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Perceptrons

Perceptrons was the generic name given by the
psychologist Frank Rosenblatt to a family of theor-
etical and experimental artificial neural net models
which he proposed in the period 1957–1962. Rosen-
blatt’s work created much excitement, controversy,
and interest in neural net models for pattern classifica-
tion in that period and led to important models
abstracted from his work in later years. Currently the
names (single-layer) Perceptron and Multilayer Per-
ceptron are used to refer to specific artificial neural
network structures based on Rosenblatt’s perceptrons.
This article references the intellectual context pre-
ceding Rosenblatt’s work and summarizes the basic
operations of a simple version of Rosenblatt’s percep-
trons. It also comments briefly on the developments in
this topic since Rosenblatt.

Rosenblatt’s first (partial) report in January 1957
was titled The Perceptron: A Percei�ing and Recog-
nizing Automaton. A subsequent report, in January
1958, titled The Perceptron: A Theory of Statistical
Separability in Cogniti�e Systems was adapted for
publication (Rosenblatt 1958). A compendium of
research on perceptrons by Rosenblatt and his group
is Principles of Neurodynamics (Rosenblatt 1962).

Rosenblatt’s research was done in the context of:
the neobehaviorism of Hull (1952), the general prin-
ciples of neuromodeling of behavior proposed by
Hebb (1949), the Threshold Logic Unit (TLU) neuron
model of McCulloch and Pitts (1943), proposals for
brain modeling based on neurophysiology (Eccles
1953) and symbolic logic, switching theory and digital
computers (Shannon andMcCarthy 1956), the stimJE-
ulus sampling models of Estes and Burke (1953), the
linear operator probabilistic learning models of Bush
and Mosteller (1955), and statistical classification
procedures (e.g., Rao 1955).

The basic building block of a perceptron is an
element that accepts a number of inputs x

i
, i¯ 1 … N,

and computes a weighted sum of these inputs where,
for each input, its fixed weights β can be only 1 or
®1. The sum is then compared with a threshold θ, and
an output y is produced that is either 0 or 1, depending
on whether or not the sum exceeds the threshold. Thus
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A perceptron is a signal transmission network
consisting of sensory units (S units), association units
(A units), and output or response units (R units). The
‘retina’ of the perceptron is an array of sensory
elements (photocells). An S-unit produces a binary
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Figure 1
The mark 1 perceptron

output depending on whether or not it is excited. A
randomly selected set of retinal cells is connected to
the next level of the network, the A units. As originally
proposed there were extensive connections among the
A units, the R units, and feedback between the R units
and the A units. A simpler version omitting the lateral
and feed-back connections is shown in Fig. 1 This
simplification is the perceptron considered here.

Each A unit behaves like the basic building block
discussed above, where the 1, ®1 weights for the
inputs to each A unit are assigned randomly. The
threshold θ for all A units is the same. The binary
output of the kth A unit (k¯ 1, …, m ) is multiplied by
a weight a

k
, and a sum of all m weighted outputs is

formed in a summation unit that is the same as the
basic building blocks with all weights equal to 1.
Each weight a

k
is allowed to be positive, zero, or

negative, and may change independently of other
weights. The output of this block is again binary,
depending on a threshold, t, that is normally set at 0.
The binary values of the output are used to distinguish
two classes of patterns that may be presented to the
retina of a perceptron. The design of this perceptron to
distinguish between two given sets of patterns involves
adjusting the weights a

k
, k¯ 1, …, m, and setting the

threshold θ.

Rosenblatt (1962) proposed a number of variations
of the following procedure for ‘training’ perceptrons.
The set of ‘training’ patterns, that is, patterns of
known classification, are presented sequentially to the
retina, with the complete set being repeated as often as
needed. The output of the perceptron is monitored to
determine whether a pattern is correctly classified. If
not, the weights are adjusted according to the fol-
lowing ‘error correction’ procedure: If the n-th pattern
was misclassified, the new value a

k
(n1) for the k-th

weight is set to

a
k
(n1)¯ a

k
(n)y

k
(n)*δ(n)

where δ(n) is 1 if the n-th pattern is from class 1 and
δ(n) is ®1 if the n-th pattern is from class 2. No
adjustment to the weight is made if a pattern is
classified correctly.

Rosenblatt conjectured that, when the pattern
classes are ‘linearly separable’ the error correction
‘learning’ procedure will converge to a set of weights
defining the separating hyperplane that correctly
classifies all the patterns. The shortest proof of this
perceptron convergence theorem was given by A. J.
Novikoff. Subsequent contributions related the simple
perceptron to statistical linear discriminant functions
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and related the error-correction learning algorithm to
gradient-descent procedures and to stochastic ap-
proximation methods that originally were developed
for finding the zeros and extremes of unknown
regression functions (e.g., Kanal 1962).

The simple perceptron described is a series-coupled
perceptron with feed-forward connections only from S
units to A units and A units to the single R unit. The
weights a

k
, the only adaptive elements in this network,

are evaluated directly in terms of the output error.
Minsky and Papert (1969) further reduced the

simple perceptron to a structure with sampled connec-
tions from the ‘retina’ directly to the adjustable
weights. This reduced structure is referred to as a
single-layer perceptron. There is no layer of ‘hidden’
elements, that is, additional adjustable elements for
which the adjustment is only indirectly related to the
output error. A feed-forward perceptron with one or
more layers of hidden elements is termed a multilayer
perceptron. Rosenblatt investigated cross-coupled per-
ceptrons in which connections join units of the same
type, and also investigated multilayer back-coupled
perceptrons, which have feedback paths from units
located near the output. For series-coupled percep-
trons with multiple R units, Rosenblatt proposed a
‘back-propagating error correction’ procedure that
used error from the R units to propagate correction
back to the sensory end. But neither he nor others at
that time were able to demonstrate a convergent
procedure for training multilayer perceptrons.

Minsky and Papert (1969) proved various theorems
about single-layer perceptrons, some of which indi-
cated their limited pattern-classification and function
approximating capabilities. For example, they proved
that the single-layer perceptron could not implement
the Exclusive OR logical function and several other
such predicates. Later, many writing on Artificial
Neural Networks (ANN) blamed this book for greatly
dampening interest and leading to a demise of funding
in the USA for research on ANN’s. The section on
‘Alternate Realities’ in Kanal (1992) details why the
blame is misplaced. As noted there, by 1962 (see, e.g.,
Kanal 1962) many researchers had moved on from
perceptron type learning machines to statistical and
syntactic procedures for pattern recognition.

Minsky and Papert’s results did not apply to
multilayer perceptrons. Research on ANN’s, bio-
logically motivated automata, and adaptive systems
continued in the 1970s in Europe, Japan, the Soviet
Union, and the USA, but without the frenzied ex-
citement of previous years, which also came back
starting in the early 1980s. In a 1974 Harvard
University dissertation Paul Werbos presented a gen-
eral convergent procedure for adaptively adjusting the
weights of a differentiable nonlinear system so as to
learn a functional relationship between the inputs and
outputs of the system. The procedure calculates the
derivatives of some function of the outputs, with
respect to all inputs and weights or parameters of the

system, working backwards from outputs to inputs.
However, this work, published later later in a book by
Werbos (1994), went essentially unnoticed, until a few
years after Rumelhart et al. (1986), independently
popularized a special case of the general method. This
algorithm, known as error backpropagation or just
backpropagation, adaptively adjusts the weights to
perform correct pattern classification using gradient
descent and training samples. It propagates derivatives
from the output layer through each intermediate layer
of the multilayer perceptron network. The resurgence
of work on multilayer perceptrons and their appli-
cations in the decades of the 1980s and 1990s is
directly attributable to this convergent backpropa-
gation algorithm.

It has been shown that multilayer feedforward
networks with a sufficient number of intermediate or
‘hidden’ units between the input and output units have
a ‘universal approximation’ property: they can ap-
proximate ‘virtually any function of interest to any
desired degree of accuracy’ (Hornik et al. 1989).
Several modifications of the basic perceptron learning
procedure that make perceptron learning well behaved
with inseparable training data, even when the training
data are noisy and not error free, have been proposed
in recent years and various ANN learning procedures
have been shown to related to known statistical
techniques. The reference list includes some recent
books with tutorial material covering Perceptrons and
related ANN’s.

See also: Artificial Neural Networks: Neurocomp-
utation; Connectionist Models of Concept Learning;
Connectionist Models of Development; Connectionist
Models of Language Processing; Neural Networks
and Related Statistical Latent Variable Models;
Neural Networks: Biological Models and Applica-
tions; Perception: History of the Concept
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Perceptual Constancy: Direct versus

Constructivist Theories

Fortunately, our perception of the environment sur-
rounding us is usually quite veridical, accurate, and
stable. While laypersons take this ability of ours for
granted, students of perception have pointed out that
it is actually quite a feat, since the stimulation reaching
our senses changes continuously. If we take the visual
perception of size as an example, we find that the size
of the retinal image of, say, another person changes
with that person’s distance from us. In spite of these
changes we perceive that person as being of constant
size and not shrinking or expanding with changes in
distance. This ‘feat’ of perception has aroused a great
deal of interest and theories have been proposed to
account for it. Prominent among these are two
contrasting views of how it is achieved. One view, the
‘constructivist,’ maintains that the perceptual system
is ‘intelligent.’ In order to attain veridical perception it
utilizes high-level mental processes to correct for the
changes in stimulation reaching our senses. In con-
trast, the ‘direct’ approach claims that there is no need
to posit such mental processes to explain veridical

perception, maintaining that the sensory information
reaching our senses suffices to explain perceptual
veridicality and that what is needed is a much deeper
analysis of that sensory information.

1. Stability and Constancy in Perception

The ability of our perceptual system to overcome the
effects of changes in stimulation and maintain a
veridical and stable percept is called perceptual con-
stancy (Epstein 1977, Walsh and Kulikowski 1998). In
discussing the constancies it is common to make a
distinction between the distal stimulus and proximal
stimulus. The distal stimulus is the actual physical
stimulus, the physically objective dimensions of the
viewed object. The proximal stimulus, in the case of
vision, is the very image that falls on the retina. It
changes with changes in position or lighting of the
physical stimulus. Constancy can be defined as the
ability to correctly perceive the distal stimulus; that is,
the stable properties of objects and scenes, in spite of
changes in the proximal stimulus.

One example of constancy is shape constancy, which
refers to the ability of the visual system to ascertain the
true shape of an object even when it is not viewed face
on but slanted with respect to the observer. In an
example of shape constancy the distal stimulus might
be a door half open, while the proximal stimulus will
be the trapezoid shape it projects on the retinas. Shape
constancy in this case would be the perception of the
distal rectangular shape of the door in spite of the fact
that the proximal shape is far from rectangular.
Another example of constancy is lightness constancy.
Lightness refers to the perceived reflectance of an
object; high reflectance is perceived as white and very
low reflectance as black, with intermediate reflectances
as various shades of gray. We are capable of perceiving
the distal lightness of a surface in spite of the fact that
the proximal amount of light reaching our eyes
changes with changes in the amount of light illumi-
nating that surface. For example, if we hold a piece of
chalk in one hand and a piece of charcoal in the other,
the chalk will be perceived as white and the charcoal as
black. This will be true if we observe the two in a dimly
lit room or in bright sunshine, in spite of the fact that
the amount of light reaching the eyes from the charcoal
in the sunshine might be greater than that from the
chalk in the dim room lighting.

The perceptual constancy that has received the
greatest amount of research attention is size constancy
(Ross and Plug 1998). If the distance is not very great
we usually perceive the distal size of objects in spite of
the changes in their proximal size as their distance
from us changes. The two theoretical approaches
mentioned above, the constructivist and the direct,
deal with size constancy differently. According to the
constructivists, size constancy is achieved through
some process whereby the perceptual system per-
ceives the object’s distance and then takes the distance
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