PLearn 0.1
|
00001 // -*- C++ -*- 00002 00003 // RBMModule.h 00004 // 00005 // Copyright (C) 2007 Olivier Delalleau 00006 // 00007 // Redistribution and use in source and binary forms, with or without 00008 // modification, are permitted provided that the following conditions are met: 00009 // 00010 // 1. Redistributions of source code must retain the above copyright 00011 // notice, this list of conditions and the following disclaimer. 00012 // 00013 // 2. Redistributions in binary form must reproduce the above copyright 00014 // notice, this list of conditions and the following disclaimer in the 00015 // documentation and/or other materials provided with the distribution. 00016 // 00017 // 3. The name of the authors may not be used to endorse or promote 00018 // products derived from this software without specific prior written 00019 // permission. 00020 // 00021 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00022 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00023 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00024 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00025 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00026 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00027 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00028 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00029 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00030 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00031 // 00032 // This file is part of the PLearn library. For more information on the PLearn 00033 // library, go to the PLearn Web site at www.plearn.org 00034 00035 // Authors: Olivier Delalleau 00036 00040 #ifndef RBMModule_INC 00041 #define RBMModule_INC 00042 00043 #include <plearn_learners/online/OnlineLearningModule.h> 00044 #include <plearn_learners/online/RBMConnection.h> 00045 #include <plearn_learners/online/RBMLayer.h> 00046 #include <map> 00047 00048 namespace PLearn { 00049 00060 class RBMModule : public OnlineLearningModule 00061 { 00062 typedef OnlineLearningModule inherited; 00063 00064 public: 00065 //##### Public Build Options ############################################ 00066 00067 PP<RBMLayer> hidden_layer; 00068 PP<RBMLayer> visible_layer; 00069 PP<RBMConnection> connection; 00070 PP<RBMConnection> reconstruction_connection; 00071 00072 real cd_learning_rate; 00073 real grad_learning_rate; 00074 bool tied_connection_weights; 00075 00076 bool compute_contrastive_divergence; 00077 bool compare_true_gradient_with_cd; 00078 int n_steps_compare; 00079 00082 int n_Gibbs_steps_CD; 00083 00085 int min_n_Gibbs_steps; 00086 int n_Gibbs_steps_per_generated_sample; 00087 00088 bool compute_log_likelihood; 00089 bool minimize_log_likelihood; 00090 00091 //##### Public Learnt Options ############################################ 00093 int Gibbs_step; 00094 real log_partition_function; 00095 bool partition_function_is_stale; 00096 00097 bool deterministic_reconstruction_in_cd; 00098 bool stochastic_reconstruction; 00099 00100 bool standard_cd_grad; 00101 bool standard_cd_bias_grad; 00102 bool standard_cd_weights_grad; 00103 00104 00105 public: 00106 //##### Public Member Functions ######################################### 00107 00109 RBMModule(); 00110 00111 // Your other public member functions go here 00112 00114 virtual void CDUpdate(const Mat& v_0, const Mat& h_0, 00115 const Mat& v_k, const Mat& h_k); 00116 00118 virtual void fprop(const Vec& input, Vec& output) const; 00119 00120 /* Optional 00121 THE DEFAULT IMPLEMENTATION IN SUPER-CLASS JUST RAISES A PLERROR. 00130 virtual void bpropUpdate(const Vec& input, const Vec& output, 00131 Vec& input_gradient, 00132 const Vec& output_gradient, 00133 bool accumulate=false); 00134 */ 00135 00136 /* Optional 00137 A DEFAULT IMPLEMENTATION IS PROVIDED IN THE SUPER-CLASS, WHICH 00138 JUST CALLS 00139 bpropUpdate(input, output, input_gradient, output_gradient) 00140 AND IGNORES INPUT GRADIENT. 00142 virtual void bpropUpdate(const Vec& input, const Vec& output, 00143 const Vec& output_gradient); 00144 */ 00145 00146 /* Optional 00147 N.B. A DEFAULT IMPLEMENTATION IS PROVIDED IN THE SUPER-CLASS, WHICH 00148 RAISES A PLERROR. 00153 virtual void bbpropUpdate(const Vec& input, const Vec& output, 00154 Vec& input_gradient, 00155 const Vec& output_gradient, 00156 Vec& input_diag_hessian, 00157 const Vec& output_diag_hessian, 00158 bool accumulate=false); 00159 */ 00160 00161 /* Optional 00162 N.B. A DEFAULT IMPLEMENTATION IS PROVIDED IN THE SUPER-CLASS, 00163 WHICH JUST CALLS 00164 bbpropUpdate(input, output, input_gradient, output_gradient, 00165 out_hess, in_hess) 00166 AND IGNORES INPUT HESSIAN AND INPUT GRADIENT. 00168 virtual void bbpropUpdate(const Vec& input, const Vec& output, 00169 const Vec& output_gradient, 00170 const Vec& output_diag_hessian); 00171 */ 00172 00173 00177 virtual void forget(); 00178 00179 00180 /* Optional 00181 THE DEFAULT IMPLEMENTATION PROVIDED IN THE SUPER-CLASS DOES NOT 00182 DO ANYTHING. 00186 virtual void finalize(); 00187 */ 00188 00189 /* Optional 00190 THE DEFAULT IMPLEMENTATION PROVIDED IN THE SUPER-CLASS RETURNS false 00192 virtual bool bpropDoesNothing(); 00193 */ 00194 00197 virtual void setLearningRate(real dynamic_learning_rate); 00198 00200 virtual void fprop(const TVec<Mat*>& ports_value); 00201 00203 virtual void bpropAccUpdate(const TVec<Mat*>& ports_value, 00204 const TVec<Mat*>& ports_gradient); 00205 00207 virtual const TVec<string>& getPorts(); 00208 00210 virtual const TMat<int>& getPortSizes(); 00211 00215 virtual int getPortIndex(const string& port); 00216 00217 //##### PLearn::Object Protocol ######################################### 00218 00219 // Declares other standard object methods. 00220 // ### If your class is not instantiatable (it has pure virtual methods) 00221 // ### you should replace this by PLEARN_DECLARE_ABSTRACT_OBJECT 00222 PLEARN_DECLARE_OBJECT(RBMModule); 00223 00224 // Simply calls inherited::build() then build_() 00225 virtual void build(); 00226 00228 virtual void makeDeepCopyFromShallowCopy(CopiesMap& copies); 00229 00230 00231 protected: 00232 00233 Mat* hidden_bias; 00234 Mat* weights; 00235 00237 Mat hidden_exp_grad; 00238 00240 Mat hidden_act_grad; 00241 00243 Mat visible_exp_grad; 00244 00246 Mat visible_act_grad; 00247 00249 Vec visible_bias_grad; 00250 00252 Mat hidden_exp_store; 00253 Mat hidden_act_store; 00254 Mat* hidden_act; 00255 bool hidden_activations_are_computed; 00256 00257 bool hidden_is_output; 00258 00260 Mat store_weights_grad; 00261 00263 Mat store_hidden_bias_grad; 00264 00266 TVec<string> ports; 00267 00269 map<string, int> portname_to_index; 00270 00272 Mat energy_inputs; 00273 00277 Vec all_p_visible; 00278 00281 Mat all_hidden_cond_prob; 00282 00285 Mat all_visible_cond_prob; 00286 00289 Mat p_ht_given_x; 00290 00293 Mat p_xt_given_x; 00294 00295 //##### Protected Member Functions ###################################### 00296 00298 void addPortName(const string& name); 00299 00302 void setLearningRatesOnlyForLayers(real lr); 00303 00305 static void declareOptions(OptionList& ol); 00306 00307 public: 00309 void setAllLearningRates(real lr); 00310 00315 void computeHiddenActivations(const Mat& visible); 00316 00321 void computeVisibleActivations(const Mat& hidden, 00322 bool using_reconstruction_connection=false); 00323 00330 void computePositivePhaseHiddenActivations(const Mat& visible); 00331 00333 void sampleHiddenGivenVisible(const Mat& visible); 00334 00336 void sampleVisibleGivenHidden(const Mat& hidden); 00337 00342 void computeFreeEnergyOfVisible(const Mat& visible, Mat& energy, 00343 bool positive_phase = true); 00344 00347 void computeFreeEnergyOfHidden(const Mat& hidden, Mat& energy); 00348 00353 void computeEnergy(const Mat& visible, const Mat& hidden, Mat& energy, 00354 bool positive_phase = true); 00355 00356 void computePartitionFunction(); 00357 00361 Vec computeLogLikelihoodOfVisible(const Mat& visible); 00362 00366 void computeAllHiddenProbabilities(const Mat& visible, 00367 const Mat& p_hidden); 00368 00369 void computeNegLogPVisibleGivenPHidden(Mat visible, Mat hidden, Mat* neg_log_phidden, Mat& neg_log_pvisible_given_phidden); 00370 00371 protected: 00372 static void declareMethods(RemoteMethodMap& rmm); 00373 00374 00375 private: 00376 //##### Private Member Functions ######################################## 00377 00379 void build_(); 00380 00381 private: 00382 //##### Private Data Members ############################################ 00383 00384 // The rest of the private stuff goes here 00385 }; 00386 00387 // Declares a few other classes and functions related to this class 00388 DECLARE_OBJECT_PTR(RBMModule); 00389 00390 } // end of namespace PLearn 00391 00392 #endif 00393 00394 00395 /* 00396 Local Variables: 00397 mode:c++ 00398 c-basic-offset:4 00399 c-file-style:"stroustrup" 00400 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00401 indent-tabs-mode:nil 00402 fill-column:79 00403 End: 00404 */ 00405 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :