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4.1 Notation and probability review

4.1.1 Notations

Let us recall a few notations before establishing some properties of directed graphical models.
Let X1, X2, . . . , Xn be random variables with distribution:

P(X1 = x1, X2 = x2, . . . , Xn = xn) = pX(x1, . . . , xn) = p(x)

where x stands for (x1, . . . , xn). Given A ⊂ {1, . . . , n}, we denote the marginal distribution
of xA by:

p(xA) =
∑
x∈Ac

p(xA, xAc).

With this notation, we can write the conditional distribution as:

p(xA|xAc) =
p(xA, xAc)

p(xAc)

We also recall the so-called 'chain rule' stating:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . . p(xn|x1, . . . , xn−1)

4.1.2 Independence

Let A, B, and C be disjoint.
Marginal independence is de�ned as:

XA⊥⊥XB ⇔ p(xA, xB) = p(xA)p(xB) ∀xA, xB (4.1)

XA⊥⊥XB ⇔ p(xA|xB) = p(xA) ∀xA, xB s.t. p(xB) > 0 (4.2)

Conditional independence is de�ned as:

XA⊥⊥XB|XC ⇔ p(xA, xB|xC) = p(xA|xC)p(xB|xC) p(xC) > 0 (4.3)

XA⊥⊥XB|XC ⇔ p(xA|xB, xC) = p(xA|xC) p(xB, xC) > 0 (4.4)
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Three Facts About Conditional Independence

1. Can repeat variables: X ⊥⊥Y, Z|Z,W is the same asX,Z ⊥⊥Y |Z,W . The repetition
is redundant but may be convenient notation.

2. Decomposition: X ⊥⊥Y, Z|W implies that X ⊥⊥Y |W and X ⊥⊥Z|W .

3. Trick: extra conditioning on both sides of the equation doesn't change anything. E.g.
the following two statements are always true.

p(x, y) = p(x|y)p(y) (4.5)

p(x, y|z) = p(x|y, z)p(y|z) (4.6)

4.2 Directed Graphical Model

Graphical models combine probability and graph theory into an e�cient data structure. We
want to be able to handle probabilistic models of hundreds of variables. For example, assume
we are trying to model the probability of diseases given the symptoms, as shown below.

Figure 4.1. Nodes representing binary variables indicating the presence or not of a disease or a symptom.

We have n nodes, each a binary variable (Xi ∈ {0, 1}), indicating the presence or absence
of a disease or a symptom. The number of joint probability terms would grow exponentially.
For 100 diseases and symptoms, we would need a table of size 2100 to store all the possible
states. This is clearly intractable. Instead, we will use graphical models to represent the
relationships between nodes.

General issues in this class

1. Representation → DGM, UGM / parameterization → exponential family

2. Inference (computing p(xA|xB)) → sum-product algorithm

3. Statistical estimation → maximum likelihood, maximum entropy
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A directed graphical model, also known as �Bayesian network�, represents a family of distri-
butions, denoted L(G), where L(G) , {p : ∃ legal factors, fi, s.t. p(xV ) =

∏n
i=1 fi(xi, xπi)},

where the legal factors satisfy fi ≥ 0 and
∑

xi
fi(xi, xπi) = 1 ∀i, xπi .

4.2.1 First de�nitions and properties

Let X1, . . . , Xn be n random variables with distribution p(x) = pX(x1, . . . , xn).

De�nition 4.1 Let G = (V,E) be a DAG with V = {1, . . . , n}. We say that p(x) factorizes
in G, denoted p(x) ∈ L(G), if there exists some functions fi, called factors, such that:

∀x, p(x) =
n∏
i=1

fi(xi, xπi)

fi ≥ 0, ∀i, ∀xπi ,
∑
xi

fi(xi, xπi) = 1
(4.7)

where we recall that πi stands for the set of parents of the vertex i in G.

We prove the following useful and fundamental property of directed graphical models.

Proposition 4.2 (marginalizing leaves is easy) Suppose that p factorizes in G, i.e. p(xV ) =∏n
j=1 fj(xj, xπj). Then for any leaf i, we have that p(xV \{i}) =

∏
j 6=i fj(xj, xπj) , hence

p(xV \{i}) factorizes in G
′ = (V \{i}, E ′), the subgraph obtained from removing the leaf i from

G.

Proof Without loss of generality, we can assume that the leaf is labelled n. Therefore we
have that n /∈ πi,∀i ≤ n− 1. We have the following computation:

p(x1, ...xn−1) =
∑
xn

p(x1, . . . , xn)

=
∑
xn

(
n−1∏
i=1

fi(xi|xπi)fn(xn|xπn)

)

=
n−1∏
i=1

fi(xi|xπi)
∑
xn

fn(xn|xπn)

=
n−1∏
i=1

fi(xi|xπi)

Remark 4.2.1 In this proposition we admitted that the new graph obtained by removing a
leaf is still a DAG. Also, by induction, this result shows that in the de�nition of factorization
we do not need to suppose that p is a probability distribution: if a function p satis�es 4.7
then it is a probability distribution.
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Now we try to characterize the factor functions. The following result will imply that if p
factorizes in G, then we have a uniqueness of the factors.

Proposition 4.3 If p(x) ∈ L(G) then, for all i ∈ {1, . . . , n}, fi(xi, xπi) = p(xi|xπi).

Proof Let |V | = n, and i be some �xed 1 ≤ i ≤ n. Without loss of generality, we suppose
that {1, . . . , n} is a topological sorting of G, such that the set {i+ 1, . . . , n} corresponds to
the labels of the descendants of i. We use repeatedly the previous proposition in order to
pluck out (marginalize out) leaves until getting to i. Indeed, the factors fj remain the same
after plucking out the leaf n. We thus have that p(x1:i) =

∏
j≤i fj(xj|xπj).

Now, let A = {1, . . . , i− 1}\πi. We have 1 : i is the disjoint union of A, πi and {i}.

p(xi, xπi) =
∑
xA

p(xi, xπi , xA) =
∑
xA

fi(xi, xπi)
∏
j≤i−1

fj(xj, xπj) = fi(xi, xπi)
∑
xA

∏
j≤i−1

fj(xj, xπj)

(4.8)
We can factorize out fi(xi, xπi) because it is constant with respect to the dummy variable
xA. We can therefore compute the conditional probability:

p(xi|xπi) =
p(xi, xπi)∑
x′i
p(x′i, xπi)

=
fi(xi, xπi)

∑
xA

∏
j≤i−1 fj(xj, xπj)(∑

x′i
fi(x′i, xπi)

)∑
xA

∏
j≤i−1 fj(xj, xπj)

= fi(xi, xπi). (4.9)

We justify the computations because we have that x′i doesn't appear in
∑

xA

∏
j≤i−1 fj(xj, xπj)

and that
∑

x′i
fi(x

′
i, xπi) = 1.

Hence we can give an equivalent de�nition for a DAG to the notion of factorization:

De�nition 4.4 (Equivalent de�nition) The probability distribution p(x) factorizes in G, de-
noted p(x) ∈ L(G), i�:

∀x, p(x) =
n∏
i=1

p(xi|xπi) (4.10)

Example 4.2.1 • (Trivial Graphs) Assume E = ∅, i.e. there is no edges. Then we have
p(x) =

∏n
i=1 p(xi), implying the random variables X1, . . . , Xn are independent. Hence

variables are independent if they factorize in the empty graph.

• (Complete Graphs) Assume now we have a complete graph (thus with n(n− 1)/2 edges
as we need acyclic for it to be a DAG), we have: p(x) =

∏n
i=1 p(xi|x1, . . . , xi−1), the

so-called 'chain rule' which is always true. Every random process factorizes in the
complete graph.
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4.2.2 Graphs with three nodes

We give an insight of the di�erent possible behaviors of a graph by thoroughly enumerating
the possibilities for a 3-node graph.

• The two �rst options are the empty graph, leading to independence, and the complete
graph that gives no further information than the chain rule.

• (Markov chain) A Markov chain is a certain type of DAG showed in Fig.(4.2). In this
con�guration we show that we have:

p(x, y, z) ∈ L(G)⇒ X ⊥⊥Y | Z (4.11)

Indeed we have:

p(y|z, x) =
p(x, y, z)

p(x, z)
=

p(x, y, z)∑
y′ p(y

′, x, z)
=

p(x)p(z|x)p(y|z)∑
y′ p(x)p(z|x)p(y′|z)

= p(y|z)

  Z                 YX

Figure 4.2. Markov Chain

• (Latent cause) It is the type of DAG given in Fig.(4.3). We show that:

p(x, y, z) ∈ L(G)⇒ X ⊥⊥Y | Z (4.12)

Indeed:

p(x, y|z) =
p(x, y, z)

p(z)
=
p(z)p(y|z)p(x|z)

p(z)
= p(x|z)p(y|z)

Figure 4.3. Latent cause
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• (Explaining away) Represented in Fig.(4.4), we can show for this type of graph:

p(x) ∈ L(G)⇒ X ⊥⊥Y (4.13)

It basically stems from:

p(x, y) =
∑
z

p(x, y, z) = p(x)p(y)
∑
z

p(z|x, y) = p(x)p(y)

Figure 4.4. Explaining away, or V-structure

Remark 4.2.2 The use of 'cause' is not advised since observational statistics provide with
correlations and no causality notion. Note also that in the 'explaining away' graph, in general
X ⊥⊥Y |Z is not true. Lastly, it is important to remember that not every relationship can be
expressed in terms of graphical models. As a counter-example take the XOR function where
Z = X ⊕ Y , and X, Y are independent coin �ips. The three random variables are pairwise
independent, but not mutually independent.

4.2.3 Inclusion, reversal and marginalization properties

Inclusion property. Here is a quite intuitive proposition about included graphs and
their factorization.

Proposition 4.5 If G = (V,E) and G′ = (V,E ′) then:

E ⊂ E ′ ⇔ L(G) ⊂ L(G′) (4.14)

Proof We have p(x) =
∏n

i=1 p(xi, xπi(G)). As E ⊂ E ′ it is obvious that πi(G) ⊂ πi(G
′).

Therefore, going back to the de�nition of graphical models through potential fi(xi, xπi) we
get the result.

Reversal property. We also have some reversal properties. Let us �rst de�ne the
notion of V-structure.

De�nition 4.6 We say there is a V-structure (�gure 4.4) in i ∈ V if |πi| ≥ 2, i.e. i has
two or more parents.
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Proposition 4.7 (Markov equivalence) If G = (V,E) is a DAG and if for (i, j) ∈ E, |πi| = 0
and |πj| ≤ 1, then (i, j) may be reversed, i.e. if p(x) factorizes in G then it factorizes in
G′ = (V,E ′) with E ′ = (E − {(i, j)}) ∪ {(j, i)}.

In terms of 3-nodes graph, this property ensures us that the Markov chain and latent cause
are equivalent. On the other hand the V-structure lead to a di�erent class of graph compared
to the two others.

De�nition 4.8 An edge (i, j) is said to be covered if πj = {i} ∪ πi.

Figure 4.5. Edge (i, j) is covered

By reversing (i, j) we might not get a DAG as it might break the acyclic property. We
have the following result:

Proposition 4.9 Let G = (V,E) be a DAG and (i, j) ∈ E a covered edge. Let G′ = (V,E ′)
with E ′ = (E − {(i, j)}) ∪ {(j, i)}, then if G′ is a DAG, L(G) = L(G′).

Marginalization. The underlying question is whether the marginalization of a distri-
bution that factorizes in a directed graphical model also does. This is true for the marginal-
ization with respect to leaf nodes but is not true generally.

Figure 4.6. Marginalizing the boxed node would not result in family of distributions that can be exactly
represented by a directed graphical model

Conditional independence. We �nish this section by giving a result that explains
that if p(x) factorizes in G then every single random variable is independent from the set of
its non-descendants given its parents.

De�nition 4.10 We de�ne the set of non-descendents of i by nd(i) , {j : no path from i
to j}.
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Proposition 4.11 If G is a DAG, then:

p(x) ∈ L(G)⇔ Xi⊥⊥Xnd(i)|Xπi (4.15)

Proof First, we consider the ⇒ direction. Let i be �xed. The key point is that ∃ a topo-
logical sort such that nd(i) are just before i - i.e. (nd(i), i, V \({i} ∪ nd(i))).
First we consider ⇒ xi⊥⊥xnd(i)|xπi . Let A , nd(i)\πi. We want to marginalize out
xV \({i}\nd(i)) (plucking leaves). By re-using the same argument as in the proof of Propo-
sition 4.3, we have that p(x1:i) = p(xi, xπi , xA) =

∏
j≤i p(xj|xπj). Thus:

p(xi, xπi , xA) = p(xi|xπi)
∏

j∈nd(i)

p(xj|xπj)

p(xi|xnd(i)) =
p(xi, xπi , xA)

p(xπi , xA)

p(xi|xnd(i)) =
p(xi|xπi)

∏
j∈nd(i) p(xj|xπj)∑

x′i
[p(x′i|xπi)]

∏
j∈nd(i) p(xj|xπj)

But since
∑

x′i
[p(x′i|xπi)] = 1 and the product terms cancel out, we get

p(xi|xnd(i)) = p(xi|xπi),

and thus Xi⊥⊥Xnd(i)|Xπi , as we wanted to show.
Now we consider the other direction. Let 1 : n be a topological sort. Then {1, · · · i−1} ⊆

nd(i). (By contradiction, suppose j ∈ {1 · · · i − 1} and j /∈ nd(i), then ∃ path from i to
j, which contradicts the topological sort property as there would be an edge from i to an
element of {1, . . . , i− 1}.)
By the chain rule, we have (always true):

p(xV ) =
n∏
i=1

p(xi|x1:i−1)

By the conditional independence assumptions:

p(xV ) =
n∏
i=1

p(xi|xπi)

and thus p(xV ) ∈ L(G) as we wanted to prove.
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4.2.4 d-separation

We want to answer queries such as, given A,B and C, three subsets, is XA⊥⊥XB|Xc true?
To answer those issues we need the d-separation notion, or directed separation. Indeed it is
easy to see that the notion of separation is not enough in a directed graph and needs to be
generalized.

De�nition 4.12 Let a, b ∈ V , a chain from a to b is a sequence of nodes, say (v1, . . . , vn)
such that v1 = a and vn = b and ∀j, (vj, vj+1) ∈ E or (vj+1, vj) ∈ E.

We can notice that a chain is hence a path in the symmetrized graph, i.e. in the graph
where if the relation → is true then ↔ is true as well. Assume C is a set that is observed.
We want to de�ne a notion of being 'blocked' by this set C in order to answer the underlying
question above.

Figure 4.7. D-separation

De�nition 4.13

1. A chain from a et b is blocked at d if:

• either d ∈ C and (vi−1, d, vi+1) is not a V-structure;

• or d /∈ C and (vi−1, d, vi+1) is a V-structure and no descendants of d is in C.

2. A chain from a to b is blocked if and only if it is blocked at any nodes.

3. A and B are said to be d-separated by C if and only if all chains that go from a ∈ A
to b ∈ B are blocked.

Example 4.2.2

• Markov chain: If you try to prove that any set of the future is independent to the past
given the present with Markov theory, it might be di�cult but the d-separation notion
gives the results directly.
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Figure 4.8. Markov chain

• Hidden Markov Model: Often used because we only have a noisy observation of the
random process.

observations

etats

Figure 4.9. Hidden Markov Model

4.2.5 Bayes ball algorithm

This is an intuitive �reacheability" algorithm to determine conditional independence in a
DAG. It is a systematic algorithm to check whether two nodes are d-separated. Suppose we
want to determine if X is conditionally independent from Z given Y . Place a ball on each of
the nodes in X and let them bounce around according to some rules (described below) and
see if any reaches Z. X ⊥⊥Z|Y is true if none reached Z, but not otherwise.

The rules are as follows for the three canonical graph structures. Note that the balls are
allowed to travel in either direction along the edges of the graph.

1. Markov chain: Balls pass through when we do not observe Y , but are blocked oth-
erwise.

Figure 4.10. Markov chain rule: When Y is observed, balls are blocked (left). When Y is not observed,
balls pass through (right)

2. Two children: Balls pass through when we do not observe Y , but are blocked other-
wise.
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Figure 4.11. Rule when X and Z are Y 's children: When Y is observed, balls are blocked (left). When Y
is not observed, balls pass through (right)

3. V-structure: Balls pass through when we observe Y , but are blocked otherwise.

Figure 4.12. V-structure rule: When Y is not observed, balls are blocked (left). When Y is observed, balls
pass through (right)

4.3 Undirected graphical models

4.3.1 De�nition

De�nition 4.14 Let G = (V,E) be a undirected graph. We denote by C a set of cliques
of G i.e.a set of sets of fully connected vertices. We say that a probability distribution p
factorizes in G and denote p ∈ L(G) if p(x) is of the form:

p(x) =
1

Z

∏
C∈C

ψC(xC) with ψC ≥ 0, Z =
∑
x

∏
C∈C

ψC(xC).

� The functions ψC are not probability distributions like in the directed graphical mod-
els. They are called potentials.

Remark 4.3.1 With the normalization by Z of this expression, we see that the function ψC
are de�ned up to a multiplicative constant.

Remark 4.3.2 We may restrict C to Cmax, the set of maximal cliques.

Remark 4.3.3 This de�nition can be extended to any function: f is said to factorize in
G ⇐⇒ f(x) =

∏
C∈C ψC(xC).
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4.3.2 Trivial graphs

Empty graphs We consider G = (V,E) with E = ∅. For p ∈ L(G), we get:

p(x) =
n∏
i=1

ψi(xi) as C = {{i} ∈ V }

This gives us that X1, ..., Xn are mutually independent.

1

2 3

4

Complete graphs We consider G = (V,E) with ∀i, j ∈ V, (i, j) ∈ E. For p ∈
L(G), we get:

p(x) =
1

Z
ψV (xV ) as C is reduced to a single set V

This gives no further information upon the n-sample
X1, ..., Xn.

1

2 3

4

4.3.3 Separation and conditional dependence

Proposition 4.15 Let G = (V,E) and G′ = (V,E ′) be two undirected graphs.

E ⊆ E ′ ⇒ L(G) ⊆ L(G′)

De�nition 4.16 We say that p satis�es the Global Markov property w.r.t. G if and
only if for all A,B, S ⊂ V disjoint subsets: A and B are separated by S ⇒ XA⊥⊥XB|XS.

Proposition 4.17 If p ∈ L(G) then, p satis�es the Global Markov property w.r.t. G.

Proof We suppose without loss of generality that A, B, and S are disjoint sets such that
A ∪B ∪ S = V , as we could otherwise replace A and B by :

A′ = A ∪ {a ∈ V/a and A are not separated by S}

B′ = V \ {S ∪ A′}
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A′ and B′ are separated by S and we have the disjoint union A′ ∪ B′ ∪ S = V . If
we can show that XA′ ⊥⊥XB′ |XS, then by the decomposition property, we also have that
XA⊥⊥XB|XS for any subset A of A′ and B of B′, giving the required general case.

We consider C ∈ C. It is not possible to have both C ∩ A 6= ∅ and C ∩ B 6= ∅ as A and
B are separated by S and C is a clique. Thus C ⊂ A ∪ S or C ⊂ B ∪ S (or both if C ⊂ S).
Let D be the set of cliques C such that C ⊂ A ∪ S and D′ the set of all other cliques. We
have:

p(x) =
1

Z

∏
C∈C

C⊂A∪S

ψC(xC)
∏
C∈D′

ψC(xC) = f(xA∪S)g(xB∪S).

Thus:

p(xA, xS) =
1

Z
f(xA, xS)

∑
xB

g(xB, xS) =⇒ p(xA|xS) =
f(xA, xS)∑
x′A
f(x′A, xS)

.

Similarly: p(xB|xS) = g(xB ,xS)∑
x′
B
g(x′A,xS)

. Hence:

p(xA, xS)p(xB|xS) =
1
Z
f(xA, xS)g(xB, xS)

1
Z

∑
x′A
f(x′A, xS)

∑
x′B
g(x′A, xS)

=
p(xA, xB, xS)

p(xS)
= p(xA, xB|xS).

i.e. XA⊥⊥XB|XS.

Theorem 4.18 (Hammersley - Cli�ord) If ∀x, p(x) > 0 then p ∈ L(G) ⇐⇒ p satis�es
the global Markov property.

4.3.4 Marginalization

As for directed graphical models, we also have a marginalization notion in undirected graphs.
It is slightly di�erent. If p(x) factorizes in G, then p(x1, . . . , xn−1) factorizes in the graph
where the node n is removed and all neighbors are connected.

Proposition 4.19 Let G = (V,E) be an undirected graph. Let G′ = (V ′, E ′) be the graph
where n is removed and its neighbors are connected, i.e. V ′ = V \ {n}, and E ′ is obtained
from the set E by �rst connecting together all the neighbours of n and then removing n. If
p ∈ L(G) then p(x1, ..., xn−1) ∈ L(G′). Hence undirected graphical models are closed under
marginalization as the construction above is true for any vertex.

We now introduce the notion of Markov blanket

De�nition 4.20 For i ∈ V , the Markov blanket of a graph G is the smallest set of nodes
that makes Xi independent to the rest of the graph.

Remark 4.3.4 The Markov blanket in an undirected graph for i ∈ V is the set of its neigh-
bors. For a directed graph, it is the union of all parents, all children and parents of children.

4-13



Lecture 4 � October 21st Fall 2015

4.3.5 Relation between directed and undirected graphical models

Since now we have seen that many notions developed for directed graph naturally extended
to undirected graphs. The raising question is thus to know whether we can �nd a theory
including both directed and undirected graphs, in particular, is there a way�for instance by
symmetrizing the directed graph as we have done repeatedly�to �nd a general equivalence
between those two notions. The answer is no, as we will discuss�though it might work in
some special cases described above.

Directed graphical model Undirected graphical model

Factorization p(x) =
n∏
i=1

p(xi|xπi) p(x) = 1
Z

∏
C∈C

ψC(xC)

Set independence d-separation separation
[xi⊥⊥xnd(i)|xπi ] (and many more) [XA⊥⊥XB|XS]

Marginalization not closed in general, closed
only when marginalizing leaf nodes

Di�erence grid
1

2 3

4
v-structure

1

2

3

Let G be DAG. Can we �nd G′ undirected such that L(G) = L(G′)? L(G) ⊂ L(G′)?

De�nition 4.21 Let G = (V,E) be a DAG. The symmetrized graph of G is G̃ = (V, Ẽ),
with Ẽ = {(u, v), (v, u)/(u, v) ∈ E}, ie. an edge going the opposite direction is added for
every edge in E.

De�nition 4.22 Let G = (V,E) be a DAG. The moralized graph Ḡ of G is the sym-
metrized graph G̃, where we add edge such that for all v ∈ V , πv is a clique.

We admit the following proposition:

Proposition 4.23 Let G be a DAG without any V-structure, then Ḡ = G̃ and L(G) =
L(G̃) = L(Ḡ).

In case there is a V-structure in the graph, we can only conclude:

Proposition 4.24 Let G be a DAG, then L(G) ⊂ L(Ḡ).

Ḡ is minimal for the number of edges in the set H of undirected graphs such that L(G) ⊂
L(H).

� Not all conditional independence structure for random variables can be factorized in
a graphical model (directed or undirected).
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