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As usual, please hand in on paper form your derivations and answers to the questions. You can
use any programming language for your source code (submitted on Studium as per the website
instructions). All the requested figures should be printed on paper with clear titles that indicate
what the figures represent.

1 Entropy and Mutual Information (18 points)

1. Let X be a discrete random variable on a finite space X with |X | = k.

(a) Prove that the entropy H(X) ≥ 0, with equality only when X is a constant.

(b) Denote by p the distribution of X and q the uniform distribution on X . What is the
relation between the Kullback-Leibler divergence D(p‖q) and the entropy H(X) of the
distribution p?

(c) Deduce an upper bound on the entropy that depends on k.

2. We consider a pair of discrete random variables (X1, X2) defined over the finite set X1 × X2.
Let p1,2, p1 and p2 denote respectively the joint distribution, the marginal distribution of X1

and the marginal distribution of X2. The mutual information I(X1, X2) is defined as

I(X1, X2) :=
∑

(x1,x2)∈X1×X2

p1,2(x1, x2) log
p1,2(x1, x2)

p1(x1)p2(x2)
.

(a) Prove that I(X1, X2) ≥ 0.

(b) Show that I(X1, X2) can be expressed as a function of H(X1), H(X2) and H(X1, X2)
where H(X1, X2) is the entropy of the random variable X = (X1, X2).

(c) What is the joint distribution p1,2 of maximal entropy with given marginals p1 and p2?

2 HMM – Implementation (82 points)

We consider the same training data as in the previous homework (hwk 3), provided as the
EMGaussian.train file (and we will test on the corresponding testing data from EMGaussian.test),
but this time we use an HMM model to account for the possible temporal structure of the data.
I.e. we now consider each row of the dataset to be a point xt ∈ R2, where t is the time index
(increasing with rows) going from t = 1, . . . , T rather than thinking of them as independent sam-
ples as we did in the last homework. The goal of this exercise is to implement the probabilistic
inference algorithm (sum-product) on a HMM and its EM algorithm to estimate parameters as well
as the Viterbi algorithm to do decoding. It is recommended to make use of the code of the previous
homework.

We consider the following HMM model: the chain (zt)
T
t=1 has K = 4 possible states, with an initial

probability distribution π ∈ ∆4 and a probability transition matrix A ∈ R4×4 where

Aij = p(zt = i|zt−1 = j),



IFT6269-A2017
Prof: Simon Lacoste-Julien

Hwk 4
Due date: Nov 14, 2017

Name:
Student id:

and conditionally on the current state zt, we have observations obtained from Gaussian emission
probabilities xt|(zt = k) ∼ N (xt|µk,Σk). This is thus a generalization of a GMM with time
dependence across the latent states zt.

1. Implement the α and β-recursions seen in class (and that can be found in chapter 12 of Mike’s
book with slightly different notation) to compute the smoothing distribution p(zt|x1, . . . , xT )
and pair-marginals p(zt, zt+1|x1, . . . , xT ).
(Recall that α(zt) := p(zt, x1:t) and β(zt) := p(x(t+1):T |zt)).

2. (Fake parameters inference). Consider using the same parameters for the means and
covariance matrix of the 4 Gaussians that you should have learned in hwk 3 (with general
covariance matrices) with EM. We give them below for your convenience:

µ1 =

(
−2.0344

4.1726

)
µ2 =

(
3.9779

3.7735

)
µ3 =

(
3.8007

−3.7972

)
µ4 =

(
−3.0620

−3.5345

)

Σ1 =

(
2.9044 0.2066

0.2066 2.7562

)
Σ2 =

(
0.2104 0.2904

0.2904 12.2392

)

Σ3 =

(
0.9213 0.0574

0.0574 1.8660

)
Σ4 =

(
6.2414 6.0502

6.0502 6.1825

)

Using a uniform initial probability distribution πk = 1
4
, and setting A to be the matrix with

diagonal coefficients Aii = 1
2

and off-diagonal coefficients Aij = 1
6

for all (i, j) ∈ {1, . . . , 4}2,
compute the vectors αt and βt for all t on the test data EMGaussian.test and compute
p(zt|x1, . . . , xT ). Finally, represent p(zt|x1, . . . , xT ) for each of the 4 states as a function of t
for the 100 first datapoints in the file. Note that only the 100 time steps should be plotted,
but the smoothing is always done with all the data (i.e. T = 500). This will be the same for
the subsequent questions.
(In Matlab/Scipy the command subplot might be handy to make multiple long horizontal
plots.)

3. Derive the M-step update for π̂, Â, µ̂k and Σ̂k (for k = 1, . . . , 4) during the EM algorithm, as
a function of the quantities computed during the E step (For the estimate of π, note that we
only have one long chain here).

4. Implement the EM algorithm to learn the parameters of the model (π,A, µk,Σk, k = 1 . . . , 4).
The means and covariances could be initialized with the ones obtained in the previous home-
work. Learn the model from the training data in EMGaussian.train.

5. Plot the log-likelihood on the train data EMGaussian.train and on the test data
EMGaussian.test as a function of the iterations of the algorithm. Comment.

6. Return in a table the values of the log-likelihoods of the (full-covariance) Gaussian mixture
models and of the HMM on the train and on the test data. Compare these values. Does it
make sense to make this comparison? Conclude. Compare these log-likelihoods as well with
the log-likelihoods obtained for the different models in the previous homework.
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7. Provide a description and pseudo-code for the Viterbi decoding algorithm (aka MAP inference
algorithm or max-product algorithm) that estimates the most likely sequence of states, i.e.
arg maxz p(z1, . . . , zT |x1, . . . , xT ).

8. Implement Viterbi decoding. For the set of parameters learned with the EM algorithm,
compute the most likely sequence of states with the Viterbi algorithm and represent the data
in 2D with the cluster centers and with markers of different colors for the datapoints belonging
to different classes.

9. For the datapoints in the test file EMGaussian.test, compute the marginal probability
p(zt|x1, . . . , xT ) for each point to be in state {1, 2, 3, 4} for the parameters learned on the
training set. For each state plot the probability of being in that state as a function of time
for the 100 first points (i.e., as a function of the datapoint index in the file).

10. For each of these same 100 points, compute their most likely state according to the marginal
probability computed in the previous question. Make a plot representing the most likely state
in {1, 2, 3, 4} as function of time for these 100 points.

11. Run Viterbi on the test data. Compare the most likely sequence of states obtained for the
100 first data points with the sequence of states obtained in the previous question. Make a
similar plot. Comment.

12. In this problem the number of states K was known. How would you choose the number of
states if you did not know it?
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