_{ik'}^{(t)}}$$

EM25/27

Final EM algorithm for the Multinomial mixture model

Initialize $\theta = \theta_0$

WHILE (Not converged)

Expectation step

$$q_{ik}^{(t)} \leftarrow \frac{\pi_k^{(t-1)} \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})}{\sum_{j=1}^K \pi_j^{(t-1)} \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_j^{(t-1)}, \boldsymbol{\Sigma}_j^{(t-1)})}$$

Maximization step

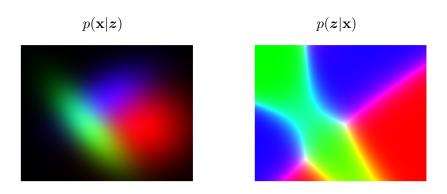
$$\boldsymbol{\mu}_{k}^{(t)} = \frac{\sum_{i} \mathbf{x}^{(i)} \, q_{ik}^{(t)}}{\sum_{i} q_{ik}^{(t)}} \,, \quad \boldsymbol{\Sigma}_{k}^{(t)} = \frac{\sum_{i} \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}^{(t)}\right) \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}^{(t)}\right)^{\top} q_{ik}^{(t)}}{\sum_{i} q_{ik}^{(t)}}$$

and
$$\pi_k^{(t)} = \frac{\sum_i q_{ik}^{(t)}}{\sum_{i,k'} q_{ik'}^{(t)}}$$

ENDWHILE

EM 26/2

EM Algorithm for the Gaussian mixture model III



I 27/27