PLearn 0.1
|
#include <ClassifierFromDensity.h>
Public Member Functions | |
ClassifierFromDensity () | |
Default constructor. | |
virtual void | build () |
Simply calls inherited::build() then build_() | |
virtual void | makeDeepCopyFromShallowCopy (CopiesMap &copies) |
Transforms a shallow copy into a deep copy. | |
virtual string | classname () const |
virtual OptionList & | getOptionList () const |
virtual OptionMap & | getOptionMap () const |
virtual RemoteMethodMap & | getRemoteMethodMap () const |
virtual ClassifierFromDensity * | deepCopy (CopiesMap &copies) const |
virtual int | outputsize () const |
returns the size of this learner's output, (which typically may depend on its inputsize(), targetsize() and set options) | |
virtual void | forget () |
(Re-)initializes the PLearner in its fresh state (that state may depend on the 'seed' option) And sets 'stage' back to 0 (this is the stage of a fresh learner!) | |
virtual void | train () |
The role of the train method is to bring the learner up to stage==nstages, updating the train_stats collector with training costs measured on-line in the process. | |
virtual void | computeOutput (const Vec &input, Vec &output) const |
Computes the output from the input. | |
virtual void | computeCostsFromOutputs (const Vec &input, const Vec &output, const Vec &target, Vec &costs) const |
Computes the costs from already computed output. | |
virtual TVec< string > | getTestCostNames () const |
Returns the names of the costs computed by computeCostsFromOutpus (and thus the test method) | |
virtual TVec< string > | getTrainCostNames () const |
Returns the names of the objective costs that the train method computes and for which it updates the VecStatsCollector train_stats. | |
Static Public Member Functions | |
static string | _classname_ () |
static OptionList & | _getOptionList_ () |
static RemoteMethodMap & | _getRemoteMethodMap_ () |
static Object * | _new_instance_for_typemap_ () |
static bool | _isa_ (const Object *o) |
static void | _static_initialize_ () |
static const PPath & | declaringFile () |
Public Attributes | |
int | nclasses |
TVec< PP< PDistribution > > | estimators |
Vec | log_priors |
bool | output_log_probabilities |
bool | normalize_probabilities |
Vec | use_these_priors |
bool | using_template_estimator |
Static Public Attributes | |
static StaticInitializer | _static_initializer_ |
Static Protected Member Functions | |
static void | declareOptions (OptionList &ol) |
Declares this class' options. | |
Private Types | |
typedef PLearner | inherited |
Private Member Functions | |
void | build_ () |
This does the actual building. |
Definition at line 49 of file ClassifierFromDensity.h.
typedef PLearner PLearn::ClassifierFromDensity::inherited [private] |
Reimplemented from PLearn::PLearner.
Definition at line 54 of file ClassifierFromDensity.h.
PLearn::ClassifierFromDensity::ClassifierFromDensity | ( | ) |
Default constructor.
Definition at line 53 of file ClassifierFromDensity.cc.
: nclasses(-1), output_log_probabilities(false), normalize_probabilities(true), using_template_estimator(false) {}
string PLearn::ClassifierFromDensity::_classname_ | ( | ) | [static] |
Reimplemented from PLearn::PLearner.
Definition at line 67 of file ClassifierFromDensity.cc.
OptionList & PLearn::ClassifierFromDensity::_getOptionList_ | ( | ) | [static] |
Reimplemented from PLearn::PLearner.
Definition at line 67 of file ClassifierFromDensity.cc.
RemoteMethodMap & PLearn::ClassifierFromDensity::_getRemoteMethodMap_ | ( | ) | [static] |
Reimplemented from PLearn::PLearner.
Definition at line 67 of file ClassifierFromDensity.cc.
Reimplemented from PLearn::PLearner.
Definition at line 67 of file ClassifierFromDensity.cc.
Object * PLearn::ClassifierFromDensity::_new_instance_for_typemap_ | ( | ) | [static] |
Reimplemented from PLearn::Object.
Definition at line 67 of file ClassifierFromDensity.cc.
StaticInitializer ClassifierFromDensity::_static_initializer_ & PLearn::ClassifierFromDensity::_static_initialize_ | ( | ) | [static] |
Reimplemented from PLearn::PLearner.
Definition at line 67 of file ClassifierFromDensity.cc.
void PLearn::ClassifierFromDensity::build | ( | ) | [virtual] |
Simply calls inherited::build() then build_()
Reimplemented from PLearn::PLearner.
Definition at line 110 of file ClassifierFromDensity.cc.
References PLearn::PLearner::build(), and build_().
Referenced by forget().
{ inherited::build(); build_(); }
void PLearn::ClassifierFromDensity::build_ | ( | ) | [private] |
This does the actual building.
Reimplemented from PLearn::PLearner.
Definition at line 119 of file ClassifierFromDensity.cc.
References PLearn::deepCopy(), estimators, i, nclasses, PLERROR, PLearn::TVec< T >::resize(), PLearn::TVec< T >::size(), and using_template_estimator.
Referenced by build().
{ if(estimators.size()==1) { using_template_estimator = true; estimators.resize(nclasses); for(int i=1; i<nclasses; i++) estimators[i] = PLearn::deepCopy(estimators[0]); } else if(estimators.size() != nclasses) PLERROR("In ClassifierFromDensity: specified %d estimators but there are %d classes",estimators.size(), nclasses); }
string PLearn::ClassifierFromDensity::classname | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Definition at line 67 of file ClassifierFromDensity.cc.
void PLearn::ClassifierFromDensity::computeCostsFromOutputs | ( | const Vec & | input, |
const Vec & | output, | ||
const Vec & | target, | ||
Vec & | costs | ||
) | const [virtual] |
Computes the costs from already computed output.
Implements PLearn::PLearner.
Definition at line 287 of file ClassifierFromDensity.cc.
References PLearn::class_error(), PLearn::condprob_cost(), and PLearn::TVec< T >::resize().
{ static CostFunc cl_er; static CostFunc cond_p; if(!cl_er) cl_er = class_error(); if(!cond_p) cond_p = condprob_cost(); costs.resize(2); costs[0] = cl_er->evaluate(output, target); costs[1] = cond_p->evaluate(output, target); }
void PLearn::ClassifierFromDensity::computeOutput | ( | const Vec & | input, |
Vec & | output | ||
) | const [virtual] |
Computes the output from the input.
Reimplemented from PLearn::PLearner.
Definition at line 249 of file ClassifierFromDensity.cc.
References c, estimators, PLearn::exp(), log_priors, PLearn::logadd(), nclasses, normalize_probabilities, output_log_probabilities, and PLearn::TVec< T >::resize().
{ output.resize(nclasses); double log_of_sumprob = 0.; for(int c=0; c<nclasses; c++) { // Be slightly careful in the case were the log_prior is -Inf, i.e. // no observation of the current class appears in the training set. // Don't call the estimator in that case, since its output might be // ill-defined (NaN or some such), thereby polluting the rest of the // output computation double logprob_c = log_priors[c]; if (! isinf(log_priors[c])) logprob_c += estimators[c]->log_density(input); // multiply p by the prior output[c] = logprob_c; if (normalize_probabilities) { if(c==0) log_of_sumprob = logprob_c; else log_of_sumprob = logadd(log_of_sumprob, logprob_c); } } if (normalize_probabilities) output -= real(log_of_sumprob); // divide by the sum // Make it probabilities rather than log probabilities... if (!output_log_probabilities) exp(output, output); }
void PLearn::ClassifierFromDensity::declareOptions | ( | OptionList & | ol | ) | [static, protected] |
Declares this class' options.
Reimplemented from PLearn::PLearner.
Definition at line 72 of file ClassifierFromDensity.cc.
References PLearn::OptionBase::buildoption, PLearn::declareOption(), PLearn::PLearner::declareOptions(), estimators, PLearn::OptionBase::learntoption, log_priors, nclasses, normalize_probabilities, output_log_probabilities, use_these_priors, and using_template_estimator.
{ // Build options. declareOption(ol, "nclasses", &ClassifierFromDensity::nclasses, OptionBase::buildoption, "The number of classes"); declareOption(ol, "estimators", &ClassifierFromDensity::estimators, OptionBase::buildoption, "The array of density estimators, one for each class.\n" "You may also specify just one that will be replicated as many times as there are classes."); declareOption(ol, "output_log_probabilities", &ClassifierFromDensity::output_log_probabilities, OptionBase::buildoption, "Whether computeOutput yields log-probabilities or probabilities (of classes given inputs)"); declareOption(ol, "normalize_probabilities", &ClassifierFromDensity::normalize_probabilities, OptionBase::buildoption, "Whether to normalize the probabilities (if not just compute likelihood * prior for each class)"); declareOption(ol, "use_these_priors", &ClassifierFromDensity::use_these_priors, OptionBase::buildoption, "If empty (the default), then prior class probability is determined upon \n" "training from the empirical class count in the training set. Otherwise this\n" "must be a vector of length nclasses, specifying these prior class prob. \n"); // Learnt options. declareOption(ol, "log_priors", &ClassifierFromDensity::log_priors, OptionBase::learntoption, "The log of the class prior probabilities"); declareOption(ol, "using_template_estimator", &ClassifierFromDensity::using_template_estimator, OptionBase::learntoption, "Indication that the estimators were originally obtained from one single template"); // Now call the parent class' declareOptions inherited::declareOptions(ol); }
static const PPath& PLearn::ClassifierFromDensity::declaringFile | ( | ) | [inline, static] |
Reimplemented from PLearn::PLearner.
Definition at line 106 of file ClassifierFromDensity.h.
ClassifierFromDensity * PLearn::ClassifierFromDensity::deepCopy | ( | CopiesMap & | copies | ) | const [virtual] |
Reimplemented from PLearn::PLearner.
Definition at line 67 of file ClassifierFromDensity.cc.
void PLearn::ClassifierFromDensity::forget | ( | ) | [virtual] |
(Re-)initializes the PLearner in its fresh state (that state may depend on the 'seed' option) And sets 'stage' back to 0 (this is the stage of a fresh learner!)
Reimplemented from PLearn::PLearner.
Definition at line 154 of file ClassifierFromDensity.cc.
References build(), c, estimators, PLearn::TVec< T >::length(), PLearn::TVec< T >::resize(), PLearn::PLearner::stage, and using_template_estimator.
Referenced by train().
{ stage=0; if (using_template_estimator) estimators.resize(1); for(int c=0; c<estimators.length(); c++) estimators[c]->forget(); if (using_template_estimator) build(); // Ensure the first estimator is duplicated. }
OptionList & PLearn::ClassifierFromDensity::getOptionList | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Definition at line 67 of file ClassifierFromDensity.cc.
OptionMap & PLearn::ClassifierFromDensity::getOptionMap | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Definition at line 67 of file ClassifierFromDensity.cc.
RemoteMethodMap & PLearn::ClassifierFromDensity::getRemoteMethodMap | ( | ) | const [virtual] |
Reimplemented from PLearn::Object.
Definition at line 67 of file ClassifierFromDensity.cc.
TVec< string > PLearn::ClassifierFromDensity::getTestCostNames | ( | ) | const [virtual] |
Returns the names of the costs computed by computeCostsFromOutpus (and thus the test method)
Implements PLearn::PLearner.
Definition at line 304 of file ClassifierFromDensity.cc.
{ TVec<string> cnames(2); cnames[0] = "class_error"; cnames[1] = "condprob_cost"; return cnames; }
TVec< string > PLearn::ClassifierFromDensity::getTrainCostNames | ( | ) | const [virtual] |
Returns the names of the objective costs that the train method computes and for which it updates the VecStatsCollector train_stats.
Implements PLearn::PLearner.
Definition at line 315 of file ClassifierFromDensity.cc.
Referenced by train().
{
return TVec<string>();
}
void PLearn::ClassifierFromDensity::makeDeepCopyFromShallowCopy | ( | CopiesMap & | copies | ) | [virtual] |
Transforms a shallow copy into a deep copy.
Reimplemented from PLearn::PLearner.
Definition at line 135 of file ClassifierFromDensity.cc.
References PLearn::deepCopyField(), estimators, log_priors, PLearn::PLearner::makeDeepCopyFromShallowCopy(), and use_these_priors.
{ inherited::makeDeepCopyFromShallowCopy(copies); deepCopyField(estimators, copies); deepCopyField(log_priors, copies); deepCopyField(use_these_priors, copies); }
int PLearn::ClassifierFromDensity::outputsize | ( | ) | const [virtual] |
returns the size of this learner's output, (which typically may depend on its inputsize(), targetsize() and set options)
Implements PLearn::PLearner.
Definition at line 146 of file ClassifierFromDensity.cc.
References nclasses.
{ return nclasses; }
void PLearn::ClassifierFromDensity::train | ( | ) | [virtual] |
The role of the train method is to bring the learner up to stage==nstages, updating the train_stats collector with training costs measured on-line in the process.
Implements PLearn::PLearner.
Definition at line 168 of file ClassifierFromDensity.cc.
References c, PLearn::endl(), estimators, forget(), PLearn::PLearner::getExperimentDirectory(), getTrainCostNames(), PLearn::hconcat(), PLearn::indicesOfOccurencesInColumn(), PLearn::PLearner::inputsize(), PLearn::VMat::length(), PLearn::TVec< T >::length(), log_priors, nclasses, PLearn::PLearner::nstages, PLearn::perr, pl_log, PLERROR, PLearn::TVec< T >::resize(), PLearn::VMat::rows(), PLearn::PLearner::stage, PLearn::VMat::subMatColumns(), PLearn::PLearner::targetsize(), PLearn::tostring(), PLearn::PLearner::train_set, PLearn::PLearner::train_stats, use_these_priors, and PLearn::PLearner::verbosity.
{ if(targetsize()!=1) PLERROR("In ClassifierFromDensity::train - Expecting a targetsize of 1 (class index between 0 and nclasses-1), not %d !!",targetsize()); if(nstages<stage) // asking to revert to a previous stage! forget(); // reset the learner to stage=0 if(stage==0) { map<real, TVec<int> > indices = indicesOfOccurencesInColumn(train_set, inputsize()); log_priors.resize(nclasses); if(use_these_priors.length()==0) { for(int c=0; c<nclasses; c++) log_priors[c] = pl_log(real(indices[real(c)].length())) - pl_log(real(train_set.length())); // how many do we have? } else { if(use_these_priors.length()!=nclasses) PLERROR("In ClassifierFromDensity::train, when compute_empirical_priors is false, you must specify a proper log_priors of length nclasses"); for(int c=0; c<nclasses; c++) log_priors[c] = pl_log(use_these_priors[c]); } PPath expd = getExperimentDirectory(); for(int c=0; c<nclasses; c++) { if(verbosity>=1) perr << ">>> Training class " << c << endl; VMat set_c = train_set.rows(indices[c]); int in_sz = set_c->inputsize(); int targ_sz = set_c->targetsize(); int we_sz = set_c->weightsize(); // Removing target from set if (we_sz==0) { set_c = set_c.subMatColumns(0,in_sz); set_c->defineSizes(in_sz, 0, 0); } else // There are some weights. { set_c = hconcat(set_c.subMatColumns(0,in_sz), set_c.subMatColumns(in_sz+targ_sz,we_sz)); set_c->defineSizes(in_sz,0,we_sz); } if (expd!="") estimators[c]->setExperimentDirectory(expd / "Class" / tostring(c)); if (verbosity>=1) perr << " ( " << set_c.length() << " samples)" << endl; estimators[c]->setTrainingSet(set_c); PP<VecStatsCollector> train_stats = new VecStatsCollector(); train_stats->setFieldNames(estimators[c]->getTrainCostNames()); estimators[c]->setTrainStatsCollector(train_stats); estimators[c]->nstages = nstages; estimators[c]->train(); } stage = nstages; // trained! if (verbosity >= 2) perr << ">>> Training is over" << endl; } if(stage>0 && stage<nstages) { for(int c=0; c<nclasses; c++) { if(verbosity>=1) perr << ">>> Training class " << c; estimators[c]->nstages = nstages; estimators[c]->train(); } stage = nstages; if (verbosity >= 2) perr << ">>> Training is over" << endl; } }
Reimplemented from PLearn::PLearner.
Definition at line 106 of file ClassifierFromDensity.h.
Definition at line 64 of file ClassifierFromDensity.h.
Referenced by build_(), computeOutput(), declareOptions(), forget(), makeDeepCopyFromShallowCopy(), and train().
Definition at line 65 of file ClassifierFromDensity.h.
Referenced by computeOutput(), declareOptions(), makeDeepCopyFromShallowCopy(), and train().
Definition at line 63 of file ClassifierFromDensity.h.
Referenced by build_(), computeOutput(), declareOptions(), outputsize(), and train().
Definition at line 67 of file ClassifierFromDensity.h.
Referenced by computeOutput(), and declareOptions().
Definition at line 66 of file ClassifierFromDensity.h.
Referenced by computeOutput(), and declareOptions().
Definition at line 68 of file ClassifierFromDensity.h.
Referenced by declareOptions(), makeDeepCopyFromShallowCopy(), and train().
Definition at line 69 of file ClassifierFromDensity.h.
Referenced by build_(), declareOptions(), and forget().