Lecture 20 - scribbles

Friday, November 11, 2016 13:37

rejection sampling; Say $p(x) = \widetilde{p}(x)$; say we can find q(x) a distribution we can $Z\rho$: lastly sample from reject S.t. $Aq(x) \ge \tilde{\rho}(x)$ Aq(z) rule: , Sample X~q(x) · Accept with probability $A(z) \in [0, 1]$ (reject O.w.) 011 ю I. say you want to compute $p(x | x_{\overline{e}})$ here $\widetilde{p}(x) = p(x_{E^c}, \overline{x}_E) S(x_E, \overline{x}_E)$ here $Z_p = p(\overline{x}_E)$ if you sample from original joint using ancestral sampling (DGM) $Q(\gamma_{\ell}) = \rho(\chi_{E^{c}}, \chi_{E})$ here, we have $q(x) \neq \tilde{p}(x) \quad \forall x \quad [A=17]$ acceptance prob. = $\hat{p}(x) = \begin{cases} 1 & \text{if } x_E = \overline{x_E} \\ q(a) & 0 & 0 \\ \end{cases}$ [ie. reject when $\chi_E \neq \overline{z}_E$] $P \leq a(cept \leq manginally = Z_p = p(x_E)$ when sample from joint, you are also sampling from marginal (*) sidenote ; ie. $(X,Y) \wedge p(x,y)$ thin leduling at \times by itself, you have $\times \sim p(x)$ q_{1} Metwatični. q(x)|x>

1 (20, 1/2)
Use instead adoptive pages of
$$q(x)(x)$$

Lo defines a Markov chemin
goal is that sample from MC converges to correct distribution
before : samples user $X^{(e)} \sim q$ (Markov hormathin probably
NAW $X^{(e)} \mid X^{(e)} \mid \sim q(x)(x^{(e-1)})$
retrieve of Markov chains [finite state MC; is $|X| = K]$
as $0.6M$ ($x^{(e)} \rightarrow x^{(e)}$)
Now is also the inantian prob view ; say are note per oldes
Even appress MC.]
(probabilistic FSA) ($x^{(e)} = x^{(e)}$ (vo hire departure)
Now A is a (XK module of a finite state of $A^{(e)}$ (vo hire departure)
Now, A is a (XK module of a finite state of $A^{(e)}$ ($x^{(e)} = x^{(e)}$)
Now, Now marginal is just $A^{(e)}$
 $P(X_{e} = i) = P(X_{e} = i) = \pi(i)$
Now, Now marginal is just $A^{(e)}$
 $P(X_{e} = i) = P(X_{e} = i) = \pi(i)$
 $A^{(e)} = \pi(i)$
 $A^{(e)$

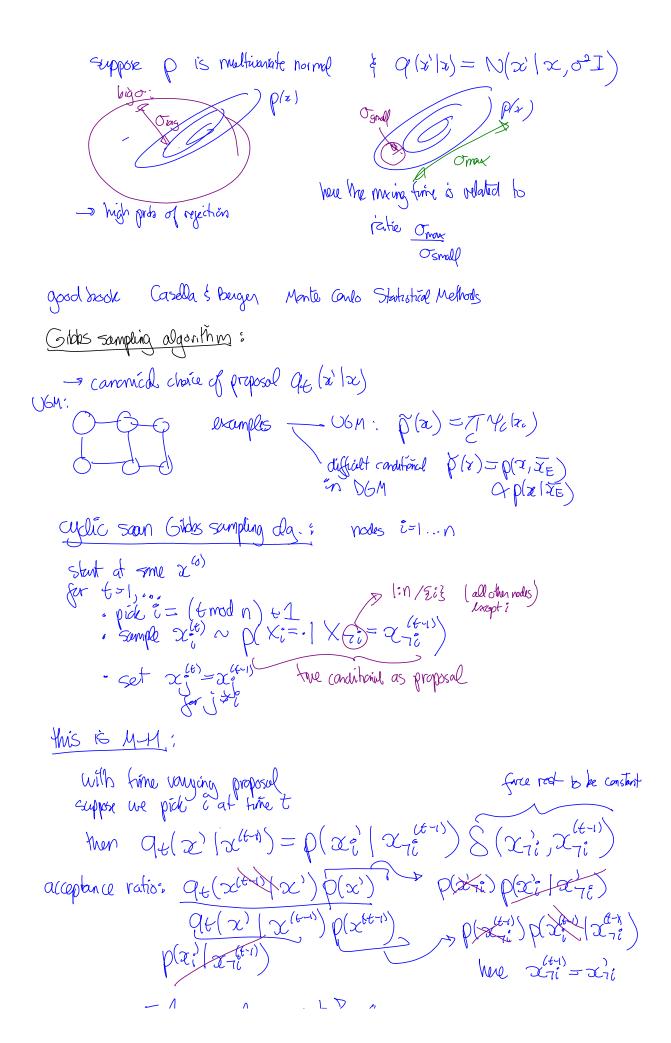
incluible MC
$$\leq$$
 there is a point problem "path"
from any i as j
 $V(i,j)$; \exists integrand; $sr.(A^{M})$; ≥ 0
In production $j = 0$ unique subtrant dist. Be included to the
in order to connegation, $j = 0$ unique subtrant dist. Be included to the
in order to connegation, $j = 0$ unique subtrant dist. Be included to the
inclusion of connegation, $j = 0$ unique subtrant distances as $A^{M} \ge 0$
(i.e. $(K^{M})_{i,j} \ge 0$)
Also, regular MC
or legate MC.
Indie: a subject condition for laring regular is $\exists i st. A^{M} \ge 0$
(i.e. $(K^{M})_{i,j} \ge 0$)
Also regular MC
or legate MC.
Indie: a subject for laring regular is $\exists i st. A^{M} \ge 0$
 $f = 0$ unique subtrant condition for laring regular is $\exists i st. A^{M} \ge 0$
 $f = 0$ unique subtrant dist. π
and for any stating dist. π
and for any stating dist. π
 $A^{M} = 0$ π
In speed of consequence is related to the maxing time of the chain
 $u = 1 = 1 = 0$ $M = 2 = 0$ $M = 0$
 $u = (u_1 - u_1)$
 $u = (u_1 - u_2)$
 $u = (u_1 - u_2)$
 $u = (u_1 - u_2)$
 $u = (u_2 - u_1)$
 $u = (u_2 - u_1)$
 $u = (u_2 - u_1)$
 $u = (u_2 - u_2)$
 $u = (u_2 - u_1)$
 $u = (u_2 - u_2)$
 $u = (u_2 - u_2)$
 $u = (u_2 - u_1)$
 $u = (u_2 - u_1)$
 $u = (u_2 - u_2)$
 $u = (u_2 - u_2)$

Teaching Page 3

 $= \begin{bmatrix} (\varphi_0)_1 \tau_1 + \lambda_2^{t} (\varphi_0)_2 U_2 & ((\varphi_0)_{t-1} & \psi_{t-1} & \psi_{t-1}$ $|\Lambda_2| = (-\varepsilon_1 \quad \varepsilon_1 = 1 - |\Lambda_2|$ $\|A^t \pi_{o} - \tau\|_{1} \leq C \|\mathbf{x}\|^{t}$ $M_{d} = ,$ $|M_{d}| \leq \exp(-\epsilon_{1}),$ $|M_{d}| \leq \exp(-\epsilon_{1}),$ mixing fine // $\gamma = 1$ $1 - [A_2]$ Les can be exponentially big sometimes (F) How do we design for 7? reversible MC iff I diat. T St. AijTig = AjiTi V(ij) "detulad balance quation" it means $P\{X_{t}=\tilde{i}, X_{t-1}=\tilde{j}\}=P\{X_{t}=\tilde{j}, X_{t-1}=\tilde{i}\}$ that Aa=ra $proof: (A\pi); = \not = A_{ij}\pi_{i} = \not = A_{ij}\pi_{i} = \pi_{ij} //$ note: defailed balance is a sufficient condition for stationarily Mehropolis-Hashing algorithm -> construct a MC with stationary distribution p(x) [our larget] (assum p(x)>0) we consider proposal q(x'(x)) [i.e. if in state x, we sample $x' | x \sim q(x' | x)$ 7 α (cept new state x' with probability $\alpha(x'|x) \triangleq \min\{1, \frac{q(x|x')}{q(x'|x)}\}$ regect => stay in same state x to satisfy detailed belong [this is Stell a new sample

[His is still a new sample.
Vs. rejection sampling when only 'dicating' statistic sample?
alg.: obset at
$$x^{(0)}$$

for $t = 1, ...$
repose $x^{(10)} \sim q(x^{(-1)}(x^{(-1)})$
is a comparation with prob at $x^{(10)}(x)$
 $x^{(11)} = x^{1(1)}$
rele: for symmotric $q(x(x))$, always acapt if $p(x) > p(x)$
 $-> voisy will-diving also
lifs relify deballed belance $->$
Arit $\pi_i = A_{i1}\pi_i$ therefore
have $A_{i1} = q(z(z)) = q(z(z))$ for $i \neq z^{-1}$
to be $A_{i1} = q(z(z)) = q(z(z)) = f(z)^{-1} = f(z)^{-1}$
 $a(i11) = q(i11) p_i = q(i11) a(i11) p_i^{-1}$
 $\Rightarrow [a(i11) = q(i11) p_i^{-1}]$
convergence s is MH chain is express, then we converg to
correct unique scheming doit. p
sufficient conditions $-$ invaluability $q(x(z) > 0)$ therefore
 $x = q(x + z) = q(x + z)$$



Teaching Page 6