|
PLearn 0.1
|
#include <ConditionalDistribution.h>


Public Types | |
| typedef Distribution | inherited |
Public Member Functions | |
| ConditionalDistribution () | |
| virtual void | makeDeepCopyFromShallowCopy (CopiesMap &copies) |
| Transforms a shallow copy into a deep copy. | |
| virtual string | classname () const |
| virtual OptionList & | getOptionList () const |
| virtual OptionMap & | getOptionMap () const |
| virtual RemoteMethodMap & | getRemoteMethodMap () const |
| virtual ConditionalDistribution * | deepCopy (CopiesMap &copies) const |
| virtual void | setInput (const Vec &input) |
| Set the input part before using the inherited methods. | |
| virtual void | use (const Vec &input, Vec &output) |
| computes the ouptu of a trained model | |
Static Public Member Functions | |
| static string | _classname_ () |
| Declares name and deepCopy methods. | |
| static OptionList & | _getOptionList_ () |
| static RemoteMethodMap & | _getRemoteMethodMap_ () |
| static Object * | _new_instance_for_typemap_ () |
| static bool | _isa_ (const Object *o) |
| static void | _static_initialize_ () |
| static const PPath & | declaringFile () |
Public Attributes | |
| int | input_part_size |
Static Public Attributes | |
| static StaticInitializer | _static_initializer_ |
Definition at line 49 of file ConditionalDistribution.h.
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 61 of file ConditionalDistribution.h.
| PLearn::ConditionalDistribution::ConditionalDistribution | ( | ) |
Definition at line 44 of file ConditionalDistribution.cc.
:inherited() { }
| string PLearn::ConditionalDistribution::_classname_ | ( | ) | [static] |
Declares name and deepCopy methods.
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| OptionList & PLearn::ConditionalDistribution::_getOptionList_ | ( | ) | [static] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| RemoteMethodMap & PLearn::ConditionalDistribution::_getRemoteMethodMap_ | ( | ) | [static] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| Object * PLearn::ConditionalDistribution::_new_instance_for_typemap_ | ( | ) | [static] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| StaticInitializer ConditionalDistribution::_static_initializer_ & PLearn::ConditionalDistribution::_static_initialize_ | ( | ) | [static] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| string PLearn::ConditionalDistribution::classname | ( | ) | const [virtual] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| static const PPath& PLearn::ConditionalDistribution::declaringFile | ( | ) | [inline, static] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 79 of file ConditionalDistribution.h.
| ConditionalDistribution * PLearn::ConditionalDistribution::deepCopy | ( | CopiesMap & | copies | ) | const [virtual] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| OptionList & PLearn::ConditionalDistribution::getOptionList | ( | ) | const [virtual] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| OptionMap & PLearn::ConditionalDistribution::getOptionMap | ( | ) | const [virtual] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| RemoteMethodMap & PLearn::ConditionalDistribution::getRemoteMethodMap | ( | ) | const [virtual] |
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 52 of file ConditionalDistribution.cc.
| void PLearn::ConditionalDistribution::makeDeepCopyFromShallowCopy | ( | CopiesMap & | copies | ) | [virtual] |
Transforms a shallow copy into a deep copy.
Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 55 of file ConditionalDistribution.cc.
References PLearn::Distribution::makeDeepCopyFromShallowCopy().
{
inherited::makeDeepCopyFromShallowCopy(copies);
}

| void PLearn::ConditionalDistribution::setInput | ( | const Vec & | input | ) | [virtual] |
computes the ouptu of a trained model
Reimplemented from PLearn::Distribution.
Definition at line 65 of file ConditionalDistribution.cc.
References PLearn::Distribution::cdf(), PLearn::Distribution::density(), PLearn::Distribution::expectation(), input_part_size, PLearn::TVec< T >::length(), PLearn::Distribution::log_density(), setInput(), PLearn::TVec< T >::subVec(), PLearn::Distribution::survival_fn(), PLearn::TMat< T >::toVec(), PLearn::Distribution::use_returns_what, PLearn::Distribution::variance(), and x.
{
Vec x = input.subVec(0,input_part_size);
Vec y = input.subVec(input_part_size,input.length()-input_part_size);
setInput(x);
if (use_returns_what=="l")
output[0]=log_density(y);
else if (use_returns_what=="d")
output[0]=density(y);
else if (use_returns_what=="c")
output[0]=cdf(y);
else if (use_returns_what=="s")
output[0]=survival_fn(y);
else if (use_returns_what=="e")
output << expectation();
else if (use_returns_what=="v")
output << variance().toVec();
}

Reimplemented from PLearn::Distribution.
Reimplemented in PLearn::ConditionalGaussianDistribution.
Definition at line 79 of file ConditionalDistribution.h.
Definition at line 65 of file ConditionalDistribution.h.
Referenced by use().
1.7.4