
Color Documents on the Web with DjVu

Patrick Ha�ner, Yann LeCun, Leon Bottou, Paul Howard, Pascal Vincent, Bill Riemers

AT&T Labs - Research
100 Schulz Drive, Red Bank, NJ 07701, USA

fha�ner,yann,leonb,pgh,vincent,bcrg@research.att.com

Abstract

We present a new image compression technique
called \DjVu" that is speci�cally geared towards the
compression of scanned documents in color at high
resolution. With DjVu, a magazine page in color at
300dpi typically occupies between 40KB and 80KB,
approximately 5 to 10 times better than JPEG for
a similar level of readability. Using a combination
of Hidden Markov Model techniques and MDL-driven
heursitics, DjVu �rst classi�es each pixel in the image
as either foreground (text, drawings) or background
(pictures, photos, paper texture). The pixel categories
form a bitonal image which is compressed using a pat-
tern matching technique that takes advantage of the
similarities between character shapes. A progessive,
wavelet-based compression technique, combined with
a masking algorithm, is then used to compress the
foreground and background images at lower resolution
while minimizing the number of bits spent on the pixels
that are not visible in the foreground and background
planes. Encoders, decoders, and real-time, memory ef-
�cient plug-ins for various web browsers are available
for all the major platforms.

1 Introduction
With the generalized use of the Internet and the

declining cost of scanning and storage hardware, doc-
uments are increasingly archived, communicated, and
manipulated in digital form rather than in paper
form. The growing need for instant access to informa-
tion makes the computer screen the preferred display
medium.

Compression technology for bitonal (black and
white) document image archives has a long history
(see [9] and references therein). It is the basis of a
large and rapidly growing industry with widely ac-
cepted standards (Group 3, MMR/Group 4), and less
popular and emerging standards (JBIG1, JBIG2).

The last few years have seen a growing demand for
a technology that could handle color documents in a
e�ective manner. Such applications as online digital
libraries with ancient or historical documents, online

catalogs for e-commerce sites, online publishing, forms
processing, and scienti�c publication, are in need of an
e�cient compression technique for color documents.
The availability of low-cost, high quality color scan-
ners, the recent emergence of high-speed production
color scanners, and the appearance of ultra high res-
olution digital cameras opens the door to such appli-
cations.

Standard color image compression algorithms are
inadequate for such applications because they pro-
duces excessively large �les if one wants to preserve
the readability of the text. Compressed with JPEG,
a color image of a typical magazine page scanned at
100dpi (dots per inch) is around 100-200KB, and is
barely readable. The same page at 300dpi has accept-
able quality, but occupies 300-600 KB. These sizes are
impractical for online document browsing, even with
broadband connections.

Preserving the readability of the text and the sharp-
ness of line art requires high resolution and e�cient
coding of sharp edges (typically 300dpi). On the other
hand preserving the appearance of continuous-tone
images and background paper textures does not re-
quire as high a resolution (typically 100dpi) An obvi-
ous way to take advantage of this is to segment these
elements into separate layers. The foreground layer
would contain the text and line drawings, while the
background layer would contain continuous-tone pic-
tures and background textures.

The separation method brings another considerable
advantage. Since the text layer is separated, it can be
stored in a chunk at the beginning of the image �le
and decoded by the viewer as soon as it arrives in the
client machine.

Overall, the requirements for an acceptable user ex-
perience are as follows: The text should appear on
the screen after only a few seconds delay. This means
that the text layer must �t in 20-40KB assuming a
56Kb/sec connection. The pictures, and backgrounds
would appear next, improving the image quality as
more bits arrive. The overall size of the �le should

be on the order of 50 to 100 KB to keep the over-
all transmission time and storage requirements within
reasonable bounds.

Large images are also problematic during the de-
compression process. A magazine-size page at 300dpi
is 3300 pixels high and 2500 pixels wide and occupies
25 MB of memory in uncompressed form, more than
what the average PC can properly handle. A practi-
cal document image viewer should therefore keep the
image in a compressed form in the memory of the ma-
chine and only decompress on-demand the pixels that
are being displayed on the screen.

The DjVu document image compression tech-
nique [2] described in this paper addresses all the
above mentioned problems. With DjVu, pages
scanned at 300dpi in full color can be compressed
down to 30 to 80 KB �les from 25 MB originals with
excellent quality. This puts the size of high-quality
scanned pages in the same order of magnitude as an
average HTML page (which are around 50KB on aver-
age). DjVu pages are displayed progressively within a
web browser window through a plug-in, which allows
easy panning and zooming of very large images with-
out generating the fully decoded 25MB image. This
is made possible by storing partially decoded images
in a data structure that typically occupies 2MB, from
which the pixels actually displayed on the screen can
be decoded on the y.

This paper gives an overview of the DjVu technol-
ogy, which is described in more details in [2]. The
�rst two sections explain the general principles used
in DjVu compression and decompression. The remain-
ing two sections 4 and 5 study the behavior of the the
foreground/background segmentation algorithm. The
last section details unique features that contribute to
the performance of DjVu.

2 The DjVu Compression Method
The basic idea behind DjVu is to separate the text

from the background and pictures and to use dif-
ferent techniques to compress each of those compo-
nents. Traditional methods are either designed to
compress natural images with few edges (JPEG), or
to compress black and white document images al-
most entirely composed of sharp edges (Group 3,
MMR/Group 4, and JBIG1). The DjVu technique
improves on both and combines the best of both ap-
proaches. A foreground/background separation algo-
rithm generates three images from which the original
image can be reconstructed: the background image,
the foreground image and the mask image. The �rst
two are low-resolution color images (generally 100dpi
for the background and 25dpi for the foreground), and
the latter is a high-resolution bi-level image (300dpi).

A pixel in the decoded image is constructed as follows:
if the corresponding pixel in the mask image is 0, the
output pixel takes the value of the corresponding pixel
in the appropriately up-sampled background image. If
the mask pixel is 1, the pixel color is taken from the
foreground image.

The mask image is encoded with a new bi-level im-
age compression algorithm dubbed JB2. It is a varia-
tion on AT&T's proposal to the emerging JBIG2 stan-
dard. The basic idea of JB2 is to locate individual
shapes on the page (such as characters), and use a
shape clustering algorithm to �nd similarities between
shapes [1, 5]. Shapes that are representative of each
cluster (or in a cluster by themselves) are coded as in-
dividual bitmaps with a method similar to JBIG1. A
given pixel is coded with arithmetic coding using pre-
viously coded and neighboring pixels as a context (or
predictor). Other shapes in a cluster are coded using
the cluster prototype as a context for the arithmetic
coder, thereby greatly reducing the required number
of bits since shapes in a same cluster have many pixels
in common. In lossy mode, shapes that are su�ciently
similar to the cluster prototype may be substituted by
the prototype. A another chunk of bits contains a list
of shape indices together with the position at which
they should be painted on the page. all of this is coded
using arithmetic coding.

For the background and foreground images, DjVu
uses a progressive, wavelet-based compression algo-
rithm called IW44. IW44 o�ers many key advan-
tages over existing continuous-tone images compres-
sion methods. First, the wavelet transform can be
performed entirely without multiplication operations,
relying exclusively on shifts and adds, thereby greatly
reducing the computational requirements. Second, the
internal memory data structure for IW44 images al-
lows in-place progressive decoding of the wavelet co-
e�cients (without copies), and uses an e�cient sparse
tree representation. Third, the data structure allows
e�cient on-the-y rendering of any sub-image at any
prescribed resolution, in a time proportional to the
number of rendered pixels (not image pixels). This
last feature is particularly useful for e�cient panning
and zooming through large images. Lastly, a mask-
ing technique based on multiscale successive projec-
tions [4] is used to avoid spending bits to code areas of
the background that are covered by foreground char-
acters or drawings. Both JB2 and IW44 rely on a new
type of adaptive binary arithmetic coder called the
ZP-coder[3], that squeezes out any remaining redun-
dancy to within a few percent of the Shannon limit.
The ZP-coder is adaptive and faster than other ap-
proximate binary arithmetic coders.

The idea of foreground/background representa-

Compression None GIF JPEG DjVu
hobby p15 24715 1562 469 58
medical dict. 16411 1395 536 110
time zone 9174 576 249 36
cookbook 12128 1000 280 52
hobby p17 23923 1595 482 52

U.S. Constit. 31288 2538 604 134
hobby p2 23923 1213 383 68

ATT Olympic 23946 955 285 41

Table 1: Compressed �les sizes (in KB) for 8 docu-
ments using the following compression methods: no
compression, GIF on the 150dpi image, JPEG on
the 300dpi image with quality 20 and DjVu with
300dpi mask, and 100dpi backgrounds. The visual
quality of the compressed images can be examined at
http://www.djvu.att.com/examples/comp

tion is a key element of the MRC/T.44 standard
proposal[8]. Section 6 reports the gain from using JB2
and IW44 rather than the traditional MMR/Group 4
and JPEG which are part of the T.44 standard.

According to an independent test by Inglis [6]
with bitonal scanned documents, JB2 in lossless mode
achieves an average compression ratio of 26.5, which
can be compared to 13.5 for MMR/Group 4, and 19.4
for JBIG1. The lossy mode brings another factor of 2
to 3 over lossless, with more improvement on mostly
textual images, and less on images with pictures and
in low-quality images.

The performance of IW44 is very similar to the best
published wavelet-based encoders. The size of IW44
images is typically 50 to 70% that of JPEG for the
same signal to noise ratio. IW44 is particularly good
at high compression ratios, and for images with few
highly textured areas.

On color documents, the full DjVu method with
foreground/background separation can reach compres-
sion ratios of 500:1 to 1000:1. As shown in table 1, typ-
ical letter-size color documents at 300dpi (catalog or
magazine page) compressed with DjVu occupy 30KB
to 80KB. Occasionally, larger documents, or document
with lots of highly detailed pictures or handwriting
may occupy 80 to 140KB. This is 5 to 10 times bet-
ter than JPEG for a similar level of legibility of the
text. DjVu is particularly good at reproducing ancient
documents with textured paper.

Results and examples are available from the DjVu
digital library at http://www.djvu.att.com/djvu.
More examples are available from many commercial
and non-commercial users of DjVu on the Internet.

3 The DjVu Browser Plug-in

Browsers must provide a very fast response, smooth
zooming and scrolling abilities, good color reproduc-
tion and sharp text and pictures. These requirements
impose stringent constraints on the browsing software.
The full resolution color image of a page requires about
25 MB of memory. Decompressing such images before
displaying them would exceed the memory limits of
average desktop computers.

We developed a web browser plug-in that supports
all the major browsers on all the major OS platforms.
Downloaded images are �rst pre-decoded into an in-
ternal memory data structure that occupies approx-
imately 2MB per page. The piece of the image dis-
played in the browser window is decoded on-the-y
from this data structure as the user pans around the
page. Unlike many document browsers, each page of a
DjVu document is associated with a single URL. Be-
hind the scenes, the plug-in implements information
caching and sharing. This design allows the digital
library designer to set up a navigation interface using
well-known Web technologies like HTML, JavaScript,
or Java. This provides more exibility than other doc-
ument browsing systems where multi-page documents
are treated as a single entity, and the viewer handles
the navigation between the pages. The DjVu plug-in
supports hyperlinks in DjVu documents by allowing
the content designer to specify active regions on the
image which links to a given URL when clicked upon.

4 The Foreground/Background Seg-
menter

The �rst phase of the foreground/background sep-
aration is based on two-dimensional Hidden Markov
models1 with two states (foreground and background)
and single Gaussian distributions. While the Gaussian
parameters (means and covariances) are estimated on
local regions of the image, the \consolidated" 2 tran-
sition probability between the foreground state and
the background state is regarded as an external con-
stant, the choice of which will be discussed in the next
section.

This initial foreground separation stage is designed
to prefer over-segmentation, so that no characters are
dropped. As a consequence, it may erroneously put
highly-contrasted pieces of photographs in the fore-
ground. A variety of �lters must be applied to the re-
sulting foreground image so as to eliminate the most
obvious mistakes.

1Equivalent to causal Markov Random Fields.
2As we use 2x2 pixel cliques, there are in fact 16 transition

patterns, whose probabilities are expressed as a function of one

common transition probability.

The main �lter is designed to be as general as possi-
ble and avoids heuristics that would have to be tuned
on hundreds of di�erent kinds of documents. Since
the goal is compression, the problem is to decide, for
each foreground blob found by the previous algorithm,
whether it is preferable to actually code it as fore-
ground or as background. Two competing strategies
are associated with data-generating models. Using
a Minimum Description Length (MDL) approach [7],
the preferred strategy is the one that yields the lowest
overall coding cost, which is the sum of the cost of
coding the model parameters and the cost of coding
the error with respect to this \ideal" model. Like most
MDL approaches used for segmentation [7], the moti-
vation is to obtain a system with very few parameters
to hand-tune. However, the MDL principle is used
here to make only one decision, thus avoiding the time
consuming minimization of a complex objective func-
tion. To code the blob as part of the \smooth" back-
ground only requires a background model. To code
the blob as a piece of foreground that sticks out of
the background requires a foreground model, a back-
ground model and a mask model.

The background model assumes that the color of a
pixel is the average of the colors of the closest back-
ground pixels that can be found up and to the left.
The foreground model assumes that the color of a blob
is uniform. What remains to be coded is the bound-
aries of the mask: the model we use tends to favor
horizontal and vertical boundaries.

Thus, in the main �lter, the background model al-
lows a slow drift in the color, whereas the foreground
model assumes the color to be constant in a con-
nected component. This di�erence is critical to break
the symmetry between the foreground and the back-
ground.

5 Optimizing the segmenter
This section shows, on one example, how we de�ned

a semi-automatic tuning procedure for the segmenter.

In the Markov model that drives the fore-
ground/background separation, the transition prob-
ability between the foreground and the background
states could not be estimated on the data, and was
considered as a heuristic choice. The proportion of
foreground decreases monotonously as this transition
probability decreases. When it reaches zero, no fore-
ground is left. Figure 1 shows the impact of this tran-
sition probability on three very di�erent types of doc-
uments. The area plots show how the DjVu �le size,
which is the sum of the number of bytes used to encode
the mask, background and foreground layers, evolve
as a function of this probability. When it is high, the
document is over-segmented and bits are wasted in

2.5 5 7.5
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Transition −log probability

mask
background
foreground

Mail order
catalog

2.5 5 7.5
0

1

2

3

4

5

6

7

8

9
x 10

4

Transition −log probability

mask
background
foreground

XVII century
book

2.5 5 7.5
0

2

4

6

8

10

12

14

16

18
x 10

4

Transition −log probability

mask
background
foreground

Textured
document

Figure 1: DjVu �les sizes as a function of the
negative log probability of the foreground/background
transition, reported for three documents. The
�rst two are browsable on the Internet at
www.djvu.att.com/djvu/cat/sharperimage/p0009.djvu

and www.djvu.att.com/djvu/antics/pharm/p0001.djvu.

encoding a mask that includes images elements, tex-
ture and noise. As it converges to zero, the text gets
encoded as background. Note that, to avoid inter-
ferences, the �ltering stage was not applied. In each
area plot, the vertical line corresponds to the value of
the transition probability for which a human observed
the best document quality. It has been observed that,
for most document, this point corresponds to the best
compression rate. This property greatly facilitates the
tuning of the segmenter.

6 Improvements due to JB2 and
wavelet compressions

Assuming a satisfactory foreground/background
separation, we can focus on the separate compres-
sion of the three sub-images. Our test sample is com-
posed of 70 document images and contains highly tex-
tured backgrounds, handwriting, mathematical sym-
bols, hand drawings, and musical scores.

For each image, our foreground/background separa-
tion algorithm produces 3 sub-images. The raw mask
with 1 bit/pixel is 24 times smaller than the origi-
nal . The raw background image is 3 � 3 = 9 times
smaller. The raw foreground image is 12 � 12 = 144
times smaller. The raw multi-layer image yields a
compression rate of 6.25:1, as shown on the left of Fig-
ure 2. On these sub-images, an objective comparison
between DjVu and traditional approaches is possible.

Bg:JPEG 59:1

JB2
 30:1

No
compression

IW44
 103:1

IW44
52:1

Raw
Image
23,000K

Mask
958K

Fg 160K

Bg
2,555K

Mask
68K

Fg 5K

43K
6.25:1

CCITT−G4 14:1

JPEG 35:1

Mask
32K

Fg 3K

Bg:24K

DjVu
compression
59K

Standard
Compression
116K

Figure 2: For a given foreground/background separa-
tion, this �gure compares, for the three sub-images,
the following con�gurations: (i) no compression, (ii)
standard compression techniques such as JPEG and
MMR/Group 4 and (iii) compression techniques used
in DjVu. Assuming we start from a 23MBytes raw
document image, the average size we can expect for
each sub-image is reported in the corresponding block.
The arrows show the techniques used and the compres-
sion rates obtained.

We measure, for each image, the gain in compression
rate brought by the algorithms used in DjVu when
compared to the best widely available compression
standard for this type of image (MMR/Group 4 for
the mask, JPEG for the foreground and background).
Figure 2 reports compression rates for the 70 images
grouped together.

Comparing JPEG with IW44 for the background
layer is performed by imposing the same mean square
error on visible (non-masked) pixels. Figure 2 shows
that the overall compression ratio for the background
sub-images improves from 59:1 with JPEG to 103:1
with IW44. Overall, Figure 2 shows that the novel
compression techniques used in DjVu to compress the
mask, foreground and background sub-images com-
press our typical 23MBytes image into a 59 KBytes
DjVu �le. This is about half what we would have been
obtained by combining the foreground/background
segmentor with JPEG and MMR/Group 4.

7 Conclusion
DjVu, as a new compression technique for color doc-

ument images, �lls the gap between the world of paper
and the world of bits. It allows high-quality scanned
document to be easily published on the Internet, with-

out implying prohibitive download times for the end-
user (with full-color 300dpi pages occupying only 40
to 80 KB, black and white pages only 15 to 40 KB,
and ancient books, where most of the color is on the
background, 30 to 60 KB)

The UNIX version of the DjVu compres-
sion/decompression software is available free for
non-commercial use at http://www.djvu.att.com.
The �le format speci�cation and the DjVu reference
library is available in source form at the same URL.
The DjVu browser plug-in is available for Linux, Win-
dows 95/98/NT, Mac, and various UNIX platforms.
The above web site also contains a digital library with
over 1000 pages of scanned documents from various
origins.

DjVu is already used by a wide variety of commer-
cial and non-commercial users on the web, including
University Micro�lm Inc. for their 22 million page
Early English Book Online service.

References
[1] R. N. Ascher and G. Nagy. A means for achieving

a high degree of compaction on scan-digitized printed
text. IEEE Trans. Comput., C-23:1174{1179, Novem-
ber 1974.

[2] L. Bottou, P. Ha�ner, P. G. Howard, P. Simard,
Y. Bengio, and Y. LeCun. High quality document
image compression with djvu. Journal of Electronic

Imaging, 7(3):410{428, 1998.

[3] L. Bottou, P. G. Howard, and Y. Bengio. The Z-coder
adaptive binary coder. In Proceedings of IEEE Data

Compression Conference, pages 13{22, Snowbird, UT,
1998.

[4] L. Bottou and S. Pigeon. Lossy compression of par-
tially masked still images. In Proceedings of IEEE Data

Compression Conference, Snowbird, UT, March-April
1998.

[5] P. G. Howard. Text image compression using soft pat-
tern matching. Computer Journal, 40(2/3):146{156,
1997.

[6] Stuart Inglis. Lossless Document Image Compression.
PhD thesis, University of Waikato, March 1999.

[7] W. Niblack J. Sheinvald, B. Dom and D. Steele. Un-
supervised image segmentation using the minimum de-
scription length principle. In Proceedings of ICPR 92,
1992.

[8] MRC. Mixed rater content (MRC) mode. ITU Rec-
ommendation T.44, 1997.

[9] I. H. Witten, A. Mo�at, and T. C. Bell. Managing

Gigabytes: Compressing and Indexing Documents and

Images. Van Nostrand Reinhold, New York, 1994.

