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The chapter will start from a description of the fundamentals of sta-
tistical learning algorithms and highlight how its basic tenets and
methodologies differ from those generally followed by actuaries and
econometricians. The main premise is that reality is too complex
to be captured with a single unifying model, although some aspects
may be well approximated by models. Therefore the statistical learn-
ing approach does not presume that reality is perfectly captured by
a model, or at least tries to minimize the assumptions about the
true generating distribution of the data. The approach is empirical:
good models will be distinguished from poor models by comparing
their predictive power and explanatory power on new data. At this
point it is interesting to consider that choosing among models may be
guided by two different objectives, which sometimes yield to different
answers: an operational objective (which model will yield to the best
decisions/predictions on new data), or a ”modeling” objective (which
model better describes the true underlying nature of the data). We
will show an example in which the two approaches yield to different
statistical tests and the operational approach yields to more conser-
vative decisions (chooses simpler models). Another example of the
difference between the two approaches is illustrated by the case of
ridge regression: there is a regularized (biased) regression that brings
better out-of-sample expected predictions than the maximum likeli-
hood (unbiased) estimator. This example will be used to illustrate
the famous bias-variance dilemma that is so pervasive in statistical
learning algorithms.



The above discussion and introduction to the principles of statis-
tical learning will naturally yield to the issue of methodology. We
will describe and justify the main methodological tools of the sta-
tistical learning approach for selecting and comparing models, either
based on theoretical bounds or on resampling techniques (such as the
cross-validation and bootstrap techniques). A special section on the
particular (and rarely discussed) issue of non-stationary data will ex-
plain how the above resampling methods can be generalized to data
whose distribution varies over time, which is the case with insurance
data. In order to evaluate and compare models, one needs to build
statistical tools to evaluate the uncertainty in the measurements of
out-of-sample performance (due to finite data and non-stationarity).

We applied the principles and methodology described above in a re-
search contract we recently conducted for a large North American
automobile insurer. This study was the most exhaustive ever under-
taken by this particular insurer and lasted over an entire year. We
analyzed the discriminative power of each variable used for ratemak-
ing. We analyzed the performance of several statistical learning al-
gorithms within five broad categories: Linear Regressions, GLMs,
Decision Trees, Neural Networks and Support Vector Machines. We
present the main results of this study.

We qualitatively compare models and show how Neural Networks can
represent high order nonlinear dependencies with a small number of
parameters, each of which is estimated on a large proportion of the
data thus, yielding low variance. We thoroughly explain the purpose
of the nonlinear sigmoidal transforms which are at the very heart
of Neural Networks’ performances. The main numerical result is a
statistically significant reduction in the out-of-sample mean-squared
error using the Neural Network model.

In some provinces and states, better risk discrimination, if not di-
rectly implemented because of market share concerns or legislative
constraints, can also be used for the purpose of choosing the risks



to be sent to “risk-sharing pools”. According to these plans, insurers
choose a portion of their book of business which they ceed to the pool.
Losses (seldom gains) are shared by participants and/or insurers do-
ing business in the province or state of the plan. Since the selection
of risks to be sent to the pool bears no effect on market share (the
insured is unaware of the process) and legislation is generally looser
than that of ratemaking, highly discriminative statistical learning al-
gorithms such as Neural Networks can be very profitably used to
identify those most underpriced risks that should be ceeded to the
pool. We compare Generalized Linear Models to our Neural Network
based model with respect to their risk-sharing pool performance.

1 Introduction

Ratemaking is one of the main mathematical problems faced by ac-
tuaries. They must first estimate how much each insurance contract
is expected to cost. This conditional expected claim amount is called
the pure premium and it is the basis of the gross premium charged
to the insured. This expected value is conditioned on information
available about the insured and about the contract, which we call the
input profile.

Automobile insurance ratemaking is a complex task for many rea-
sons. First of all, many factors are relevant. Taking account of each
of them individually, i.e., making independence assumptions, can be
hurtful (Bailey & Simon 1960). Taking account of all interactions
is intractable and is sometimes referred to as the curse of dimen-
sionality (Bellman 1957). In practice, actuarial judgment is used to
discover the most relevant of these interactions and feed them explic-
itly to the model. Neural networks, on the other hand, are well-known
for their ability to represent high order nonlinear interactions with a
small number of parameters, i.e., they can automatically detect those
most relevant interactions between variables (Rumelhart, Hinton &
Williams 1986). We explain how and why in section 5.



A second difficulty comes from the distribution of claims: asymmetric
with fat tails with a large majority of zeros and a few unreliable and
very large values, i.e., an asymmetric heavy tail extending out toward
high positive values. Modeling data with such a distribution is essen-
tially difficult because outliers, which are sampled from the tail of the
distribution, have a strong influence on parameter estimation. When
the distribution is symmetric around the mean, the problems caused
by outliers can be reduced using robust estimation techniques (Huber
1982, Hampel, Ronchetti, Rousseeuw & Stahel 1986, Rousseeuw &
Leroy 1987) which basically intend to ignore or down-weight outliers.
Note that these techniques do not work for an asymmetric distri-
bution: most outliers are on the same side of the mean, so down-
weighting them introduces a strong bias on its estimation: the con-
ditional expectation would be systematically underestimated. Recent
developments for dealing with asymmetric heavy-tail distributions
have been made (Takeuchi, Bengio & Kanamori 2002).

The third difficulty is due to the non-stationary nature of the relation-
ship between explanatory variables and the expected claim amount.
This has an important effect on the methodology to use, in particular
with respect to the task of model selection. We describe our method-
ology in section 4.

Fourth, from year to year, the general level of claims may fluctuate
heavily, in particular in states and provinces where winter plays an
important role in the frequency and severity of accidents. The growth
of the economy and the price of gas can also affect these figures.

Fifth, one needs sufficient computational power to develop models: we
had access to a large database of ≈ 8× 106 records, and the training
effort and numerical stability of some algorithms can be burdensome
for such a large number of training examples.

Sixth, the data may be of poor quality. In particular, there may be
missing fields for many records. An actuary could systematically dis-



card incomplete records but this leads to loss of information. Also,
this strategy could induce a bias if the absence of a data is not ran-
dom but rather correlated to some particular feature which affects
the level of risk. Alternatively one could choose among known tech-
niques for dealing with missing values (Dempster, Laird & Rubin
1977, Ghahramani & Jordan 1994, Bengio & Gingras 1996).

Seventh, once the pure premiums have been established the actuary
must properly allocate expenses and a reserve for profit among the
different contracts in order to obtain the gross premium level that
will be charged to the insureds. Finally, an actuary must account for
competitive concerns: his company’s strategic goals, other insurers’
rate changes, projected renewal rates and market elasticity.

In this chapter, we address the task of setting an appropriate pure
premium level for each contract, i.e., difficulties one through four as
described above. Our goal is to compare different models with re-
spect to their performance in that regard, i.e., how well they are
able to forecast the claim level associated to each contract. We chose
several models within five broad categories: Linear Regressions, Gen-
eralized Linear Models (McCullagh & Nelder 1989), Decision Trees
(Kass 1980), Neural Networks and Support Vector Machines (Vapnik
1998).

The rest of the chapter is organized as follows: in section 2 we in-
troduce the reader to some of the fundamental principles underlying
statistical machine learning, compare them to those that govern more
traditional statistical approaches and give some examples. Then, we
describe usual candidate mathematical criteria that lead to insurance
premium estimation in section 3. Statistical learning methodologies
are described in section 4, with an emphasis on the one that was used
within the course of the study. This is followed in section 5 by a review
of the statistical learning algorithms that we considered, including our
best-performing mixture of positive-output Neural Networks. We de-
scribe experimental results w.r.t. ratemaking in section 6. In section



7, we compare two models on the task of identifying the risks to be
sent to a risk sharing pool facility. In view of these results we conclude
with an examination of the prospects for applying statistical learning
algorithms to insurance modeling in section 8.

2 Concepts of Statistical Learning
Theory

Statistical inference is concerned with the following: Given a collec-
tion of empirical data originating from some functional dependency,
provide answers to questions that could be answered if that depen-
dency were known. Although elements of statistical inference have
existed for more that 200 years (Gauss, Laplace), it is within the last
century that the development of methods and their formal analysis
began.

Fisher developped the framework of parametric statistics and sug-
gested one method of approximating the unknown parameter values
of a particular model: maximum likelihood. Glivenko, Cantelli and
Kolmogorov used a more general approach as they proved that the
empirical distribution function converges exponentially to the actual
distribution function. Most importantly, this result is independent
of the unknown actual distribution function. These two fundamen-
tal results can be seen as the seeds of two philosophically diverging
frameworks of statistical inference.

The goal of the first approach is to identify the data generating pro-
cess. For the purpose of this modelling goal, one must have sufficient
knowledge of the physical laws that govern the process in order to
build a corresponding model. The essence of that branch of statisti-
cal inference is therefore to estimate the unknown parameter values
of a (presumably) known model, using the available collection of em-
pirical data, then to devise statistical tests that lead to rejection or
not of the model (or of some of its parameters). For the purpose



of parameter estimation, one often adopts the maximum likelihood
method, which enjoys attractive asymptotic properties.

On the other hand, according to the second approach, one merely
attemps to predict properties of future data, based on the already
given observed data. The belief is that the reality of the process is
too complex to be identified and captured in a single unifying model.
In particular, multivariate processes are faced with the problem that
R. Bellman called “the curse of dimensionality” since the number of
combinations of variable values increases exponentially with the di-
mensionality (the number of explanatory variables) of the problem. In
real-life problems, such as automobile insurance where one considers
dozens of variables, the belief that one can truly identify the generat-
ing process looks naive. The goal of the second approach therefore less
ambitious: given a collection of data and a set of candidate functions,
find an approximation to the observed unknown process (or a function
that can answer the desired questions about the data, such as future
conditional expectation) in order to obtain the best performance on
predictive tasks, on new data. In the face of this operational goal,
statistical inference had to evolve.

In the 1960’s, P. Huber developed the robust approach to paramet-
ric statistics. In the 1970’s, in order to widen the sets of functions to
choose from, J. Nedler and R. Wedernburn developed the Generalized
Linear Models which have lately become increasingly popular in the
actuarial community. The availability of wider sets of functions lead
to the problem of model selection. In the 1980’s, L. Breiman P. Huber
and J. Friedman started to consider special types of function, nonlin-
ear in their parameters and with fewer distributional assumptions (in
particular Decision Trees and Neural Networks) and also developed
the regularization method as an alternative to the maximum likeli-
hood method, one better suited to the operational goal of achieving
the best out-of-sample predictive performance.

A branch of statistical learning (or machine learning) is mainly con-



cerned with the development of proper refinements of the regulariza-
tion and model selection methods in order to improve the predictive
ability of algorithms. This ability is often referred to as generaliza-
tion, since the algorithms are allowed to generalize from the observed
training data to new data. One crucial element of the evaluation of
the generalization ability of a particular model is the measurement of
the predictive performance results on out-of-sample data, i.e., using a
collection of data, disjoint from the in-sample data that has already
been used for model parameter estimation. In the case of automo-
bile insurance, where data is not i.i.d. but rather bears a sequential
structure with potential non-stationarities (changes in the underlying
generating process w.r.t. its explanatory variables), this requirement
leads to the particular methodology of sequential validation which we
shall explain in detail in section 4.

2.1 Hypothesis Testing: an example

Let us illustrate these concepts with a simple example where the two
approaches yield to different statistical tests, thus possibly different
conclusions. Consider the classical statistical linear regression tests
for deciding to keep a coefficient. Let the relation E[Y |x] = α + βx

hold, with V ar[Y |x] = σ2 the output noise. The classical statistical
test for rejecting the input X (i.e. setting the β coefficient to 0 in
the model) is based on the null hypothesis β = 0. In this context,
however, one should distinguish two questions: (1) is β really equal
to zero? (this is what the above classical test tries to determine), or
(2) would choosing β̂ = 0 yield better or worse out-of-sample expected
generalization than choosing β̂ that minimizes the in-sample error?
Let us define the generalization error as the expected out-of-sample
error:

ESE = E[(Y − (α̂+ β̂X))2]. (1)

As shown in (Gingras, Bengio & Nadeau 2000), if one is more inter-
ested in generalization error, then one should not use the classical



test, but rather choose an out-of-sample test. Examples of unbiased
out-of-sample tests are shown in (Nadeau & Bengio 2000).

In particular one can show that if the true β is such that the signal
to noise ratio β2

σ2 is less than (greater than) some positive threshold
value θ, then setting β̂ to zero (the in-sample estimator) will general-
ize better. When the data set has input values (X1, X2, . . . , Xn), and
writing the input average X̄ = 1

N

∑n
i=1Xi, the threshold value is

θ =
E
[

(X−X̄)2∑
i(Xi−X̄)2

]
E[(X − X̄)2]

,

where X is an out-of-sample example (not one of the training set Xi).
Thus the out-of-sample tests tell us to reject a parameter when the
signal-to-noise for that parameter is too small, even if the ”true”value
of that parameter is non-zero. This is because by trying to estimate
that parameter from too little data, one is bound to worsen expected
generalization error.

What empirical tests show in (Gingras et al. 2000) is that if one is
really interested in knowing whether β = 0 in the above example,
then one should really use the classical statistical test rather than
a generalization error statistic, because for that null hypothesis the
former has greater power than the latter. On the other hand, if one is
really interested in out-of-sample predictive performance, one should
use a generalization error test, because the classical test is liberal
(i.e. it keeps a non-zero β too often), which can be very dangerous in
applications.

Finally, although the difference between the two types of statistics
becomes small as n goes to infinity (θ above goes to zero), it should
be noted that in insurance applications with many input variables,
the ”small-sample” effect is not negligible, for two reasons:

1. when the number of discrete variables is large, and we want to



take into account their joint effects, the number of possible com-
binations of their values is very large; thus there is really very
little data to decide whether a parameter associated to a particu-
lar combination is useful or not,

2. when the claims distribution is highly asymmetric (i.e. the mean is
far from the median), the rare large claims can have a very strong
effect on the parameter estimation (i.e. the noise is strong), which
increases the discrepency between the conclusions reached with
the in-sample and out-of-sample statistics.

In the above analysis, there is another reason for prefering the oper-
ational approach in practical applications: the out-of-sample sta-
tistical tests do not require any assumption on the form of
the underlying distribution1. In other words, when performing a
classical parametric test, the conclusion of the test could generally be
invalidated if strictly speaking the data was not generated from the
presumed class of parametric distributions. When the livelihood of a
corporation is at stake in these choices, it might be wiser to avoid
relying on such assumptions.

2.2 Parameter Optimization: an example

Consider the same problem of linear regression as described above
but, let us now turn the task of parameter estimation. Our objective
is to minimize the expected out-of-sample squared error which does
not mean that we should minimize the in-sample mean squared error:

MSE =
1
N

N∑
i=1

(yi − (α̂+ β̂xi))2 (2)

1the only assumption, in ordinary tests, is that the data points are generated
i.i.d., independently from the same distribution. Even this assumption can be
relaxed in order to deal with sequentially dependent data, e.g. as in (Newey &
West 1987, Diebold & Mariano 1995, Campbell, Lo & MacKinlay 1997, Chapados
& Bengio 2003).



Minimizing the MSE is what the maximum likelihood calls for in the
classical framework. The reason for that apparent discrepancy has to
do with the statistical learning principles defined above. Instead, in
order to obtain better generalization, we turn to the regularization
framework and accordingly choose to minimize a penalized criterion
leading to what is often referred to as ridge regression:

MSEλ =
1
N

N∑
i=1

(yi − (α̂+ β̂xi))2 + λβ̂2 (3)

with λ ≥ 0 and a minimum achieved at β̂λ. Thus β̂0 is the Ordi-
nary Least Squares estimator. This minimum is always achieved with
shrinked solutions, i.e. ||β̂λ|| < ||β̂0|| for λ > 0. Note that this so-
lution is generally biased, unlike β̂0, in the sense that if the data
is generated from a multivariate normal distribution, the expected
value of ||β̂λ|| is smaller than the true value ||β|| from the underlying
distribution.

In the case where linear regression is the proper model it is easy to
show that the optimal fixed value of λ is

λ∗ =
σ2

N ||β||2
. (4)

Note therefore that the optimal model is biased (optimal in the
sense of minimizing out-of-sample error). Considering the case of au-
tomobile insurance, with noisy observations (large σ2) and the small
sample effect (small N , as argued above), we obtain large optimal
values for λ. In other words, for this particular case, regularization
significantly differs from maximum likelihood.

This example illustrates the more general principle of bias-variance
trade-off in generalization error, well discussed by (Geman, Bienen-
stock & Doursat 1992). Increasing λ corresponds to ”smoothing more”
in non-parametric statistics (choosing a simpler function) or to the
choice of a smaller capacity (”smaller” class of functions) in Vapnik’s



VC-theory (Vapnik 1998). A too large value of λ corresponds to un-
derfitting (too simple model, too much bias), whereas a too small
value corresponds to overfitting (too complex model, too much vari-
ance). Which value of λ should be chosen? (the above formula is not
practical because it requires the true β, and is only applicable if the
data is really Gaussian). It should be the one that strikes the op-
timal balance between bias and variance. This is the question that
model selection algorithms address. Fortunately, the expected out-
of-sample error has a unique minimum as a function of λ (or more
generally of the capacity, or complexity of the class of functions).
Concerning the above formula, note that unfortunately the data is
generally not normal, and σ2 and β are both unknown, so the above
formula can’t be used directly to choose λ. However, using a sepa-
rate held-out data set (also called a validation set, here), and taking
advantage of that unique minimum property (which is true for any
data distribution), we can quickly select a good value of λ (essen-
tially by searching), which approximately minimizes the estimated
out-of-sample error on that validation set.

Note that we arrive at the conclusion that a biased model is prefer-
able because we set as our goal to minimize out-of-sample error. If our
goal was to discover the underlying ”truth”, and if we could make
very strong assumptions about the true nature of the data distribu-
tion, then the more classical statistical approach based on minimum
variance unbiased estimators would be more appropriate. However,
in the context of practical insurance premia estimation, we don’t re-
ally know the form of the true data distribution, and we really care
about how the model is going to perform in the future (at least for
ratemaking).

3 Mathematical Objectives

The first goal of insurance premium modeling is to estimate the ex-
pected claim amount for a given insurance contract for a future period



(usually one-year). Here we consider that the amount is 0 when no
claim is filed. Let X ∈ Rn denote the customer and contract input
profile, a vector representing all the information known about the cus-
tomer and the proposed insurance policy before the beginning of the
contract. Let A ∈ R+ denote the amount that the customer claims
during the contract period; we shall assume that A is non-negative.
Our objective is to estimate this claim amount, which is the pure
premium ppure of a given contract x:2

ppure(x) = EA[A|X = x]. (5)

where EA[·] denotes expectation, i.e. the average over an infinite pop-
ulation, and EA[A|X = x] is a conditional expectation, i.e. the aver-
age over a subset of an infinite population, comprising only the cases
satisfying the condition X = x.

3.1 The Precision Criterion

In practice, of course, we have no direct access to the quantity (5),
which we must estimate. One possible criterion is to seek the most
precise predictor, which minimizes the expected squared error (ESE)
over the unknown distribution:

EA,X [(p(X)−A)2], (6)

where p(X) is a pure premium predictor and the expectation is
taken over the random variables X (input profile) and A (total claim
amount). Since P (A,X), the true joint distribution of A and X, is
unknown, we can unbiasedly estimate the ESE performance of an
estimator p on a data set Dtest = {〈xi, ai〉}Ni=1, as long as this data
set is not used to choose p. We do so by using the mean squared
error on that data set:

1
N

∑
〈xi,ai〉∈Dtest

(p(xi; θ)− ai)2, (7)

2The pure premium is distinguished from the premium actually charged to the
customer, which must account for the underwriting costs (marketing, commissions,
premium tax), administrative overhead, risk and profit loadings and other costs.



where θ is the vector of parameters of the model used to compute the
premiums. The vector xi represents the ith input profile of dataset
Dtest and ai is the claim amount associated to that input profile.
Thus, Dtest is a set of N insurance policies. For each policy, Dtest

holds the input profile and associated incurred amount. We will call
the data set Dtest a test set. It is used only to independently as-
sess the performance of a predictor p. To choose p from a (usually
infinite) set of possible predictors, one uses an estimator L, which
obtains a predictor p from a given training set D. Such an esti-
mator is really a statistical learning algorithm (Hastie, Tibshi-
rani & Friedman 2001), yielding a predictor p = LD for a given
data set D. What we call the squared bias of such an estimator is
EX [(EA[A|X]−ED[LD(X)])2], where ED[LD(X)] is the average pre-
dictor obtained by considering all possible training sets D (sampled
from P (A,X)). It represents how far the average estimated predictor
deviates from the ideal pure premium. What we call the variance
of such an estimator is EX,D[(LD(X) − E[LD(X)])2]. It represents
how the particular predictor obtained with some data set D deviates
from the average of predictors over all data sets, i.e. it represents the
sensitivity of the estimator to the variations in the training data and
is related to the classical measure of credibility.

Is the mean squared error (MSE) on a test set an appropriate criterion
to evaluate the predictive power of a predictor p? First one should
note that if p1 and p2 are two predictors of EA[A|X], then the MSE
criterion is a good indication of how close they are to EA[A|X], since
by the law of iterated expectations,

EA,X [(p1(X)−A)2]− EA,X [(p2(X)−A)2] =

EX [(p1(X)− EA[A|X])2]EX [(p2(X)− EA[A|X])2],

and of course the expected MSE is minimized when p(X) = EA[A|X].

For the more mathematically-minded readers, we show the well-
known result that minimizing the expected squared error optimizes
simultaneously both the precision (low bias) and the variance of the



estimator. The expected squared error of an estimator LD decom-
poses as follows:

EA,X,D[(A− LD(X))2]

= EA,X,D[((A− EA[A|X]) + (EA[A|X]− LD(X)))2]

= EA,X [(A− EA[A|X])2]︸ ︷︷ ︸
noise

+ EX,D[(EA[A|X]− LD(X))2]

+2EA,X,D[(A− EA[A|X])(EA[A|X]− LD(X))]︸ ︷︷ ︸
zero

= EX,D[((EA[A|X]− ED[LD(X)]) + (ED[LD(X)]− LD(X)))2]

+noise

= +EX [(EA[A|X]− ED[LD(X)])2]

+EX,D[(ED[LD(X)]− LD(X))2]

+2EX,D[(E[A|X]− ED[LD(X)])(ED[LD(X)]− LD(X))]︸ ︷︷ ︸
zero

+noise

= EX [(EA[A|X]− ED[LD(X)])2]︸ ︷︷ ︸
bias2

+EX,D[(ED[LD(X)]− LD(X))2]︸ ︷︷ ︸
variance

.

+noise

Thus, algorithms that try to minimize the expected squared error
simultaneously reduce both the bias and the variance of the estima-
tors, striking a tradeoff that minimizes the sum of both (since the
remainder is the noise, which cannot be reduced by the choice of pre-
dictor). On the other hand, with a rule such as minimum bias used
with table based methods, cells are merged up to a point where each
cell has sufficient credibility, i.e., where the variance is sufficiently
low. Then, once the credibility (and variance) level is set fixed, the
bias is minimized. On the contrary, by directly targeting minimiza-
tion of the expected squared error one avoids this arbitrary setting of
a credibility level.



As discussed in the previous section, in comparison to parametric ap-
proaches, this approach avoids distributional assumptions. Further-
more, it looks for an optimal trade-off between bias and variance,
whereas parametric approaches typically focus on the unbiased es-
timators (within a class that is associated with a certain variance).
Because of the above trade-off possibility, it is always possible (with
a finite data set) to improve an unbiased estimator by trading a bit
of bias increase for a lot of variance reduction.

3.2 The Fairness Criterion

In insurance policy pricing, the precision criterion is not the sole
part of the picture; just as important is that the estimated premiums
do not systematically discriminate against specific segments of the
population. We call this objective the fairness criterion, sometimes
referred to as actuarial fairness. We define the bias of the premium
b(P ) to be the difference between the average pure premium and the
average incurred amount, in a given sub-population P of dataset D:

b(P ) =
1
|P |

∑
〈xi,ai〉∈P

p(xi)− ai, (8)

where |P | denotes the cardinality of the sub-population P , and p(·)
is some premium estimation function. The vector xi represents the
ith input profile of sub-population P and ai is the claim amount
associated to that input profile. A possible fairness criterion would
be based on minimizing the sum, over a certain set of critical sub-
populations {Pk} of dataset D, of the square of the biases:∑

k,Pk∈D
b2(Pk) (9)

In the particular case where one considers all sub-populations, then
both the fairness and precision criterions lead to the same optimal
solution, i.e., they are minimized when p(xi) = E[Ai|xi], ∀i, i.e., for
every insurance policy, the premium is equal to the conditional ex-
pectation of the claim amount. The proof is given in appendix A.



In spite of the above result, it might be interesting to measure fairness
of particular sub-populations of interest. Business-wise, for example,
it is important to know whether populations that pay low premium
are overpaying (considering what they cost in claims) with respect
to populations that pay a high premium. For this purpose, we used
the following methodology: after training a model to minimize the
MSE criterion (7), we define a finite number of disjoint subsets (sub-
populations) of test set D: Pk ⊂ D,Pk∩Pj 6=k = ∅, and verify that the
absolute bias is not significantly different from zero. The subsets Pk
can be chosen at convenience; in our experiments, we considered 10
subsets of equal size delimited by the deciles of the test set premium
distribution. In this way, we verify that, for example, for the group
of contracts with a premium between the 5th and the 6th decile, the
average premium matches, within statistical significance, the average
claim amount.

4 Methodology

A delicate problem to guard against when applying statistical learn-
ing algorithms is that of overfitting. It has precisely to do with striking
the right trade-off between bias and variance (as introduced earlier),
and is known in technical terms as capacity control. Figure 1 illus-
trates the problem: the two plots show empirical data points (black
dots) that we are trying to approximate with a function (solid red
curve). All points are sampled from the same underlying function
(dashed blue curve), but are corrupted with noise; the dashed curve
may be seen as the “true” function we are seeking to estimate.

The left plot shows the result of fitting a very flexible function, i.e. a
high-order polynomial in this case, to the available data points. We
see that the function fits the data points perfectly: there is zero error
(distance) between the red curve and each of the black dots. However,
the function oscillates wildly between those points; it has not captured
any of the fundamental features of the underlying function. What is



happening here is that the function has mostly captured the noise in
the data: it overfits.

The right plot, on the other hand, shows the fitting of a less flexible
function, i.e. a 2nd-order polynomial, which exhibits a small error
with respect to each data point. However, by not fitting the noise
(because it does not have the necessary degrees of freedom), the fitted
function far better conveys the structural essence of the matter.

Capacity control lies at the heart of a sound methodology for data
mining and statistical learning algorithms. The goal is simple: to
choose a function class flexible enough (with enough capacity) to
express a desired solution, but constrained enough that it does not
fit the noise in the data points. In other words, we want to avoid
overfitting and underfitting.

Figure 2 illustrates the basic steps that are commonly taken to resolve
this issue: these are not the only means to prevent overfitting, but
are the simplest to understand and use.

1. The full data set is randomly split into three disjoint subsets,
respectively called the training, validation, and test sets.

Figure 1. Illustration ofoverfitting . The solid left curve fits the noise in
the data points (black dots) and has not learned the underlying structure
(dashed). The right curve, with less flexibility, does not overfit.



Figure 2. Methodology to prevent overfitting. Model capacity is controlled
via a validation set, disjoint from the training set. The generalization per-
formance estimator is obtained by final testing on the test set, disjoint from
the first two.

2. The training set is used to fit a model with a chosen initial capacity.

3. The validation set is used to evaluate the performance of that
fitted function, on different data points than used for the fitting,
i.e. cases not in the training set. The key here is that a function
overfitting the training set will exhibit a poor performance on the
validation set, if it does not capture the underlying structure of
the problem.

4. Depending on the validation set performance, the capacity of the
model is adjusted (increased or reduced), and a new training phase
(step 2) is attempted. This training–validation cycle is repeated
multiple times and the capacity that provides the best validation
performance (among those tried) is retained. This is really an opti-
mization of the capacity and can formally be handled by numerical
optimization algorithms.

5. Finally, the performance of the “ultimate” function (that coming
out of the validation phase) is evaluated on data points never used



previously—those in the test set—to give a completely unbiased
measure of the performance that can be expected when the sys-
tem is deployed in the field. This is called generalization per-
formance.

In the case of automobile insurance, there is a sequential structure
that must be respected. When using data from previous years to
simulate the out-of-sample performance of models, one should try to
replicate as closely as possible the actual process that will be followed
to deploy a model. A sound procedure is to split the data according to
their policy date year into the training (year y − 3), validation (year
y− 2) and test (year y) sets. The reason for skipping year y− 1 is to
recognize the fact that at time y, as the model is deployed, year y−1
is not yet available. Reducing this gap to a few months would help
the insurer account for more recent data and very likely obtain better
performance. An insurer having access to data dating from 1995 could
obtain test performances for years 1998 and above. Assuming 2002
results are available leads to 5 estimates of the test performance of
the whole modelling procedure.

5 Models

In this section, we describe various models that have been imple-
mented and used for the purpose of ratemaking, and evaluated in
this study. We begin with the simplest model: charging a flat pre-
mium to every insured. Then, we gradually move on towards more
complex models.

5.1 Constant Model

For benchmark evaluation purposes, we implemented the constant
model. This consists of simply charging every single insurance policy
a flat premium, regardless of the associated variable values. The pre-
mium is the mean of all incurred amounts as it is the constant value



that minimizes the mean-squared error.

p(x) = β0, (10)

where β0 is the mean and the premium p(x) is independent of the
input profile x. In figure 3, the constant model is viewed as a flat line
when the premium value is plotted against one of the input variables.
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Figure 3. The constant model fits the best horizontal line through the train-
ing data.

5.2 Linear Model

We implemented a linear model which consists of a set of coefficients,
one for each variable plus an intercept value, that minimize the mean-
squared error,

p(x) = β0 +
n∑
i=1

βixi. (11)

Figure 4 illustrates a linear model where the resulting premiums form
a line, given one input variable value. With a two dimensional input
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Figure 4. The linear model fits a straight line through the training data.

variable space, a plane would be drawn. In higher dimension, the
corresponding geometrical form is referred to as a hyper-plane.

There are two main ways to control the capacity of linear models
when in presence of noisy data:

• using a subset of input variables; this directly reduces the number
of coefficients (but choosing the best subset introduces another
level of choice which is sometimes detrimental).

• penalizing the norm of the parameters (in general excluding the
intercept β0); this is called ridge regression in statistics, and weight
decay in the Neural Networks community. This was the main
method used to control capacity of the linear model in our ex-
periments (see above subsection 2.2).

It should be noted that the premium computed with the linear model
can be negative (and negative values are indeed sometimes obtained
with the trained linear models). This may happen even if there are
no negative amounts in the data, simply because the model has no



built-in positivity constraint (unlike the GLM and the softplus Neural
Network described below).

5.3 Table-based methods

These more traditional ratemaking methods rely mainly on a clas-
sification system, base rates and relativities. The target function is
approximated by constants over regular (finite) intervals. As shown
on the figure, this gives rise to a typical staircase-like function, where
each level of the staircase is given by the value in the corresponding
cell in the table. A common refinement in one dimension is to per-
form a linear interpolation between neighboring cells, to smooth the
resulting function somewhat. The table is not limited to two vari-
ables; however, when adding a new variable (dimension), the number
of cells increases by a factor equal to the number of discretization
steps in the new variable.

In order to use table-based methods to estimate a pure premium,
find a certain number of variables deemed useful for the prediction,
and discretize those variables if they are continuous. To fill out the
table, compute over a number of years (using historical data) the total
incurred claim amount for all customers whose profiles fall within a
given cell of the table, and average the total within that cell. This
gives the pure premium associated with each cell of the table.

Assuming that the ith variable of profile x belongs to the jth category,
we obtain,

p(x) = β0

m∏
i=1

βi,j +
n∑

i=m+1

βi,j , (12)

where βi,j is the relativity for the jth category of the ith variable and
β0 is the standard premium. We consider the case where the first m
factors are multiplicative and the last n−m factors are additive.

The formula above assumes that all variables have been analyzed in-



dividually and independently. A great deal of effort is often put in
trying to capture dependencies (or interactions) between some vari-
ables and to encode them into the premium model.

An extension of the above is to multiplicatively combine multiple
tables associated to different subsets of variables. This is in effect a
particular form of Generalized Linear Model (see below), where each
table represents the interdependence effects between some variables.

5.4 Greedy Multiplicative Model

Greedy learning algorithms “grow” a model by gradually adding one
“piece” at a time to the model, but keeping the already chosen pieces
fixed. At each step, the “piece” that is most helpful to minimize the
training criterion is “added” to the model. This is how decision trees
are typically built. Using the validation set performance we can de-
cide when to stop adding pieces (when the estimated out-of-sample
performance starts degrading).

The GLM described in the next section is a multiplicative model
because the final premium function can be seen as a product of co-
efficients associated with each input variable. The basic idea of the
Greedy Multiplicative Model is to add one of these multiplicative co-
efficients at a time. At each step, we have to choose one among the
input variables. We choose the variable which would reduce most the
training MSE. The coefficient for that component is easily obtained
analytically by minimizing the MSE when all the previously obtained
coefficients are kept fixed.

In the tables we use the short-hand name “CondMean” for this model
because it estimates and combines many conditional means. Note that
like the GLM, this model provides positive premiums.

5.5 Generalized Linear Model



(Bailey & Simon 1960) introduced Generalized Linear Models (GLM)
to the actuarial community. More recently, (Brown 1988, Holler, Som-
mer & Trahair 1999, Murphy, Brockman & Lee 2000) conducted ex-
periments using such models. GLMs, at their roots, are simple linear
models that are composed with a fixed nonlinearity (the so-called link
function); a commonly-used link function is simply the exponential
function ex. GLMs (with the exponential link) are sometimes used
in actuarial modeling since they naturally represent multiplicative
effects, for example risk factors whose effects should combine multi-
plicatively rather than additively. They are attractive since they in-
corporate problem-specific knowledge directly into the model. These
models can be used to obtain a pure premium, yielding such a for-
mula,

p(x) = exp

(
β0 +

n∑
i=1

βixi

)
, (13)

where, the exponentiation ensures that the resulting premiums are
all positive. In figure 5, we can see that the model generates an ex-
ponential function in terms of the input variable.

In their favor, GLMs are quite easy to estimate3, have interpretable
parameters, can be associated to parametric noise models, and are
not so affected when the number of explanatory variables increases,
as long as the number of observations used in the estimation remains
sufficient. Unfortunately, they are fairly restricted in the shape of the
functions they can estimate.

The capacity of a GLM model can be controlled using the same tech-
niques as those mentionned above (5.2) in the context of linear mod-
els. Again, note that the GLM always provides a positive premium.

3We have estimated the parameters to minimize the mean-squared error, but other
training criteria have also been proposed in the GLM literature and this could be
the subject of further studies.
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Figure 5. The Generalized Linear Model fits an exponential of a linear
transformation of the variables.

5.6 CHAID decision trees

Decision trees split the variable space in smaller subspaces. Any input
profile x fits into one and only one of those subspaces called leaves.
To each leaf is associated a different premium level,

p(x) =
nl∑
i=1

I{x∈li} βi, (14)

where I{x∈li} is an indicator function equal to 1 if and only if x belongs

to the ith leaf. In that case, I{x∈li} = 1 and p(x) = βi. Otherwise,
I{x∈li} is equal to zero, meaning x belongs to another leaf. The num-
ber of leaves is nl. The premium level βi is set equal to the average
incurred amount of the policies for which the profile x belongs to the
ith leaf. In figure 6, the decision tree is viewed as generating a piece-
wise constant function. The task of the decision tree is to choose the
“best” possible partition of the input variable space.

The basic way in which capacity is controlled is through several hyper-
parameters: minimum population in each leaf, minimum population
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Figure 6. The CHAID model fits constants to partitions of the variables.
The dashed lines in the figure delimit the partitions, and are found automat-
ically by the CHAID algorithm.

to consider splitting a node, maximum height of the decision tree and
Chi-square statistic threshold value.

5.7 Combination of CHAID and Linear Model

This model is similar to the previous one except that, in each leaf, we
have replaced the associated constant premium value with a linear
regression. Each leaf has its own set of regression coefficients. There
are thus nl different linear regressions of n+ 1 coefficients each.

p(x) =
nl∑
i=1

I{x∈li}

βi,0 +
n∑
j=1

βi,jxj

 . (15)

Each linear regression was fit to minimize the mean-squared error on
the training cases that belong to its leaf. For reasons that are clear in
the light of learning theory, a tree used in such a combination should



have less leaves than an ordinary CHAID tree. In our experiments we
have chosen the size of the tree based on the validation set MSE.
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Figure 7. The CHAID+Linear model fits a straight line within each of the
CHAID partitions of the variable space.

In these models, capacity is controlled with the same hyper-
parameters as CHAID, and there is also the question of finding the
right weight decay for the linear regression. Again, the validation set
is used for this purpose.

5.8 Ordinary Neural Network

Ordinary Neural Networks consist of the clever combination and si-
multaneous training of a group of units or neurons that are individu-
ally quite simple. Figure 8 illustrates a typical multi-layer feedforward
architecture such as the ones that were used for the current project.

We describe here the steps that lead to the computation of the final
output of the Neural Network. First, we compute a series of linear



Figure 8. Topology of a one-hidden-layer Neural Network. In each unit
of the hidden layer, the variables are linearly combined. The network then
applies a non-linear transformation on those linear combinations. Finally,
the resulting values of the hidden units are linearly combined in the output
layer.

combinations of the input variables:

vi = αi,0 +
n∑
j=1

αi,jxj , (16)

where xj is the jth out of n variables, αi,0 and αi,j are the slope
intercept and the weights of the ith linear combination. The result
of the linear combination, vi, represents a projection in a preferred
direction, that combines information from potentially all the input
variables.

Then, a non-linear transform (called a transfer function) is applied
to each of the linear combinations in order to obtain what are called



the hidden units. We used the hyperbolic tangent function:

hi = tanh(vi)

=
evi − e−vi
evi + e−vi

, (17)

where hi is the ith hidden unit. The use of such a transfer function
with infinite expansion in its terms has an important role in helping
the Neural Network capture nonlinear interactions and this is the
subject of subsection 5.9.

Finally, the hidden units are linearly combined in order to compute
the final output of the Neural Network:

p(x) = β0 +
nh∑
i=1

βi hi, (18)

where p(x) is the premium computed by the Neural Network, nh is
the number of hidden units and β0 and βi are the slope intercept and
the weights of the final linear combination.

Put all together in a single equation, we obtain:

p(x) = β0 +
nh∑
i=1

βi tanh

αi,0 +
n∑
j=1

αi,jxj

 . (19)

Figure 9 depicts a smooth non-linear function which could be gener-
ated by a Neural Network.

The number of hidden units (nh above) plays a crucial role in our
desire to control the capacity of the Neural Network. If we choose a
value for nh that is too large, we obtain overfitting: the number of
parameters of the model increases and it becomes possible, during the
parameter optimization phase, for the Neural Network to model noise
or spurious dependencies. These dependencies, present in the train-
ing dataset used for optimization, might not apply to other datasets.
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Figure 9. The Neural Network model learns a smooth non-linear function
of the variables.

Conversely, setting nh to a value that is too low corresponds to under-
fitting: the number of parameters becomes too small and the Neural
Network can not capture all of the relevant interactions in order to
properly compute the premiums.

Thus, choosing the optimal number of hidden units is an important
part of modeling with Neural Networks. Another technique for con-
trolling the capacity of a Neural Network is to use weight decay, i.e., a
penalized training criterion as described in subsection 2.2 that limits
the size of the parameters of the Neural Network.

Choosing the optimal values for the parameters is a complex task
and out of the scope of this chapter. Many different optimization
algorithms and refinements have been suggested (Bishop 1995, Orr &
Müller 1998) but in practice, the simple stochastic gradient descent
algorithm is still very popular and usually gives good performance.

Note that like the linear regression, this model can potentially yield
negative premiums in some cases. We have observed much fewer such



cases than with the linear regression.

5.9 How can Neural Networks Represent
Nonlinear Interactions?

For the more mathematically-minded readers, we present a simple
explanation of why Neural Networks are able to represent nonlinear
interactions between the input variables. To simplify, suppose
that we have only two input variables, x1 and x2. In classical linear
regression, a common trick is to include fixed nonlinear combinations
among the regressors, such as x2

1, x
2
2, x1x2, x

2
1x2, . . . However, it is

obvious that this approach adds exponentially many terms to the
regression, as one seeks higher powers of the input variables.

In contrast, consider a single hidden unit of a Neural Network, con-
nected to two inputs. The adjustable network parameters are named,
for simplicity, α0, α1 and α2. A typical function computed by this
unit is given by

tanh(α0 + α1x1 + α2x2).

Here comes the central part of the argument: performing a Taylor
series expansion of tanh(y+α0) in powers of y, and letting α1x1+α2x2

stand for y, we obtain (where β ≡ tanh α0),

tanh(α0 + α1x1 + α2x2) =
β + (1− β2)(α1x1 + α2x2) + (−β + β3)(α1x1 + α2x2)2+(
− 1

3 + 4β2

3 − β
4
)

(α1x1 + α2x2)3+(
2β
3 −

5β3

3 + β5
)

(α1x1 + α2x2)4 +O(α1x1 + α2x2)5.

In fact the number of terms is infinite: the nonlinear function com-
puted by this single hidden unit includes all powers of the in-
put variables, but they cannot all be independently controlled. The
terms that will ultimately stand out depend on the coefficients α0, α1,

and α2. Adding more hidden units increases the flexibility of the over-
all function computed by the network: each unit is connected to the



input variables with its own set of coefficients, thereby allowing the
network to capture as many (nonlinear) relationships between the
variables as the number of units allows.

The coeffients linking the input variables to the hidden units can also
be interpreted in terms of projections of the input variables. Each
set of coefficients for one unit represents a direction of interest in input
space. The values of the coefficients are found during the network
training phase using iterative nonlinear optimization algorithms.

5.10 Softplus Neural Network

Figure 10. Topology of a one-hidden-layer softplus Neural Network. The
hidden layer applies a non-linear transformation of the variables, whose re-
sults are linearly combined by the output layer. The softplus output function
forces the function to be positive. To avoid cluttering, some weights linking
the variables to the hidden layer are omitted on the figure.

This new type of model was introduced precisely to make sure that
positive premiums are obtained. The softplus function was recently
introduced in (Dugas, Bengio, Bélisle, Nadeau & Garcia 2001) as a
means to model a convex relationship between an output and one of



its inputs. We modified the Neural Network architecture and included
a softplus unit as a final transfer function. Figure 10 illustrates this
new architecture we have introduced for the purpose of computing
insurance premiums. The corresponding formula is as such:

p(x) = F

β0 +
nh∑
i=1

βi tanh

αi,0 +
n∑
j=1

αi,jxj

 , (20)

where F (·) is the softplus function which is actually simply the prim-
itive (integral) function of the “sigmoid” function. Thus

F (y) = log (1 + ey) . (21)

The softplus function is convex and monotone increasing w.r.t. to its
input and always strictly positive. Thus, as can be seen in Figure 11,
this proposed architecture leads to strictly positive premiums.

In preliminary experiments we have also tried to use the exponen-
tial function (rather than the softplus function) as the final transfer
function. However we obtained poor results due to difficulties in the
optimization (probably due to the very large gradients obtained when
the argument of the exponential is large).

The capacity of the softplus Neural Network is tuned just like that of
an ordinary Neural Network. Note that this kind of Neural Network
architecture is not available in commercial Neural Network packages.

5.11 Regression Support Vector Machine

Support Vector Machines (SVM) have recently been introduced as
a very powerful set of non-parametric statistical learning algorithms
(see (Vapnik 1998) and (Schölkopf, Burges & Smola 1998)). They
have been very successful in classification tasks, but the framework
has also been extended to perform regression. Like other kernel meth-
ods the class of functions has the following form:

p(x) =
∑
i

αiK(x, xi) (22)
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Figure 11. The softplus Neural Network model learns a smooth non-linear
positive function of the variables. This positivity is desirable for estimat-
ing insurance premiums.

where xi is the input profile associated with one of the training
records, and αi is a scalar coefficient that is learned by the algo-
rithm and K is a kernel function that satisfies the Mercer condition
(Cristianini & Shawe-Taylor 2000):∫

C
K(x, y) g(x) g(y) dx dy ≥ 0 (23)

for any square integrable function g(x) and compact subset C of Rn.
This Mercer condition ensures that the kernel function can be repre-
sented as a simple dot product:

K(x, y) = φ(x) · φ(y) (24)

where φ() is a function that projects the input profile vector into a
(usually very) high-dimensional “feature” space, usually in a nonlin-
ear fashion. This leads us, to a simple expression for the premium



function:

p(x) =
∑
i

αiφ(x) · φ(xi)

= φ(x) ·

(∑
i

αiφ(xi)

)
= w · φ(x). (25)

Thus, in order to compute the premium, one needs to project input
profile x in its feature space and compute a dot product with vector w.
This vector w depends only on a certain number of input profiles from
the training dataset and their associated coefficients. These input
profiles are referred to as the support vectors and have been selected,
along with their associated coefficients by the optimization algorithm.

SVMs have several very attractive theoretical properties, including
the fact that an exact solution to the optimization problem of min-
imizing the training criterion can be found, and the capacity of the
model is automatically determined from the training data. In many
applications, we also find that most of the αi coefficients are zero.

However, in the case of insurance data, an important characteristic
of regression SVMs is that they are NOT trained to minimize the
training MSE. Instead they minimize the following criterion:

J =
1
2
||w||2 + λ

∑
i

|at − p(xi)|ε (26)

where |e|ε = max(0, |e| − ε), λ and ε trade-off accuracy with com-
plexity, ai is the observed incurred claim amount for record i, xi is
the input profile for record i, and the vector w is defined in terms
of the αi coefficients above. It can therefore be seen that this algo-
rithm minimizes something close to the absolute value of the error
rather than the squared error. As a consequence, the SVM tends to
find a solution that is close to the conditional median rather than the
conditional expectation, the latter being what we want to evaluate in



order to set the proper value for a premium. Furthermore, note that
the insurance data display a highly asymmetric distribution, so the
median and the mean are very different. In fact, the conditional me-
dian is often exactly zero. Capacity is controlled through the ε and λ
coefficients.

5.12 Mixture Models

Figure 12. Schematic representation of the mixture model. The first-stage
models each make an independent decision, which are linearly combined
by a second-stagegater.

The mixture of experts has been proposed (Jacobs, Jordan, Nowlan &
Hinton 1991) in the statistical learning litterature in order to decom-
pose the learning problem, and it can be applied to regression as well
as classification. The conditional expectation is expressed as a lin-
ear combination of the predictions of expert models, with weights
determined by a gater model. The experts are specialized predic-
tors that each estimate the pure premium for insureds that belong
to a certain class. The gater attempts to predict to which class each



insured belongs, with an estimator of the conditional probability of
the class given the insured’s input profile. For a mixture model, the
premium can be expressed as

p(x) =
∑
c

p(c|x)pc(x) (27)

where p(c|x) is the probability that an insured with input profile x
belongs to class c. This value is determined by the gater model. Also,
pc(x) is the premium, as computed by the expert model of class c,
associated to input profile x.

A trivial case occurs when the class c is deterministically found for
any particular input profile x. In that case, we simply split the train-
ing database and train each expert model on a subset of the data.
The gater then simply assigns a value of pc(x) = 1 if c is the ap-
propriate class for input profile x and zero otherwise. This is in fact
fundamentally equivalent to other techniques such as decision trees
or table-based methods. A more general and powerful approach is to
have the learning algorithm discover a relevant decomposition of the
data into different regions of the input space which then become the
classes and are encoded in the gater model. In that case, both the
gater and the experts are trained together.

In this study both the experts and the gater are softplus Neural Net-
works, but any other model can be used. In Figure 12, we schemat-
ically illustrate a mixture model as the one that was used in the
framework of this project.

6 Experimental Results

6.1 Mean-Squared Error Comparisons

Table 1 summarizes the main results concerning the comparison be-
tween different types of statistical machine learning algorithms. All



Table 1. Comparison between the main models, with MSE on the training
set, validation set, and test sets. The MSE is with respect to claim amounts
and premiums expressed in thousand of dollars.

Model Train MSE Valid MSE Test MSE
Constant 56.1108 56.5744 67.1192
Linear 56.0780 56.5463 67.0909
GLM 56.0762 56.5498 67.0926
NN 56.0706 56.5468 67.0903
Softplus 56.0704 56.5480 67.0918
CHAID 56.0917 56.5657 67.1078
CondMean 56.0827 56.5508 67.0964
Mixture 56.0743 56.5416 67.0851

56.0743

56.1108

56.5416

56.5744

67.0851

67.1192

Mean−Squared Error

Training

Validation

Test

Mixture NN Linear
SoftPlus NN GLM

CondMean
CHAID

Constant

Models

Figure 13. MSE results (from table 1) for eight models . Models have been
sorted in ascending order of test results. The training, validation and test
curves have been shifted closer together for visualization purposes. The
out-of-sample test performance of the mixture model is significantly better
than any of the other. Validation based model selection is confirmed on test
results.



the models have been trained using the same input profile variables.
For each insurance policy, a total of 33 input variables were used and
the total claims for an accident came from five main coverages: bodily
injury, accident benefit, property damage, collision and comprehen-
sive. Two other minor coverages were also included: death benefit
and loss of use. In the table, NN stands for Neural Network, GLM for
Generalized Linear Model, and CondMean for the Greedy Multiplica-
tive Model. The MSE on the training set, validation set and test set
are shown for all models. The MSE is with respect to claim amounts
and premiums expressed in thousand of dollars. The model with
the lowest MSE is the “Mixture model”, and it is the model that
has been selected for the comparisons with the insurer’s current rules
for determining insurance premiums to which we shall refer as the
Rule-Based Model.

One may wonder from the previous table why the MSE values are
so similar across various models for each dataset and much different
across the datasets. In particular, all models perform much worse on
the testset (in terms of their MSE). There is a very simple expla-
nation. The maximum incurred amount on the test set and on the
validation set is around 3 million dollars. If there was one more such
large claim in the test set than in the validation set, one would expect
the test MSE (calculated for premiums and amounts in thousand of
dollars) to be larger by about 7 (these are in units of squared thousand
dollars). Thus a difference of 11 can easily be explained by a couple
of large claims. This is a reflection of the very thick right-hand tail of
the incurred amount distribution (whose standard deviation is only
of about 8 thousand dollars). Conversely, this also explains why all
MSE are very similar across models for one particular dataset. The
MSE values are all mainly driven by very large claims which no model
could reliably forecast (no model could lead the insurer to charge a
million dollars to a particular insured !) Consequently, truely signif-
icant differences between model performances are shadowed by the
effect of very large claims on the MSE values. Although the differ-
ences between model performance are relatively small, we shall see



next that careful statistical analysis allows us to discover that some
of them are significant.

Figure 13 illustrates graphically the results of the table, with the
models ordered according to the validation set MSE. One should note
that within each class of models the capacity is tuned according to
the performance on the validation set. On the test and validation
sets, the Mixture model dominates all the others. Then come the or-
dinary Neural Network, linear model, and softplus Neural Network.
Only slightly worse are the GLM and CondMean (the Greedy Multi-
plicative model). CHAID fared poorly on this dataset. Note that the
CHAID + linear model described in section 5.7 performed worse than
ordinary CHAID. Finally, the constant model is shown as a baseline
(since it corresponds to assigning the same premium to every 1-year
policy). It is also interesting to note from the figure that the model
with the lowest training MSE is not necessarily the best out-of-sample
(on the validation or test sets). The SVM performance was appalling
and is not shown here; it did much worse than the constant model,
because it is aiming for the conditional median rather the conditional
expectation, which are very different for this kind of data.

Table 2. Statistical Comparison Between Different Learning Models and
the Mixture Model. The p-value is for the null hypothesis of no difference
between Model #1 and the best mixture model. Symbolsµ̂ and σ̂ stand
for sample mean and standard deviation. Note that ALL differences are
statistically significant.

Model #1 Model #2 µ̂ σ̂ Z p-value
Constant Mixture 3.41e-02 3.33e-03 10.24 0
Linear Mixture 5.82e-03 1.32e-03 4.41 5.30e-06
GLM Mixture 7.54e-03 1.15e-03 6.56 2.77e-11
NN Mixture 5.24e-03 1.41e-03 3.71 1.03e-04
Softplus Mixture 6.71e-03 1.09e-03 6.14 4.21e-10
CHAID Mixture 2.36e-02 2.58e-03 9.15 0

Table 2 shows a statistical analysis to determine whether the dif-
ferences in MSE between the Mixture model and each of the other



models are significant. The Mean column shows the difference in MSE
with the Mixture model. The next column shows the Standard Er-
ror of that mean. Dividing the mean by the standard error gives Z
in the next column. The last column gives the p-value of the null
hypothesis according to which the true expected squared errors for
both models are the same. Conventionally, a value below 5% or 1%
is interpreted as indicating a significant difference between the two
models. The p-values and Z corresponding to significant differences
are highlighted. Therefore the differences in performance between the
mixture and the other models are all statistically significant. As men-
tionned above, the MSE values are very much affected by large claims.
Does such a sensitivity to very large claims make statistical compar-
isons between models incorrect? No. Fortunately all the comparisons
are performed on paired data (the squared error for each individual
policy), which cancel out the effect of these very large claims (since,
for these special cases, the squared error will be huge for all models
and of very close magnitude)

Table 3 has similar columns, but it provides a comparison of pairs
of models, where the pairs are consecutive models in the order of
validation set MSE. What can be seen is that the ordinary Neural
Network (NN) is significantly better than the linear model, but the
latter, the softplus Neural Network and GLM are not statistically dis-
tinguishable. Finally GLM is significantly better than CHAID, which
is significantly better than the constant model. Note that although
the softplus Neural Network alone is not doing very well here, it is
doing very well within the Mixture model (it is the most successful
one as a component of the mixture). The reason may be that within
the mixture, the parameter estimation for model of the low incurred
amounts is not polluted by the very large incurred amounts (which
are learned in a separate model).

6.2 Evaluating Model Fairness



Table 3. Statistical Comparison Between Pairs of Learning Models. Models
are ordered from worst to best. Symbolsµ̂ andσ̂ stand for sample mean and
standard deviation. The test is for comparing the sum of MSEs. The p-value
is for the null hypothesis of no difference between Model #1 and Model #2.

Model #1 Model #2 µ̂ σ̂ Z p-value
Constant CHAID 1.05e-02 2.62e-03 3.99 3.24e-05
CHAID GLM 1.60e-02 2.15e-03 7.46 4.23e-14
GLM Softplus 8.29e-04 8.95e-04 0.93 1.77e-01
Softplus Linear 8.87e-04 1.09e-03 0.82 2.07e-01
Linear NN 5.85e-04 1.33e-03 0.44 3.30e-01
NN Mixture 5.23e-03 1.41e-03 3.71 1.03e-04

Although measuring the predictive accuracy—as done with the MSE
in the previous section—is a useful first step in comparing models, it
tells only part of the story. A given model could appear significantly
better than its competitors when averaging over all customers, and
yet perform miserably when restricting attention to a subset of cus-
tomers.

We consider a model to be fair if different cross-sections of the popu-
lation are not significantly biased against, compared with the overall
population. Model fairness implies that the average premiums within
each sub-group should be statistically close to the average incurred
amount within that sub-group.

Obviously, it is nearly impossible to correct for any imaginable bias
since there are many different criteria to choose from in order to
divide the population into subgroups; for instance, we could split ac-
cording to any single variable (e.g. premium charged, gender, rate
group, territory) but also combinations of variables (e.g. all combina-
tions of gender and territory, etc.). Ultimately, by combining enough
variables, we end up identifying individual customers, and give up
any hope of statistical reliability.

As a first step towards validating models and ensuring fairness, we
choose the subgroups corresponding to the location of the deciles of



the premium distribution. The i-th decile of a distribution is the point
immediately above 10i% of the individuals of the population. For
example, the 9-th decile is the point such that 90% of the population
come below it. In other words, the first subgroup contains the 10% of
the customers who are given the lowest premiums by the model, the
second subgroup contains the range 10%–20%, and so on.

The subgroups corresponding to the Mixture Model (the proposed
model) differ slightly from those in the Rule-Based Model (the in-
surer’s current rules for determining insurance premiums). Since the
premium distribution for both models is not the same. The subgroups
used for evaluating each model are given in Table 4. Since they cor-
respond to the deciles of a distribution, all the subgroups contain
approximately the same number of observations (≈ 28, 000 on the
1998 test set).

Table 4. Subgroups used for evaluating model fairness, for the Mixture and
Rule-Based Models. The lowest and highest premiums in the subgroups
are given. Each subgroup contains the same number of observations,≈
28, 000.

Mixture Model Rule-Based Model
Low High Low High

Subgroup 1 50.81 166.24 139.27 245.0145
Subgroup 2 166.24 214.10 245.01 297.0435
Subgroup 3 214.10 259.74 297.04 336.7524
Subgroup 4 259.74 306.26 336.75 378.4123
Subgroup 5 306.27 357.18 378.41 417.5794
Subgroup 6 357.18 415.93 417.58 460.2658
Subgroup 7 415.93 490.34 460.26 507.0753
Subgroup 8 490.35 597.14 507.07 554.2909
Subgroup 9 597.14 783.90 554.29 617.1175
Subgroup 10 783.90 4296.78 617.14 3095.7861

The bias within each subgroup appears in Figure 14. It shows the
average difference between the premiums and the incurred amounts,
within each subgroup (recall that the subgroups are divided according



to the premiums charged by each model, as per Table 4). A positive
difference implies that the average premium within a subgroup is
higher than the average incurred amount within the same subgroup.
95% confidence intervals on the mean difference are also given, to
assess the statistical significance of the results.

Since subgroups for the two models do not exactly represent the same
customers, we shall refrain from directly comparing the two models
on a given subgroup. We note the following points:

• For most subgroups, the two models are being fair: the bias is
usually not statistically significantly different from zero.

• More rarely, the bias is significantly positive (the models over-
charge), but never significantly negative (models undercharge).

• The only subgroup for which both models undercharge is that of
the highest-paying customers, the 10-th subgroup. This can be
understood, as these customers represent the highest risk; a high
degree of uncertainty is associated with them. This uncertainty is
reflected in the huge confidence intervals on the mean difference,
wide enough not to make the bias significantly different from zero
in both cases. (The bias for the Rule-Based Model is nearly sig-
nificant.)

From these results, we conclude that both models are usually fair
to customers in all premium subgroups. A different type of analysis
could also be pursued, asking a different question: “In which cases do
the Mixture and the Rule-Based Models differ the most?” We address
this issue in next section.

6.3 Comparison with Current Premiums

For this comparison, we used the best (on the validation set) Mixture
model and compare it on the test data of 1998 against the insurer’s
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Figure 14. Average difference between premiums and incurred amounts
(on the sum over all coverage groups), for the Mixture and Rule-Based
models, for each decile of the models’ respective premium distribution. We
observe that both models are being fair to most customers, except those
in the last decile, the highest-risk customers, where they appear to under-
charge. The error bars represent 95% confidence intervals. (Each decile
contains≈ 28, 000 observations.)

Rule-Based Model. Note that for legislative reasons, the Rule-Based
Model did not use the same variables as the proposed Mixture Model.

Histograms comparing the distribution of the premiums between the
Rule-Based and the Mixture models appear in Figure 15. We observe
that the premiums from the Mixture model is smoother and exhibits
fatter tails (more probability mass in the right-hand side of the dis-
tribution, far from the mean). The Mixture model is better able to
recognize risky customers and impose an appropriately-priced pre-
mium.
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Figure 15. Comparison of the premium distribution for the current Rule-
Based model and the Mixture model. The distributions are normalized to
the same mean. The Mixture model distribution has fatter tails and is much
smoother.

This observation is confirmed by looking at the distribution of the
premium difference between the Rule-Based and Mixture models, as
shown in Figure 16.

We note that this distribution is extremely skewed to the left. This
means that for some customers, the Rule-Based model considerably
under-charges with respect to the Mixture model. Yet, the median of
the distribution is above zero, meaning that the typical customer pays
more under the Rule-Based model than under the Mixture model. At
the same time, the Mixture model achieves better prediction accuracy,
as measured by the Mean-Squared Error (MSE) of the respective
models, all the while remaining fair to customers in all categories.

Our overriding conclusion can be stated plainly: the Mixture model
correctly charges less for typical customers, and correctly charges
more for the “risky” ones. This may be due in part to the use of more
variables, and in part to the use of a statistical learning algorithm
which is better suited to capturing the dependencies between many



variables.
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Figure 16. Distribution of the premium difference between the Rule-Based
and Mixture models, for the sum of the first three coverage groups. The
distribution is negatively skewed: the Rule-Based model severely under-
charges for some customers.

7 Application to Risk Sharing Pool
Facilities

In some provinces and states, improved discrimination between good
and bad risks can be used for the purpose of choosing the insureds
to be ceeded to risk-sharing pool facilities. In this section, we illus-
trate the performance of some algorithms when applied to this feat
according to the rules that apply in Québec Plan de Répartition des
Risques (PRR). According to this facility, an insurer can choose to
ceed up to 10% of its book of business to the pool by paying 75%
of the gross premium that was charged to the insured. Then, in case
an accident occurs, the PRR assumes all claim payments. The losses
(gains) in the pool are then shared among the insurers in proportion
of their market share.

Since automobile insurance is mandatory in Québec, the PRR was



initially created in order to compensate insurers that were forced by
the legislator to insure some risks that had been previously turned
down by multiple insurers. The idea was that the insurer could then
send these risks to the pool and the losses would be spread among
all insurers operating in the province. Of course, such extreme risks
represent far less than the allowed 10% of an insurer’s volume. The
difference can then be used for other profitable purposes. One pos-
sibility is for an insurer to ceed the risks that bring most volatility
in the book of business and the pool therefore becomes a means of
obtaining reinsurance. In this section, we take a different view: our
interest is to use highly discriminative models to identify “wholes” in
the ratemaking model, i.e., to identify the risks that have been under-
priced the most. Mathematically, this correspond to identifying risks
for which the expected value of the claims is higher than 75% of the
gross premium, i.e., those risks with an expected loss ratio of at least
75%, a figure above the industry’s average performance. For a partic-
ular insurer, the lower the loss ratio, the more difficult it becomes to
identify risks that can be (statistically) profitably ceeded. Still, there
are a few reasons why important underpricings can be identified:

1. legislation related to ratemaking is more restrictive than the one
that pertains to the risk-sharing pool,

2. strategic marketing concerns may have forced the insurer to un-
derprice a certain part of its book of business and,

3. other concerns may not allow the insurer to use highly discrimi-
native models for the purpose of ratemaking.

The last two items can possibly be handled by rule-based systems
if the insurer clearly knows which segments of its book of business
are underpriced. The legislative context is of more interest to us:
stringent legislators refrain insurers from using highly explanatory
variables such as sex or age for the purpose of ratemaking. If the pool



facility ruling is silent in that regard, then underpricings can easily
be identified. But this can be done with traditional models.

The interest in highly discriminative models such as Neural Networks
comes from the necessity of filing ratemaking plans in a clear fash-
ion. Often, this filing operation limits an actuary in his desire to
exploit relevant dependencies between explanatory variables. A lot
of insurers still analyze variables independently, in silos, in order to
compute individual parameters for each one of them. In that case,
no dependency can be captured unless a “home-brewed” variable, re-
sulting from the combination of many, is added. But this is a highly
informal procedure which relies on the actuary’s thorough knowledge
of the problem at hand and technical assistance such as visualization
tools. As we have shown in subsection 5.9, Neural Networks are able
to automate this procedure and capture the most relevant of these
dependencies w.r.t ratemaking. This is where comes in the most im-
portant difference between Neural Networks and Generalized Linear
Models: automating the detection of depencies.

The superiority of the Neural Network Model is illustrated in Figure
17, where we have simulated the profits that can be generated by an
insurer with 100M$ book of business operating at a global loss ratio
of 65%. We compare Neural Networks and Generalized Linear Models
as they take turns as ratemaking model and facility model (the model
used to identify underpricings in the ratemaking and to choose the
risks to be ceeded to the facility). We measured profits as such: for
a particular insured risk, let Pr and Pf be the premiums computed
according to the ratemaking and facility models, respectively. Let C
be the level of claims that occured for that risk (usually zero). The
premiums Pr and Pf are pure premiums. Since we have assumed a
loss ratio of 65%, we can compute the gross premium as Pr/65% for
the ratemaking model. Then, when a risk is ceeded, the facility keeps
75% of that premium. So the actual profit of ceeding a particular risk



is

Actual Profit = C − 75% × Pr/65%.

Similarly, the facility premium Pf corresponds to the expected level
of claims, so the projected profit of ceeding a risk is:

Projected Profit = Pf − 75% × Pr/65%.

Accordingly, the facility premium must be 15.4% higher than the cor-
responding ratemaking premium in order to profitably (statistically)
ceed a risk. The top graphic of Figure 17 shows that the Neural Net-
work, used as a facility model can help generate substantial profits
(between 1.25M$ and 1.5M$ for the 100M$ book of business insurer)
when a GLM is used for ratemaking. It profitably identifies under-
pricings on more than 10% of the insurer’s book of business. Also
observe that the difference between the actual and relative profits is
relatively small. Since

Actual Profit - Projected Profit = C − Pf ,

we conclude that the Neural Network is very precise at estimating
the expected claims level for high risks.

According to the graphic, the insurer has been able to ceed

1.25M$ + 75%× 10% × 100M$ = 8.75M$

in claims to the pool. Thus, the ceeded risks had an average loss ratio
of 87.5% up from the global figure of 65%.

On the other hand the second graphic of Figure 17 shows that the
GLM model, when used as the facility model mistakingly identifies
underpricings in the ratemaking Neural Network model that appear
in the projected profit but do not translate in real, actual profit.
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Figure 17. Profit from the PRR facility as a function of the ceeding per-
centage. Both, the projected profit (dashed) and the actual profit (solid) are
shown. These illustrations apply to an insurer with a volume of business of
100M$ and a global loss ratio of 65%. In the top (bottom) figure, the bench-
mark model is the Neural Network model (GLM model) and the model used
to identify the underpricings is the GLM model (Neural Networks model).



8 Conclusion

Neural networks have been known to perform well in tasks where
discrimination is an important aspect of the task at hand and this has
lead to many commercially successful application of these modeling
tools (Keller 1997). We have shown that, when applied properly while
taking into account the particulars of insurance data, that ability
to discriminate is also revealed with insurance data. When applied
to automobile insurance ratemaking, they allow us to identify more
precisely the true risk associated to each insured.

We have argued in favor of the use of statistical learning algorithms
such as Neural networks for automobile insurance ratemaking. We
have described various candidate models and compared them qual-
itatively and numerically. We have found that the selected model
has significantly outperformed all other models, including the cur-
rent premium structure. We believe that their superior performance
is mainly due to their ability to capture high-order dependencies be-
tween variables and to cope with the fat tail distribution of the claims.
Other industries have adopted statistical learning algorithms in the
last decade and we have shown them to be suited for the automobile
insurance industry as well.

Completely changing the rate structure of an insurer can be a
costly enterprise, in particular when it involves significant changes
in the computer systems handling transactions, or the relations with
brokers. We have shown that substantial profit can be obtained from
the use of Neural Networks in the context of risk-sharing pools.
There are still many other applications where better discrimination
of risks can be used profitably, in particular target marketing, fraud
detection and elasticity modelling.

Target Marketing:
When an insurer sends out mail solicitation, only a portion (5%-10%)



of the whole population will be contacted. The goal here is, given
this fixed portion, to reach the maximum number of people who will
respond positively to the solicitation. Another possibiity would be for
the insurer to develop a “customer lifetime value” model that would
predict, given an insured’s profile, what is the expected present
value of the future profits that will be generated by acquiring this
particular insured’s business. Then, by using the customer lifetime
value model in conjunction with a model for the probability of
positive response, an insurer could attempt to maximize the profit of
its solicitation campaign instead of simply maximizing the number
of new insureds.

Fraud Detection
Fraud represents 10%-15% of all claims. Usually only a portion of
the claims will be looked at by an insurer’s investigators. The goal
of fraud detection is to develop a model that will help an insurer
increase the effectiveness of its investigators by referring them cases
that are more likely to be fraudulent. In order to do so, one needs
a database of previous successful and unsuccessful investigations.
Neural Networks have been applied with great success to credit card
fraud detection.

Elasticity Modelling
The greatest benefit from an improved estimation of pure premium
derives by considering its application to ratemaking. The main reason
for these benefits is that a more discriminant predictor will identify
a group of insureds that are significantly undercharged and a (much
larger) group that is significantly overcharged. Identifying the under-
charged will yield increased profits: increasing their premiums will
either directly increase revenues (if they stay) or reduce underwriting
losses (if they switch to another insurer). The advantage of identifying
the insured profiles which correspond to overcharged premiums can
be coupled with a marketing strategy in order attract new customers



and increase market share, a very powerful engine for increased
profitability of the insurer (because of the fixed costs being shared by
a larger number of insureds).

To decide on the appropriate change in premium, one also needs to
consider market effects. An elasticity model can be independently
developped in order to characterize the relation between premium
change and the probability of loosing current customers or acquiring
new customers. A pure premium model such as the one described in
this chapter can then be combined with the elasticity model, as well
as pricing constraints (e.g. to prevent too much rate dislocation in
premiums, or to satisfy some jurisdiction’s regulations), in order to
obtain a function that “optimally” chooses for each insured profile an
appropriate change in gross premium, in order to maximize a financial
criterion.

Clearly, the insurance industry is filled with analytical challenges
where better discrimination between good and bad risks can be used
profitably. We hope this chapter goes a long way in convincing ac-
tuaries to include Neural networks within their set of modeling tools
for ratemaking and other analytical tasks.

A Proof of the equivalence of the
fairness and precision criterions

In this section, we show that, when all subpopulations are considered
to evaluate fairness, the precision criterion and the fairness criterion,
as they were defined in section 3, both lead to the same premium
function.

Theorem 1 The premium function which maximizes precision (in
the sense of equation 6) also maximizes fairness (in the sense of equa-
tion 9, when all subpopulations are considered), and it is the only one
that does maximize it.



Proof:

Let P be a subset of the domain of input profiles. Let q be a premium
predictor function. The bias in P is defined by

bq(P ) =
1
|P |

∑
(xi,ai)∈P

(q(xi)− ai).

Let Fq = −E[
∑

P bq(P )2] be the expected ”fairness” criterion using
premium function q, to be maximized (by choosing q appropriately).

Let p(x) = E[a|x] be the optimal solution to the precision criterion,
i.e. the minimizer of

E[(p(X)−A)2].

Consider a particular but arbitrary population P . Let q(P ) denote
the average premium for that population using the premium function
q(x),

q(P ) =
1
|P |

∑
(xi,ai)∈P

q(xi)

and similarly, define a(P ) the average claim amount for that popula-
tion,

a(P ) =
1
|P |

∑
(xi,ai)∈P

ai

Then the expected squared bias for that population, using the pre-
mium function q, is

E[bq(P )2] = E[(q(P )− a(P ))2]

which is minimized for any q such that q(P ) = E[a(P )].

Note in particular that the optimal ESE solution, p, is such a mini-
mizer of Fq, since

p(P ) =
1
|P |

∑
(xi,ai)∈P

E[ai|xi] = E[
1
|P |

∑
(xi,ai)∈P

ai] = E[a(P )]



We know therefore that q = p is a minimizer of Fq, i.e. ∀q, Fp ≤ Fq.

Are there other minimizers? Consider a function q 6= p, that is a
minimizer for a particular population P1. Since q 6= p, ∃x s.t. q(x) 6=
p(x). Consider the particular singleton population Px = {x}. On
singleton populations, the expected squared bias is the same as the
expected squared error. In fact, there is a component of F which
contains only the squared biases for the singleton populations, and it
is equal to the expected squared error. Therefore on that population
(and any other singleton population for which q 6= p) there is only
one minimizer of the expected squared bias, and it is the conditional
expectation p(x). So E[(q(X)−A)2|X = x] > E[(p(X)−A)2|X = x]
and thereforeE[bq(Px)] > E[bp(Px)]. Since p is a maximizer of fairness
for all populations, it is enough to prove that q is sub-optimal on one
population to prove that the overall fairness of q is less than that of
p, which is the main statement of our theorem:

∀q 6= p, Fq > Fp.



References

Bailey, R. & Simon, L. (1960). “Two studies in automobile insurance
ratemaking”, ASTIN Bulletin 1(4): 192–217.

Bellman, R. (1957). Dynamic Programming, Princeton University
Press, NJ.

Bengio, Y. & Gingras, F. (1996). “Recurrent neural networks for
missing or asynchronous data”, in M. Mozer, D. Touretzky &
M. Perrone (eds), Advances in Neural Information Processing
System, Vol. 8, MIT Press, Cambridge, MA, pp. 395–401.

Bishop, C. (1995). Neural Networks for Pattern Recognition, Oxford
University Press.

Brown, R. (1988). “Minimum bias with generalized linear models”,
Proceedings of the Casualty Actuarial Society.

Campbell, J., Lo, A. W. & MacKinlay, A. (1997). The Econometrics
of Financial Markets, Princeton University Press, Princeton.

Chapados, N. & Bengio, Y. (2003). “Extensions of metric-based model
selection”, Journal of Machine Learning Research to appear.

Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support
Vector Machines.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). “Maximum-
likelihood from incomplete data via the EM algorithm”, Journal
of Royal Statistical Society B 39: 1–38.

Diebold, F. X. & Mariano, R. S. (1995). “Comparing predictive accu-
racy”, Journal of Business and Economic Statistics 13(3): 253–
263.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C. & Garcia, R. (2001).
“A universal approximator of convex functions applied to option



pricing”, Advances in Neural Information Processing Systems,
Vol. 13, Denver, CO.

Geman, S., Bienenstock, E. & Doursat, R. (1992). “Neural networks
and the bias/variance dilemma”, Neural Computation 4(1): 1–58.

Ghahramani, Z. & Jordan, M. I. (1994). “Supervised learning from
incomplete data via an EM approach”, in J. Cowan, G. Tesauro
& J. Alspector (eds), Advances in Neural Information Processing
Systems, Vol. 6, Morgan Kaufmann, San Mateo, CA.

Gingras, F., Bengio, Y. & Nadeau, C. (2000). “On out-of-sample
statistics for time-series”, Computational Finance 2000.

Hampel, F., Ronchetti, E., Rousseeuw, P. & Stahel, W. (1986). Ro-
bust Statistics, The Approach based on Influence Functions, John
Wiley & Sons.

Hastie, T., Tibshirani, R. & Friedman, J. (2001). Data Mining, In-
ference and Prediction, Springer.

Holler, K., Sommer, D. & Trahair, G. (1999). “Something old, some-
thing new in classification ratemaking with a novel use of glms
for credit insurance”, Casualty Actuarial Society Forum pp. 31–
84.

Huber, P. (1982). Robust Statistics, John Wiley & Sons Inc.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J. & Hinton, G. E. (1991).
“Adaptive mixture of local experts”, Neural Computation 3: 79–
87.

Kass, G. (1980). “An exploratory technique for investigating large
quantities of categorical data”, Applied Statistics 29(2): 119–127.

Keller, P. E. (1997). Neural networks: Commercial applications.
http://www.emsl.pnl.gov:2080/proj/neuron/neural/products.



McCullagh, P. & Nelder, J. (1989). Generalized Linear Models, Chap-
man and Hall, London.

Murphy, K., Brockman, M. & Lee, P. (2000). “Using generalized linear
models to build dynamic pricing systems”, Casualty Actuarial
Society Forum pp. 107–139.

Nadeau, C. & Bengio, Y. (2000). “Inference for the generalization
error”, in S. A. Solla, T. K. Leen & K.-R. Müller (eds), Advances
in Neural Information Processing Systems, Vol. 12, MIT Press,
pp. 307–313.

Newey, W. & West, K. (1987). “A simple, positive semi-definite,
heteroscedasticity and autocorrelation consistent covariance ma-
trix”, Econometrica 55: 703–708.

Orr, G. & Müller, K.-R. (1998). Neural Networks: Tricks of the Trade,
Springer.

Rousseeuw, P. & Leroy, A. (1987). Robust Regression and Outlier
Detection, John Wiley & Sons Inc.

Rumelhart, D., Hinton, G. & Williams, R. (1986). “Learning repre-
sentations by back-propagating errors”, Nature 323: 533–536.

Schölkopf, B., Burges, C. & Smola, A. (1998). Advances in kernel
methods: support vector learning, MIT Press.

Takeuchi, I., Bengio, Y. & Kanamori, T. (2002). “Robust regression
with asymmetric heavy-tail noise distributions”, Neural Compu-
tation . to appear.

Vapnik, V. (1998). Statistical Learning Theory, John Wiley, Lecture
Notes in Economics and Mathematical Systems, volume 454.


