PLearn 0.1
Classes | Namespaces | Functions
NllSemisphericalGaussianVariable.h File Reference
#include <plearn/var/NaryVariable.h>
Include dependency graph for NllSemisphericalGaussianVariable.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  PLearn::NllSemisphericalGaussianVariable
 This class implements the negative log-likelihood cost of a Markov chain that uses semispherical gaussian transition probabilities. More...
class  PLearn::DiffTemplate< ObjectType, NllSemisphericalGaussianVariable >
class  PLearn::TypeTraits< NllSemisphericalGaussianVariable >

Namespaces

namespace  PLearn
 

< for swap


Functions

Object * PLearn::toObjectPtr (const NllSemisphericalGaussianVariable &o)
PStream & PLearn::operator>> (PStream &in, NllSemisphericalGaussianVariable &o)
PStream & PLearn::operator>> (PStream &in, NllSemisphericalGaussianVariable *&o)
PStream & PLearn::operator<< (PStream &out, const NllSemisphericalGaussianVariable &o)
PStream & PLearn::operator>> (PStream &in, PP< NllSemisphericalGaussianVariable > &o)
template<class ObjectType >
int PLearn::diff (const string &refer, const string &other, const Option< ObjectType, NllSemisphericalGaussianVariable > *opt, PLearnDiff *diffs)
Var PLearn::nll_semispherical_gaussian (Var tangent_plane_var, Var mu_var, Var sm_var, Var sn_var, Var neighbors_dist_var, Var p_target_var, Var p_neighbors_var, Var noise, Var mu_noisy, bool use_noise=false, real epsilon=1e-6, real min_p_x=0, int mu_n_neighbors=-1)
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines