PLearn 0.1
plearn_noblas_inc.h File Reference
#include <plearn/db/UCISpecification.h>
#include <plearn/io/openUrl.h>
#include <plearn/io/RPPath.h>
#include <plearn/math/ManualBinner.h>
#include <plearn/math/SoftHistogramBinner.h>
#include <plearn/misc/ShellScript.h>
#include <plearn/misc/Redirect.h>
#include <plearn/misc/RunObject.h>
#include <plearn_learners/misc/Grapher.h>
#include <plearn_learners/misc/VariableSelectionWithDirectedGradientDescent.h>
#include <plearn_learners/testers/PTester.h>
#include <plearn/misc/HTMLHelpGenerator.h>
#include <commands/PLearnCommands/VMatCommand.h>
#include <commands/PLearnCommands/AutoRunCommand.h>
#include <commands/PLearnCommands/DiffCommand.h>
#include <commands/PLearnCommands/FieldConvertCommand.h>
#include <commands/PLearnCommands/HelpCommand.h>
#include <commands/PLearnCommands/JulianDateCommand.h>
#include <commands/PLearnCommands/KolmogorovSmirnovCommand.h>
#include <commands/PLearnCommands/LearnerCommand.h>
#include <commands/PLearnCommands/PairwiseDiffsCommand.h>
#include <commands/PLearnCommands/ReadAndWriteCommand.h>
#include <commands/PLearnCommands/RunCommand.h>
#include <commands/PLearnCommands/ServerCommand.h>
#include <commands/PLearnCommands/TestDependenciesCommand.h>
#include <commands/PLearnCommands/TestDependencyCommand.h>
#include <commands/PLearnCommands/StatsCommand.h>
#include <plearn/dict/Dictionary.h>
#include <plearn/dict/FileDictionary.h>
#include <plearn/dict/VecDictionary.h>
#include <plearn/dict/ConditionalDictionary.h>
#include <plearn_learners/hyper/HyperOptimize.h>
#include <plearn_learners/hyper/HyperRetrain.h>
#include <plearn_learners/hyper/HyperSetOption.h>
#include <plearn/ker/AdditiveNormalizationKernel.h>
#include <plearn/ker/CosKernel.h>
#include <plearn/ker/DistanceKernel.h>
#include <plearn/ker/DotProductKernel.h>
#include <plearn/ker/EpanechnikovKernel.h>
#include <plearn/ker/GaussianKernel.h>
#include <plearn/ker/GaussianDensityKernel.h>
#include <plearn/ker/GeodesicDistanceKernel.h>
#include <plearn/ker/IIDNoiseKernel.h>
#include <plearn/ker/LinearARDKernel.h>
#include <plearn/ker/NegOutputCostFunction.h>
#include <plearn/ker/NeuralNetworkARDKernel.h>
#include <plearn/ker/PolynomialKernel.h>
#include <plearn/ker/RationalQuadraticARDKernel.h>
#include <plearn/ker/SquaredExponentialARDKernel.h>
#include <plearn/ker/SummationKernel.h>
#include <plearn/ker/ThresholdedKernel.h>
#include <plearn/ker/VMatKernel.h>
#include <plearn/ker/DTWKernel.h>
#include <plearn/opt/AdaptGradientOptimizer.h>
#include <plearn/opt/ConjGradientOptimizer.h>
#include <plearn/opt/GradientOptimizer.h>
#include <plearn_learners/hyper/CartesianProductOracle.h>
#include <plearn_learners/hyper/EarlyStoppingOracle.h>
#include <plearn_learners/hyper/ExplicitListOracle.h>
#include <plearn_learners/hyper/OptimizeOptionOracle.h>
#include <plearn_learners/classifiers/BinaryStump.h>
#include <plearn_learners/classifiers/ClassifierFromConditionalPDistribution.h>
#include <plearn_learners/classifiers/ClassifierFromDensity.h>
#include <plearn_learners/classifiers/KNNClassifier.h>
#include <plearn_learners/classifiers/MultiInstanceNNet.h>
#include <plearn_learners/classifiers/ToBagClassifier.h>
#include <plearn_learners/generic/AddCostToLearner.h>
#include <plearn_learners/generic/AddLayersNNet.h>
#include <plearn_learners/generic/BestAveragingPLearner.h>
#include <plearn_learners/generic/NNet.h>
#include <plearn_learners/generic/SelectInputSubsetLearner.h>
#include <plearn_learners/generic/ChainedLearners.h>
#include <plearn_learners/generic/StackedLearner.h>
#include <plearn_learners/generic/TestingLearner.h>
#include <plearn_learners/generic/TransformOutputLearner.h>
#include <plearn_learners/generic/VPLPreprocessedLearner.h>
#include <plearn_learners/generic/VPLPreprocessedLearner2.h>
#include <plearn_learners/generic/VPLCombinedLearner.h>
#include <plearn_learners/hyper/HyperLearner.h>
#include <plearn_learners/meta/AdaBoost.h>
#include <plearn_learners/meta/MultiClassAdaBoost.h>
#include <plearn_learners/meta/BaggingLearner.h>
#include <plearn_learners/regressors/ConstantRegressor.h>
#include <plearn_learners/regressors/CubicSpline.h>
#include <plearn_learners/regressors/GaussianProcessRegressor.h>
#include <plearn_learners/regressors/KernelRidgeRegressor.h>
#include <plearn_learners/regressors/KNNRegressor.h>
#include <plearn_learners/regressors/RankLearner.h>
#include <plearn_learners/regressors/RegressorFromDistribution.h>
#include <plearn_learners/regressors/RegressionTree.h>
#include <plearn_learners/regressors/RegressionTreeMulticlassLeave.h>
#include <plearn_learners/regressors/RegressionTreeMulticlassLeaveFast.h>
#include <plearn_learners/regressors/RegressionTreeMulticlassLeaveProb.h>
#include <plearn_learners/unsupervised/UniformizeLearner.h>
#include <plearn_learners/distributions/MixtureDistribution.h>
#include <plearn_learners/distributions/SpiralDistribution.h>
#include <plearn_learners/distributions/UniformDistribution.h>
#include <plearn_learners/distributions/KernelDensityEstimator.h>
#include <plearn_learners/nearest_neighbors/BallTreeNearestNeighbors.h>
#include <plearn_learners/nearest_neighbors/ExhaustiveNearestNeighbors.h>
#include <plearn_learners/nearest_neighbors/GenericNearestNeighbors.h>
#include <plearn_learners_experimental/DeepFeatureExtractorNNet.h>
#include <plearn_learners/online/ArgmaxModule.h>
#include <plearn_learners/online/BackConvolution2DModule.h>
#include <plearn_learners/online/ClassErrorCostModule.h>
#include <plearn_learners/online/CombiningCostsModule.h>
#include <plearn_learners/online/Convolution2DModule.h>
#include <plearn_learners/online/CostModule.h>
#include <plearn_learners/online/CrossEntropyCostModule.h>
#include <plearn_learners/online/DeepBeliefNet.h>
#include <plearn_learners/online/ForwardModule.h>
#include <plearn_learners/online/GradNNetLayerModule.h>
#include <plearn_learners/online/IdentityModule.h>
#include <plearn_learners/online/InferenceRBM.h>
#include <plearn_learners/online/LayerCostModule.h>
#include <plearn_learners/online/LinearCombinationModule.h>
#include <plearn_learners/online/LinearFilterModule.h>
#include <plearn_learners/online/LogaddOnBagsModule.h>
#include <plearn_learners/online/MatrixModule.h>
#include <plearn_learners/online/MaxSubsampling2DModule.h>
#include <plearn_learners/online/ModuleLearner.h>
#include <plearn_learners/online/ModulesLearner.h>
#include <plearn_learners/online/ModuleStackModule.h>
#include <plearn_learners/online/ModuleTester.h>
#include <plearn_learners/online/NetworkModule.h>
#include <plearn_learners/online/NLLCostModule.h>
#include <plearn_learners/online/OnlineLearningModule.h>
#include <plearn_learners/online/ProcessInputCostModule.h>
#include <plearn_learners/online/RBMBinomialLayer.h>
#include <plearn_learners/online/RBMClassificationModule.h>
#include <plearn_learners/online/RBMConnection.h>
#include <plearn_learners/online/RBMConv2DConnection.h>
#include <plearn_learners/online/RBMGaussianLayer.h>
#include <plearn_learners/online/RBMLayer.h>
#include <plearn_learners/online/RBMLocalMultinomialLayer.h>
#include <plearn_learners/online/RBMMatrixConnection.h>
#include <plearn_learners/online/RBMMatrixTransposeConnection.h>
#include <plearn_learners/online/RBMMixedConnection.h>
#include <plearn_learners/online/RBMMixedLayer.h>
#include <plearn_learners/online/RBMModule.h>
#include <plearn_learners/online/RBMMultinomialLayer.h>
#include <plearn_learners/online/RBMSparse1DMatrixConnection.h>
#include <plearn_learners/online/RBMTrainer.h>
#include <plearn_learners/online/RBMTruncExpLayer.h>
#include <plearn_learners/online/ScaleGradientModule.h>
#include <plearn_learners/online/ShuntingNNetLayerModule.h>
#include <plearn_learners/online/SoftmaxModule.h>
#include <plearn_learners/online/SoftmaxNLLCostModule.h>
#include <plearn_learners/online/SplitModule.h>
#include <plearn_learners/online/SquaredErrorCostModule.h>
#include <plearn_learners/online/BinarizeModule.h>
#include <plearn_learners/online/StackedAutoassociatorsNet.h>
#include <plearn_learners/online/Subsampling2DModule.h>
#include <plearn_learners/online/Supersampling2DModule.h>
#include <plearn_learners/online/TanhModule.h>
#include <plearn/vmat/BinSplitter.h>
#include <plearn/vmat/BootstrapSplitter.h>
#include <plearn/vmat/ClassSeparationSplitter.h>
#include <plearn/vmat/ConcatSetsSplitter.h>
#include <plearn/vmat/DBSplitter.h>
#include <plearn/vmat/ExplicitSplitter.h>
#include <plearn/vmat/FilterSplitter.h>
#include <plearn/vmat/FractionSplitter.h>
#include <plearn/vmat/KFoldSplitter.h>
#include <plearn/vmat/NoSplitSplitter.h>
#include <plearn/vmat/MultiTaskSeparationSplitter.h>
#include <plearn/vmat/RepeatSplitter.h>
#include <plearn/vmat/SelectSetsSplitter.h>
#include <plearn/vmat/SourceVMatrixSplitter.h>
#include <plearn/vmat/StackedSplitter.h>
#include <plearn/vmat/TestInTrainSplitter.h>
#include <plearn/vmat/ToBagSplitter.h>
#include <plearn/vmat/TrainTestSplitter.h>
#include <plearn/vmat/TrainValidTestSplitter.h>
#include <plearn/var/MatrixElementsVariable.h>
#include <plearn/math/LiftStatsCollector.h>
#include <plearn/vmat/AddMissingVMatrix.h>
#include <plearn/vmat/AddBagInformationVMatrix.h>
#include <plearn/vmat/AppendNeighborsVMatrix.h>
#include <plearn/vmat/AsciiVMatrix.h>
#include <plearn/vmat/AutoVMatrix.h>
#include <plearn/vmat/AutoVMatrixSaveSource.h>
#include <plearn/vmat/BootstrapVMatrix.h>
#include <plearn/vmat/CenteredVMatrix.h>
#include <plearn/vmat/ClassSubsetVMatrix.h>
#include <plearn/vmat/CompactVMatrix.h>
#include <plearn/vmat/CompactFileVMatrix.h>
#include <plearn/vmat/CompressedVMatrix.h>
#include <plearn/vmat/CumVMatrix.h>
#include <plearn/vmat/ConcatColumnsVMatrix.h>
#include <plearn/vmat/ConstantVMatrix.h>
#include <plearn/vmat/DatedJoinVMatrix.h>
#include <plearn/vmat/DisregardRowsVMatrix.h>
#include <plearn/vmat/DichotomizeVMatrix.h>
#include <plearn/vmat/BinaryNumbersVMatrix.h>
#include <plearn/vmat/ExtractNNetParamsVMatrix.h>
#include <plearn/vmat/FilteredVMatrix.h>
#include <plearn/vmat/FinancePreprocVMatrix.h>
#include <plearn/vmat/GaussianizeVMatrix.h>
#include <plearn/vmat/GeneralizedOneHotVMatrix.h>
#include <plearn/vmat/GetInputVMatrix.h>
#include <plearn/vmat/GramVMatrix.h>
#include <plearn/vmat/IndexedVMatrix.h>
#include <plearn/vmat/JulianizeVMatrix.h>
#include <plearn/vmat/KNNVMatrix.h>
#include <plearn/vmat/KNNImputationVMatrix.h>
#include <plearn/vmat/LIBSVMSparseVMatrix.h>
#include <plearn/vmat/LocalNeighborsDifferencesVMatrix.h>
#include <plearn/vmat/LocallyPrecomputedVMatrix.h>
#include <plearn/vmat/MeanImputationVMatrix.h>
#include <plearn/vmat/MemoryVMatrixNoSave.h>
#include <plearn/vmat/MissingInstructionVMatrix.h>
#include <plearn/vmat/MixtureVMatrix.h>
#include <plearn/vmat/MultiInstanceVMatrix.h>
#include <plearn/vmat/MultiTargetOneHotVMatrix.h>
#include <plearn/vmat/MultiToUniInstanceSelectRandomVMatrix.h>
#include <plearn/vmat/OneHotVMatrix.h>
#include <plearn/vmat/PLearnerOutputVMatrix.h>
#include <plearn/vmat/PairsVMatrix.h>
#include <plearn/vmat/PrecomputedVMatrix.h>
#include <plearn/vmat/ProcessDatasetVMatrix.h>
#include <plearn/vmat/ProcessingVMatrix.h>
#include <plearn/vmat/ProcessSymbolicSequenceVMatrix.h>
#include <plearn/vmat/PutSubVMatrix.h>
#include <plearn/vmat/RandomSamplesVMatrix.h>
#include <plearn/vmat/RandomSamplesFromVMatrix.h>
#include <plearn/vmat/RankedVMatrix.h>
#include <plearn/vmat/RepeatVMatrix.h>
#include <plearn/vmat/RegularGridVMatrix.h>
#include <plearn/vmat/RemoveDuplicateVMatrix.h>
#include <plearn/vmat/ReorderByMissingVMatrix.h>
#include <plearn/vmat/ReplicateSamplesVMatrix.h>
#include <plearn/vmat/SelectRowsMultiInstanceVMatrix.h>
#include <plearn/vmat/ShuffleColumnsVMatrix.h>
#include <plearn/vmat/SortRowsVMatrix.h>
#include <plearn/vmat/SparseVMatrix.h>
#include <plearn/vmat/SplitWiseValidationVMatrix.h>
#include <plearn/vmat/StochasticBinarizeVMatrix.h>
#include <plearn/vmat/SubInputVMatrix.h>
#include <plearn/vmat/TemporaryDiskVMatrix.h>
#include <plearn/vmat/TemporaryFileVMatrix.h>
#include <plearn/vmat/TextFilesVMatrix.h>
#include <plearn/vmat/ThresholdVMatrix.h>
#include <plearn/vmat/TransposeVMatrix.h>
#include <plearn/vmat/UCIDataVMatrix.h>
#include <plearn/vmat/UniformizeVMatrix.h>
#include <plearn/vmat/VariableDeletionVMatrix.h>
#include <plearn/vmat/ViewSplitterVMatrix.h>
#include <plearn/vmat/VMatrixFromDistribution.h>
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.


Detailed Description

Definition in file plearn_noblas_inc.h.

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines