PLearn 0.1
|
#include <plearn/math/TMat_maths.h>
#include <plearn/math/random.h>
#include <plearn/math/parpack.h>
Go to the source code of this file.
Classes | |
class | PLearn::SquaredSymmMatT< MatT > |
class | PLearn::ReverseMatT< MatT > |
class | PLearn::MatTPlusSumSquaredVec< MatT > |
Namespaces | |
namespace | PLearn |
< for swap | |
Functions | |
template<class MatT > | |
bool | PLearn::SolveLinearSymmSystemByCG (MatT A, Vec x, const Vec &b, int &max_iter, real &tol, real lambda) |
for debugging | |
template<class MatT > | |
real | PLearn::PowerIteration (MatT &A, Vec x0, int &n_iterations, real RayleighQuotientTolerance, Mat final_vectors, int &final_offset) |
do it with templates | |
int | PLearn::GramSchmidtOrthogonalization (Mat A, real tolerance=1e-6) |
template<class MatT > | |
real | PLearn::PowerIteration (MatT A, Vec x0, int &n_iterations, real RayleighQuotientTolerance, Mat final_vectors, int &final_offset, bool verbose=false) |
template<class MatT > | |
real | PLearn::InversePowerIteration (MatT A, Vec x0, int &n_iterations, int max_n_cg_iter, real RTolerance, Mat final_vectors, int &final_offset, real regularizer, bool verbose=false) |
template<class MatT > | |
real | PLearn::findSmallestEigenPairOfSymmMat (MatT &A, Vec x, real error_tolerance=1e-3, real improvement_tolerance=1e-4, int max_n_cg_iter=0, int max_n_power_iter=0, bool verbose=false) |
template<class MatT > | |
int | PLearn::SymmMatNullSpaceByInversePowerIteration (MatT &A, Mat solutions, Vec normsAx, Vec xAx, real error_tolerance=1e-3, real improvement_tolerance=1e-4, int max_n_cg_iter=0, int max_n_power_iter=0, bool verbose=false) |
template<class MatT > | |
int | PLearn::GDFindSmallEigenPairs (MatT &A, Mat X, bool diagonalize_in_the_end=true, real tolerance=1e-6, int n_epochs=0, real learning_rate=0, int normalize_every=0, real decrease_factor=0, bool verbose=false) |
template<class MatT > | |
int | PLearn::kernelPCAfromDotProducts (MatT &dot_products, Mat embedding, int max_n_eigen_iter=300, real ncv2nev_ratio=1.5, Vec *eval=0, Mat *evec=0) |
template<class MatT > | |
int | PLearn::metricMultiDimensionalScaling (MatT &square_distances, Mat embedding, int max_n_eigen_iter=300) |
Definition in file GenMat.h.