PLearn 0.1
|
#include <plearn/base/general.h>
Go to the source code of this file.
Classes | |
class | PLearn::PLGaussQuantileInitializer |
Namespaces | |
namespace | PLearn |
< for swap | |
Defines | |
#define | GAUSSQUANTILETABLESIZE 10000 |
Functions | |
real | PLearn::pl_gammln (real z) |
function gamma returns log(Gamma(z)), where ![]() | |
real | PLearn::pl_dgammlndz (real z) |
d(pl_gammln(z))/dz derivate of pl_gammln(z) = digamma function = d(log(gamma(z))/dz | |
real | PLearn::pl_gser (real a, real x) |
returns the series value of the incomplete gamma function | |
real | PLearn::pl_gcf (real a, real x) |
returns the continued fraction representation of the incomplete gamma function | |
real | PLearn::pl_gammq (real a, real x) |
returns the incomplete gamma function Q(a,x) = 1 - P(a,x) it either uses the series or the continued fraction formula | |
real | PLearn::pl_erf (real x) |
The error function. | |
real | PLearn::gauss_01_cum (real x) |
For X ~ Normal(0,1), cumulative probability function P(X<x) | |
real | PLearn::normal_cdf (real x) |
real | PLearn::gauss_cum (real x, real mu, real sigma) |
real | PLearn::gauss_01_quantile (real q) |
real | PLearn::gauss_01_density (real x) |
for X ~ Normal(0,1), return density of X at x | |
real | PLearn::gauss_01_log_density (real x) |
real | PLearn::gauss_log_density_var (real x, real mu, real var) |
real | PLearn::gauss_log_density_stddev (real x, real mu, real sigma) |
real | PLearn::gauss_density_var (real x, real mu, real var) |
real | PLearn::gauss_density_stddev (real x, real mu, real sigma) |
real | PLearn::p_value (real mu, real vn) |
real | PLearn::fast_gauss_01_quantile (real x) |
Use precomputed value in a table of size GAUSSQUANTILETABLESIZE. |
Definition in file pl_erf.h.
#define GAUSSQUANTILETABLESIZE 10000 |
Definition at line 99 of file pl_erf.h.
Referenced by PLearn::fast_gauss_01_quantile(), and PLearn::PLGaussQuantileInitializer::PLGaussQuantileInitializer().