Lecture 6 - scrlbbles
Fr d , September

ﬁé{“tﬁma‘@%
e Nfheds
Ma/\ % gshc Seqressa

grg@_@s i tshnindrs ¢ s~ Vanne
@abia: P=p2n O (W)
g,
dabin 8= Spfh)
b empasip dogentine an N
ﬂw% @(@,%@ as O(“&/mc(‘t’oncﬁ N
i i, | walt G N©,S0) TS0
Consisiny
& oshhin | i) Qogs %(wa/w& bss  L(5,Ba(0)= 16 -8n 7
helod skbchid o Cnivs (mk%" |
3 w;o) %3 76%‘6 |(7€§ S e
weinlomiess, o Srem S 5@>

rile B(©30) =T LI6-5all} |
vep
= B[ 16 -86T + E61]-Ep (17 ]
— K MUE-RATIIAT L 06, ~REAIT

Teaching Page 1



= SLI6-EB31] + €[ 16, ~EGE]

+ AE S OELNT ) TSI 2| -
W%\./—/‘/
5 G-®5.T, F (B340, »

WO <&, USSIT= loEsagi 5[ 16 -Fal |

2 Yt \dnonce. (ém>
ik squned Goss = [\oms (%~ veuis @é@ bies -vanisic.
e i
Sm:; g eg\ﬂmﬁg oo u( N/ i ,a-’I} %
Ly & M 5 b lowen vangace fron MLF Mﬁné@f\(/j’

0nd achelly -5 @y&% ME Grda5 ,
(©,3)S RS Spee) %{M
cd J6 st QG 6N €S 5 SRR
MUE & Srubnec Unodmissde 2

" AR
Consibliney «  (Sp—> 67
cﬂQ%o fY\QA‘\W\Qd\ 1 5 ’
- )\
6,60) = ELICh 61710 Tomugme 0 55
CQMFU%MQQ (,cn 8)_ iy CdVI/\//la»lA/l@ <n f)aab,
b note:in hwk 1, for simplicity, by consistency, | mean that R(theta,delta_n)->0 (so

al %710\5 =0 [ no need to worry about the subtleties of convergence of probability toshow that

CW\(X = @54% an estimatoris not consistent)

VAMERY =

Teaching Page 2



W(J\LQ = ‘) -

oqtice (Coupdic ¢f MCE

wn dan W%uﬁa/ug condbhare, on @ & \9&) 6>

(7\3 @m—V &
By CCT AR (B 2w N0 ) Z6
Wipﬁmq%én WW(
C\ Obi&m(%hc% YYIVl\/MUQ QUM \b‘)& Ud(/lfﬁ;dc?m e e MS
" peconade @meng

Ls « (ormston

o oeng s AE T peowd wn epacndobin
Sppse- Ve Llfgec"f)an ﬁ‘l@——%@\

§6)-5B)

A@-s% e \p\&é“m | o %szgm&fc T mue
bl Proide Qledlod

LB\ My Uidfad LINDY= e olddase
- Q b Daliiiisd
Mo Tpe 2
&m ' Se ey B
M o It WW ..

Teaching Page 3



@V\Edloluél/) .
vk Qo o gedidin Enden s X — <
v @”\9 d N = gQ( —gb cQ@éwgf\LLm
TE (W 70,1, o 1§ =5 ouds Y
ilond il g
(OHX Wy = € Qo) oS
~ ly
o W),
“Llass-conbend " CQdSS%
Ogm“w prgectic. — ma) plc) as e

condihorsl) pee e — o% metlls D)
. (ﬁwaéu%m&% Mod i b

Teaching Page 4



opn | combod | g o
Mol e | el ol) | word gt X2

Coneb nac, ) :e})
ere Q%W\{)MS Uz Q(Eﬁ 5& &x @Moﬂ
D U= vdnst
& {rtdicher Vot yosi

L oo, E\rﬁ'&%&o}w % Conddrend) agprenc b rCoyessitn [Ver)
Q(ﬂ\%j\@ = N( \ <oz 6’3>

I
/V RS

wangier
T
q:e\[%&
el - ENOYE
eq 5; Vs WX TS e E° @o)
[osdan Wl ue "dobt i G = 1o L= ac 55 e RO
_ leonstant- meﬁ
e
fues W, X7 = <w|,(¢\> ,vg>fr\%}a\
ors/o 4

* M@Q—@F (C(‘L,‘SDQ‘

e e Nlglao®) =L o)
%61
Vi NN{LJX o >

CO/YQAA‘\W\(QQK\IZJI\i @%\9 )g’n\ (J )03 T—Q \ >
[ Vo N ~f e N\ Af (e o5 <2 [ Do (e T

Teaching Page 5



QQ% I \( Q% @%Hﬂ\@[uvD

%?(Bfo

(see note below about sigma”2 being true global max)

=7

= & [lgeitay ~Lleger T

l=|

M

Teaching Page 6




¢ note about sigma”2 being a global max

(aside: showing that the sigma”2 above is the global max is subtle because the objective is not concave in sigma”2. |
give more info here for your curiosity, but it is not required for the assignment.)

o Formally, to find a global max of a *differentiable objective*, you need to check all stationary points (zero gradient
points), as well as the values at the boundary of the domain.

Thus here, you would need to show that the objective cannot take higher value anywhere at the boundary of the
domain (which is the case here (exercise!), as the objective goes to -infinity at the boundary), so you are done (this is
the only possible global optimum -- a maximum here, as it should be, given that there are no other stationary points
and all values are lower at the boundary, but one could also explicitly check the Hessian to see that it is strictly
negative definite at the stationary point, i.e. it looks like a local maximum).

Note that we will see later in the class that the Gaussian is in the exponential family, with a log-concave likelihood in
the right ("natural") parameterization, and thus using the invariance principle of the MLE, we could also easily deduce
the MLE in the "moment" parameterization which is the usual (mu,sigma”2) one, without having to worry about local
optima...

o fora cute counter-exampleillustrating that a differentiable function could have only one stationary point which is a
local min but *not a global min* (and thus why one need to look at the values at the boundary), see:
= https://en.wikipedia.org/wiki/Maxima_and_minima#Functions_of more than one variable
" je.

flzg) =2+ (1-2)", cyek,
shows. Its only critical point is at (0,0), which is a local minimum with f{0,0) = 0. However,
it cannot be a global one, because f(2,3)= -5
(see picture of function here)
(and note that the "Mountain pass theorem" which basically says that if you have a strict local optimum
withanother point somewhere with the same value, then there must be a saddle point somewhere (a
"mountain pass") i.e. another stationary point, does not hold for this counter-example as one of the
required regularity condition, the "Palais-Smale compactness condition" fails. Here, the saddle point (which
should intuitively exist) "happens at infinity", which is why it only has one stationary point despite (0,0) not
being a global minimum)
= the moral of the story: intuitions for multivariate optimization are often misleading! (this counter-example would
notwork in 1d because of Rolle's theorem)
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