PLearn 0.1
|
#include <KernelProjection.h>
Public Member Functions | |
KernelProjection () | |
Default constructor. | |
virtual Vec | getEigenvalues () |
Return the eigenvalues of this learner. | |
virtual void | build () |
Simply calls inherited::build() then build_(). | |
virtual void | makeDeepCopyFromShallowCopy (CopiesMap &copies) |
Transforms a shallow copy into a deep copy. | |
virtual string | classname () const |
virtual OptionList & | getOptionList () const |
virtual OptionMap & | getOptionMap () const |
virtual RemoteMethodMap & | getRemoteMethodMap () const |
virtual KernelProjection * | deepCopy (CopiesMap &copies) const |
virtual int | outputsize () const |
Returns the size of this learner's output, (which typically may depend on its inputsize(), targetsize() and set options). | |
virtual void | forget () |
(Re-)initializes the PLearner in its fresh state (that state may depend on the 'seed' option) And sets 'stage' back to 0 (this is the stage of a fresh learner!). | |
virtual void | train () |
The role of the train method is to bring the learner up to stage==nstages, updating the train_stats collector with training costs measured on-line in the process. | |
virtual void | computeOutput (const Vec &input, Vec &output) const |
Computes the output from the input. | |
virtual void | computeCostsFromOutputs (const Vec &input, const Vec &output, const Vec &target, Vec &costs) const |
Computes the costs from already computed output. | |
virtual TVec< string > | getTestCostNames () const |
Returns the names of the costs computed by computeCostsFromOutpus (and thus the test method). | |
virtual TVec< string > | getTrainCostNames () const |
Returns the names of the objective costs that the train method computes and for which it updates the VecStatsCollector train_stats. | |
virtual void | setTrainingSet (VMat training_set, bool call_forget=true) |
Overridden to forward to the kernel. | |
Static Public Member Functions | |
static string | _classname_ () |
static OptionList & | _getOptionList_ () |
static RemoteMethodMap & | _getRemoteMethodMap_ () |
static Object * | _new_instance_for_typemap_ () |
static bool | _isa_ (const Object *o) |
static void | _static_initialize_ () |
static const PPath & | declaringFile () |
Public Attributes | |
bool | compute_costs |
bool | free_extra_components |
int | ignore_n_first |
Ker | kernel |
real | min_eigenvalue |
int | n_comp |
int | n_comp_for_cost |
string | normalize |
Vec | eigenvalues |
Mat | eigenvectors |
Static Public Attributes | |
static StaticInitializer | _static_initializer_ |
Static Protected Member Functions | |
static void | declareOptions (OptionList &ol) |
Declares this class' options. | |
Protected Attributes | |
int | n_comp_kept |
int | n_examples |
Learnt number of examples obtained from train_set when doing setTrainingSet. | |
bool | first_output |
A boolean indicating we haven't performed any output yet. | |
Vec | last_input |
The last input given when computing costs. | |
Vec | last_output |
The last output computed when computing costs. | |
Private Types | |
typedef PLearner | inherited |
Private Member Functions | |
void | build_ () |
This does the actual building. | |
Private Attributes | |
Vec | k_x_xi |
Global storage to save memory allocations. | |
Mat | result |
Mat | used_eigenvectors |
Definition at line 53 of file KernelProjection.h.
typedef PLearner PLearn::KernelProjection::inherited [private] |
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 58 of file KernelProjection.h.
PLearn::KernelProjection::KernelProjection | ( | ) |
Default constructor.
Definition at line 53 of file KernelProjection.cc.
: n_comp_kept(-1), n_examples(-1), first_output(true), compute_costs(false), free_extra_components(true), ignore_n_first(0), min_eigenvalue(-REAL_MAX), n_comp(1), n_comp_for_cost(-1), normalize("none") { }
string PLearn::KernelProjection::_classname_ | ( | ) | [static] |
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
OptionList & PLearn::KernelProjection::_getOptionList_ | ( | ) | [static] |
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
RemoteMethodMap & PLearn::KernelProjection::_getRemoteMethodMap_ | ( | ) | [static] |
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
Object * PLearn::KernelProjection::_new_instance_for_typemap_ | ( | ) | [static] |
Reimplemented from PLearn::Object.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
StaticInitializer KernelProjection::_static_initializer_ & PLearn::KernelProjection::_static_initialize_ | ( | ) | [static] |
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
void PLearn::KernelProjection::build | ( | ) | [virtual] |
Simply calls inherited::build() then build_().
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 137 of file KernelProjection.cc.
References PLearn::PLearner::build(), and build_().
Referenced by PLearn::SpectralClustering::build(), PLearn::LLE::build(), and PLearn::KernelPCA::build().
{ inherited::build(); build_(); }
void PLearn::KernelProjection::build_ | ( | ) | [private] |
This does the actual building.
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 146 of file KernelProjection.cc.
References first_output, last_input, n_comp, n_comp_kept, and PLearn::TVec< T >::resize().
Referenced by build().
{ if (n_comp_kept == -1) { n_comp_kept = n_comp; } first_output = true; // Safer. last_input.resize(0); }
string PLearn::KernelProjection::classname | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
void PLearn::KernelProjection::computeCostsFromOutputs | ( | const Vec & | input, |
const Vec & | output, | ||
const Vec & | target, | ||
Vec & | costs | ||
) | const [virtual] |
Computes the costs from already computed output.
Implements PLearn::PLearner.
Definition at line 158 of file KernelProjection.cc.
References PLearn::abs(), compute_costs, PLearn::diff(), PLearn::dot(), PLearn::endl(), kernel, last_input, last_output, PLearn::TVec< T >::length(), MISSING_VALUE, n_comp_for_cost, PLearn::perr, PLearn::pownorm(), PLearn::TVec< T >::resize(), and PLearn::TVec< T >::subVec().
{ if (!compute_costs) return; // fs_squared_norm_reconstruction_error (see getTestCostNames). real k_x_x = kernel->evaluate(input, input); real fs_norm; if (n_comp_for_cost > 0) { // Only take the 'n_comp_for_cost' first components. fs_norm = pownorm(output.subVec(0, n_comp_for_cost)); } else { fs_norm = pownorm(output); } costs.resize(2); if (last_input.length() == 0) { last_input.resize(input.length()); last_output.resize(output.length()); last_input << input; last_output << output; costs[1] = MISSING_VALUE; } else { real k_x_y = kernel->evaluate(input, last_input); real fs_dotp; if (n_comp_for_cost > 0) { // Only take the 'n_comp_for_cost' first components. fs_dotp = dot(output.subVec(0, n_comp_for_cost), last_output.subVec(0, n_comp_for_cost)); } else { fs_dotp = dot(output, last_output); } last_input.resize(0); real diff = k_x_y - fs_dotp; costs[1] = diff * diff; } costs[0] = abs(k_x_x - fs_norm); if (k_x_x - fs_norm < -1e-5) { // TODO Remove this later after making sure it didn't happen. perr << "Negative error: " << k_x_x - fs_norm << " (k_x_x = " << k_x_x << ", fs_norm = " << fs_norm << ")" << endl; } }
Computes the output from the input.
Reimplemented from PLearn::PLearner.
Definition at line 202 of file KernelProjection.cc.
References eigenvalues, eigenvectors, PLearn::fast_exact_is_equal(), first_output, i, k_x_xi, kernel, n_comp_kept, n_examples, PLearn::norm(), normalize, outputsize(), PLASSERT, PLERROR, PLearn::TMat< T >::resize(), PLearn::TVec< T >::resize(), result, PLearn::rowSum(), PLearn::sqrt(), PLearn::TMat< T >::subMatRows(), and used_eigenvectors.
{ PLASSERT( outputsize() > 0 ); static real* result_ptr; if (first_output) { // Initialize k_x_xi, used_eigenvectors and result correctly. k_x_xi.resize(n_examples); used_eigenvectors = eigenvectors.subMatRows(0, n_comp_kept); result.resize(n_comp_kept,1); first_output = false; } // Compute the K(x,x_i). kernel->evaluate_all_i_x(input, k_x_xi); // Compute the output. rowSum(used_eigenvectors * k_x_xi, result); output.resize(n_comp_kept); result_ptr = result[0]; if (normalize == "none") { real norm_coeff = sqrt(real(n_examples)); for (int i = 0; i < n_comp_kept; i++) { output[i] = *(result_ptr++) / eigenvalues[i] * norm_coeff; } } else if (normalize == "unit_var") { for (int i = 0; i < n_comp_kept; i++) { output[i] = *(result_ptr++) / sqrt(eigenvalues[i]); } } else if (normalize == "unit_eigen") { output << result; output *= sqrt(real(n_examples)); } else if (normalize == "unit_coord") { output << result; real norm = PLearn::norm(output,2); if (!fast_exact_is_equal(norm, 0)) output /= norm; } else { PLERROR("In KernelProjection::computeOutput - Wrong value for 'normalize')"); } }
void PLearn::KernelProjection::declareOptions | ( | OptionList & | ol | ) | [static, protected] |
Declares this class' options.
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 76 of file KernelProjection.cc.
References PLearn::OptionBase::buildoption, compute_costs, PLearn::declareOption(), PLearn::PLearner::declareOptions(), eigenvalues, eigenvectors, free_extra_components, ignore_n_first, kernel, PLearn::OptionBase::learntoption, min_eigenvalue, n_comp, n_comp_for_cost, n_comp_kept, n_examples, normalize, PLearn::OptionBase::nosave, PLearn::redeclareOption(), and PLearn::PLearner::seed_.
Referenced by PLearn::SpectralClustering::declareOptions(), PLearn::LLE::declareOptions(), and PLearn::KernelPCA::declareOptions().
{ // Build options. declareOption(ol, "kernel", &KernelProjection::kernel, OptionBase::buildoption, "The kernel used to compute the Gram matrix."); declareOption(ol, "n_comp", &KernelProjection::n_comp, OptionBase::buildoption, "Number of components computed."); declareOption(ol, "normalize", &KernelProjection::normalize, OptionBase::buildoption, "The kind of normalization performed when computing the output\n" " - 'none' : classical projection on the eigenvectors\n" " - 'unit_var' : normalization to get unit variance on each coordinate\n" " - 'unit_eigen': ignore the eigenvalues and do as if they were all 1\n" " - 'unit_coord': coordinates are normalized so that they have norm 1\n"); declareOption(ol, "min_eigenvalue", &KernelProjection::min_eigenvalue, OptionBase::buildoption, "Any component associated with an eigenvalue <= min_eigenvalue will be discarded."); declareOption(ol, "compute_costs", &KernelProjection::compute_costs, OptionBase::buildoption, "Whether we should compute costs or not."); declareOption(ol, "n_comp_for_cost", &KernelProjection::n_comp_for_cost, OptionBase::buildoption, "The number of components considered when computing a cost (default = -1 means n_comp)."); declareOption(ol, "free_extra_components", &KernelProjection::free_extra_components, OptionBase::buildoption, "If set to 1, components computed but not kept won't be available after training."); declareOption(ol, "ignore_n_first", &KernelProjection::ignore_n_first, OptionBase::buildoption, "Will ignore the first 'ignore_n_first' eigenvectors, if this option is > 0."); // Learnt options. declareOption(ol, "eigenvalues", &KernelProjection::eigenvalues, OptionBase::learntoption, "The eigenvalues of the Gram matrix."); declareOption(ol, "eigenvectors", &KernelProjection::eigenvectors, OptionBase::learntoption, "The eigenvectors of the Gram matrix."); declareOption(ol, "n_comp_kept", &KernelProjection::n_comp_kept, OptionBase::learntoption, "The actual number of components actually kept in the output (we may discard\n" "some because of low eigenvalues)."); declareOption(ol, "n_examples", &KernelProjection::n_examples, OptionBase::learntoption, "The number of points in the training set."); // Now call the parent class' declareOptions inherited::declareOptions(ol); // Hide unused options. redeclareOption(ol, "seed", &KernelProjection::seed_, OptionBase::nosave, "No seed used here."); }
static const PPath& PLearn::KernelProjection::declaringFile | ( | ) | [inline, static] |
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 141 of file KernelProjection.h.
KernelProjection * PLearn::KernelProjection::deepCopy | ( | CopiesMap & | copies | ) | const [virtual] |
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
void PLearn::KernelProjection::forget | ( | ) | [virtual] |
(Re-)initializes the PLearner in its fresh state (that state may depend on the 'seed' option) And sets 'stage' back to 0 (this is the stage of a fresh learner!).
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 244 of file KernelProjection.cc.
References eigenvalues, eigenvectors, PLearn::endl(), first_output, last_input, n_comp, n_comp_kept, n_examples, PLearn::pout, PLearn::TVec< T >::resize(), PLearn::PLearner::stage, and PLearn::PLearner::verbosity.
Referenced by PLearn::SpectralClustering::forget(), PLearn::LLE::forget(), and PLearn::KernelPCA::forget().
{ stage = 0; if (verbosity > 1) pout << "forget: n_comp_kept = " << n_comp_kept << endl; n_comp_kept = n_comp; if (verbosity > 1) pout << "forget: n_comp_kept = " << n_comp_kept << endl; n_examples = 0; first_output = true; last_input.resize(0); // Free memory. eigenvectors = Mat(); eigenvalues = Vec(); }
virtual Vec PLearn::KernelProjection::getEigenvalues | ( | ) | [inline, virtual] |
Return the eigenvalues of this learner.
Definition at line 128 of file KernelProjection.h.
{return eigenvalues;}
OptionList & PLearn::KernelProjection::getOptionList | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
OptionMap & PLearn::KernelProjection::getOptionMap | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
RemoteMethodMap & PLearn::KernelProjection::getRemoteMethodMap | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 71 of file KernelProjection.cc.
TVec< string > PLearn::KernelProjection::getTestCostNames | ( | ) | const [virtual] |
Returns the names of the costs computed by computeCostsFromOutpus (and thus the test method).
Implements PLearn::PLearner.
Definition at line 263 of file KernelProjection.cc.
References PLearn::TVec< T >::append(), and compute_costs.
Referenced by getTrainCostNames().
{ TVec<string> t; if (!compute_costs) return t; // Feature space squared norm reconstruction error: // | K(x,x) - ||output||^2 | t.append("fs_squared_norm_reconstruction_error"); // Feature space dot product reconstruction squared error: // ( K(x,y) - <output_x,output_y> )^2 t.append("fs_dotp_reconstruction_squared_error"); return t; }
TVec< string > PLearn::KernelProjection::getTrainCostNames | ( | ) | const [virtual] |
Returns the names of the objective costs that the train method computes and for which it updates the VecStatsCollector train_stats.
Implements PLearn::PLearner.
Definition at line 280 of file KernelProjection.cc.
References getTestCostNames().
{ return getTestCostNames(); }
void PLearn::KernelProjection::makeDeepCopyFromShallowCopy | ( | CopiesMap & | copies | ) | [virtual] |
Transforms a shallow copy into a deep copy.
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 288 of file KernelProjection.cc.
References PLearn::deepCopyField(), eigenvalues, eigenvectors, k_x_xi, kernel, last_input, last_output, PLearn::PLearner::makeDeepCopyFromShallowCopy(), result, and used_eigenvectors.
Referenced by PLearn::SpectralClustering::makeDeepCopyFromShallowCopy(), PLearn::LLE::makeDeepCopyFromShallowCopy(), and PLearn::KernelPCA::makeDeepCopyFromShallowCopy().
{ inherited::makeDeepCopyFromShallowCopy(copies); deepCopyField(k_x_xi, copies); deepCopyField(result, copies); deepCopyField(used_eigenvectors, copies); deepCopyField(last_input, copies); deepCopyField(last_output, copies); deepCopyField(kernel, copies); deepCopyField(eigenvalues, copies); deepCopyField(eigenvectors, copies); }
int PLearn::KernelProjection::outputsize | ( | ) | const [virtual] |
Returns the size of this learner's output, (which typically may depend on its inputsize(), targetsize() and set options).
Implements PLearn::PLearner.
Definition at line 305 of file KernelProjection.cc.
References n_comp_kept.
Referenced by computeOutput().
{ return n_comp_kept; }
void PLearn::KernelProjection::setTrainingSet | ( | VMat | training_set, |
bool | call_forget = true |
||
) | [virtual] |
Overridden to forward to the kernel.
Reimplemented from PLearn::PLearner.
Definition at line 313 of file KernelProjection.cc.
References kernel, PLearn::VMat::length(), n_examples, PLERROR, and PLearn::PLearner::setTrainingSet().
Referenced by PLearn::IsomapTangentLearner::build_(), and PLearn::KPCATangentLearner::train().
{ inherited::setTrainingSet(training_set, call_forget); n_examples = training_set->length(); // Save the dataset in the kernel, because it may be needed after we reload // the learner. if (kernel) { kernel->specify_dataset = training_set; kernel->build(); } else PLERROR("KernelProjection::setTrainingSet: You cannot use setTrainingSet without a kernel set"); }
void PLearn::KernelProjection::train | ( | ) | [virtual] |
The role of the train method is to bring the learner up to stage==nstages, updating the train_stats collector with training costs measured on-line in the process.
Implements PLearn::PLearner.
Definition at line 330 of file KernelProjection.cc.
References eigenvalues, PLearn::eigenVecOfSymmMat(), eigenvectors, first_output, PLearn::flush(), free_extra_components, ignore_n_first, kernel, PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), min_eigenvalue, n_comp, n_comp_kept, n_examples, PLWARNING, PLearn::pout, PLearn::PLearner::report_progress, PLearn::TMat< T >::resize(), PLearn::TVec< T >::resize(), PLearn::PLearner::stage, PLearn::TMat< T >::subMatRows(), PLearn::TVec< T >::subVec(), PLearn::PLearner::verbosity, and PLearn::TMat< T >::width().
Referenced by PLearn::KPCATangentLearner::train(), and PLearn::IsomapTangentLearner::train().
{ if (stage == 1) { PLWARNING("In KernelProjection::train - Learner has already been trained"); return; } Mat gram(n_examples,n_examples); // (1) Compute the Gram matrix. if (report_progress) { kernel->report_progress = true; } clock_t time_for_gram = clock(); kernel->computeGramMatrix(gram); time_for_gram = clock() - time_for_gram; if (verbosity >= 3) { pout << flush; } // (2) Compute its eigenvectors and eigenvalues. eigenVecOfSymmMat(gram, n_comp + ignore_n_first, eigenvalues, eigenvectors); if (ignore_n_first > 0) { eigenvalues = eigenvalues.subVec(ignore_n_first, eigenvalues.length() - ignore_n_first); eigenvectors = eigenvectors.subMatRows(ignore_n_first, eigenvectors.length() - ignore_n_first); } n_comp_kept = eigenvalues.length(); // Could be different of n_comp. // (3) Discard low eigenvalues. int p = 0; while (p < n_comp_kept && eigenvalues[p] > min_eigenvalue) p++; n_comp_kept = p; // (4) Optionally remove the discarded components. if (free_extra_components) { eigenvalues.resize(n_comp_kept); eigenvectors.resize(n_comp_kept, eigenvectors.width()); } // All done! first_output = true; stage = 1; }
Reimplemented from PLearn::PLearner.
Reimplemented in PLearn::Isomap, PLearn::KernelPCA, PLearn::LLE, and PLearn::SpectralClustering.
Definition at line 141 of file KernelProjection.h.
Definition at line 88 of file KernelProjection.h.
Referenced by computeCostsFromOutputs(), declareOptions(), and getTestCostNames().
Definition at line 101 of file KernelProjection.h.
Referenced by computeOutput(), declareOptions(), forget(), makeDeepCopyFromShallowCopy(), and train().
Definition at line 102 of file KernelProjection.h.
Referenced by computeOutput(), PLearn::IsomapTangentLearner::computeOutput(), PLearn::KPCATangentLearner::computeOutput(), declareOptions(), forget(), makeDeepCopyFromShallowCopy(), and train().
bool PLearn::KernelProjection::first_output [mutable, protected] |
A boolean indicating we haven't performed any output yet.
Definition at line 77 of file KernelProjection.h.
Referenced by build_(), computeOutput(), forget(), and train().
Definition at line 89 of file KernelProjection.h.
Referenced by declareOptions(), and train().
Definition at line 90 of file KernelProjection.h.
Referenced by PLearn::LLE::declareOptions(), PLearn::SpectralClustering::declareOptions(), PLearn::KernelPCA::declareOptions(), declareOptions(), PLearn::LLE::LLE(), and train().
Vec PLearn::KernelProjection::k_x_xi [mutable, private] |
Global storage to save memory allocations.
Definition at line 61 of file KernelProjection.h.
Referenced by computeOutput(), and makeDeepCopyFromShallowCopy().
Definition at line 91 of file KernelProjection.h.
Referenced by PLearn::SpectralClustering::build_(), PLearn::LLE::build_(), PLearn::KernelPCA::build_(), computeCostsFromOutputs(), PLearn::KPCATangentLearner::computeOutput(), computeOutput(), PLearn::IsomapTangentLearner::computeOutput(), PLearn::SpectralClustering::declareOptions(), PLearn::LLE::declareOptions(), declareOptions(), PLearn::KernelPCA::declareOptions(), makeDeepCopyFromShallowCopy(), setTrainingSet(), and train().
Vec PLearn::KernelProjection::last_input [mutable, protected] |
The last input given when computing costs.
Definition at line 79 of file KernelProjection.h.
Referenced by build_(), computeCostsFromOutputs(), forget(), and makeDeepCopyFromShallowCopy().
Vec PLearn::KernelProjection::last_output [mutable, protected] |
The last output computed when computing costs.
Definition at line 80 of file KernelProjection.h.
Referenced by computeCostsFromOutputs(), and makeDeepCopyFromShallowCopy().
Definition at line 92 of file KernelProjection.h.
Referenced by declareOptions(), PLearn::Isomap::Isomap(), PLearn::KernelPCA::KernelPCA(), PLearn::SpectralClustering::SpectralClustering(), and train().
Definition at line 93 of file KernelProjection.h.
Referenced by build_(), PLearn::IsomapTangentLearner::build_(), declareOptions(), forget(), PLearn::KPCATangentLearner::train(), and train().
Definition at line 94 of file KernelProjection.h.
Referenced by computeCostsFromOutputs(), and declareOptions().
int PLearn::KernelProjection::n_comp_kept [protected] |
Definition at line 71 of file KernelProjection.h.
Referenced by build_(), computeOutput(), declareOptions(), forget(), outputsize(), and train().
int PLearn::KernelProjection::n_examples [protected] |
Learnt number of examples obtained from train_set when doing setTrainingSet.
Reimplemented from PLearn::PLearner.
Definition at line 72 of file KernelProjection.h.
Referenced by computeOutput(), declareOptions(), forget(), setTrainingSet(), and train().
Definition at line 95 of file KernelProjection.h.
Referenced by PLearn::LLE::build_(), computeOutput(), PLearn::LLE::declareOptions(), declareOptions(), and PLearn::LLE::LLE().
Mat PLearn::KernelProjection::result [mutable, private] |
Definition at line 62 of file KernelProjection.h.
Referenced by computeOutput(), and makeDeepCopyFromShallowCopy().
Mat PLearn::KernelProjection::used_eigenvectors [mutable, private] |
Definition at line 63 of file KernelProjection.h.
Referenced by computeOutput(), and makeDeepCopyFromShallowCopy().