PLearn 0.1
Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Protected Member Functions | Private Types | Private Member Functions
PLearn::EmbeddedLearner Class Reference

#include <EmbeddedLearner.h>

Inheritance diagram for PLearn::EmbeddedLearner:
Inheritance graph
[legend]
Collaboration diagram for PLearn::EmbeddedLearner:
Collaboration graph
[legend]

List of all members.

Public Member Functions

PP< PLearnergetLearner () const
 EmbeddedLearner (string expdir_append="")
virtual void build ()
 Finish building the object; just call inherited::build followed by build_()
virtual void makeDeepCopyFromShallowCopy (CopiesMap &copies)
 Transforms a shallow copy into a deep copy.
virtual string classname () const
virtual OptionListgetOptionList () const
virtual OptionMapgetOptionMap () const
virtual RemoteMethodMapgetRemoteMethodMap () const
virtual EmbeddedLearnerdeepCopy (CopiesMap &copies) const
virtual void setTrainingSet (VMat training_set, bool call_forget=true)
 Forwarded to inner learner.
virtual void setValidationSet (VMat validset)
 Forwarded to inner learner.
virtual void setTrainStatsCollector (PP< VecStatsCollector > statscol)
 Forwarded to inner learner.
virtual void setExperimentDirectory (const PPath &the_expdir)
 Forwarded to inner learner; takes into account expdir_append.
virtual int inputsize () const
 Forwarded to inner learner.
virtual int targetsize () const
 Forwarded to inner learner.
virtual int outputsize () const
 Forwarded to inner learner.
virtual void forget ()
 Forwarded to inner learner.
virtual void train ()
 Forwarded to inner learner.
virtual void computeOutput (const Vec &input, Vec &output) const
 Forwarded to inner learner.
virtual void computeCostsFromOutputs (const Vec &input, const Vec &output, const Vec &target, Vec &costs) const
 Forwarded to inner learner.
virtual void computeOutputAndCosts (const Vec &input, const Vec &target, Vec &output, Vec &costs) const
 Forwarded to inner learner.
virtual void computeOutputsAndCosts (const Mat &input, const Mat &target, Mat &output, Mat &costs) const
 Forwarded to inner learner.
virtual bool computeConfidenceFromOutput (const Vec &input, const Vec &output, real probability, TVec< pair< real, real > > &intervals) const
 Forwarded to inner learner.
virtual void test (VMat testset, PP< VecStatsCollector > test_stats, VMat testoutputs=0, VMat testcosts=0) const
 The behavior of this method depends on the value of the 'forward_test' option.
virtual TVec< string > getTestCostNames () const
 Forwarded to inner learner.
virtual TVec< string > getTrainCostNames () const
 Forwarded to inner learner.
virtual TVec< string > getOutputNames () const
 Forwarded to inner learner.
virtual void resetInternalState ()
 NOT forwarded by default.
virtual bool isStatefulLearner () const
 Forwarded to inner learner.

Static Public Member Functions

static string _classname_ ()
 Declares name and deepCopy methods.
static OptionList_getOptionList_ ()
static RemoteMethodMap_getRemoteMethodMap_ ()
static Object_new_instance_for_typemap_ ()
static bool _isa_ (const Object *o)
static void _static_initialize_ ()
static const PPathdeclaringFile ()

Public Attributes

PP< PLearnerlearner_
 Inner learner which is embedded into the current learner.
string expdir_append
 A string which should be appended to the expdir for the inner learner.
bool forward_test
bool provide_learner_expdir
bool forward_nstages

Static Public Attributes

static StaticInitializer _static_initializer_

Protected Member Functions

void setInnerLearnerTrainingSet (VMat training_set, bool call_forget)
 Set training set of the inner learner.

Static Protected Member Functions

static void declareOptions (OptionList &ol)
 Declares this class' options.
static void declareMethods (RemoteMethodMap &rmm)
 Declare the methods that are remote-callable.

Private Types

typedef PLearner inherited

Private Member Functions

void build_ ()
 This does the actual building.

Detailed Description

Definition at line 51 of file EmbeddedLearner.h.


Member Typedef Documentation


Constructor & Destructor Documentation

PLearn::EmbeddedLearner::EmbeddedLearner ( string  expdir_append = "")

Definition at line 62 of file EmbeddedLearner.cc.

    : learner_(0),
      expdir_append(expdir_append_),
      forward_test(false),
      provide_learner_expdir(true),
      forward_nstages(false)
{ }

Member Function Documentation

string PLearn::EmbeddedLearner::_classname_ ( ) [static]
OptionList & PLearn::EmbeddedLearner::_getOptionList_ ( ) [static]
RemoteMethodMap & PLearn::EmbeddedLearner::_getRemoteMethodMap_ ( ) [static]
bool PLearn::EmbeddedLearner::_isa_ ( const Object o) [static]
Object * PLearn::EmbeddedLearner::_new_instance_for_typemap_ ( ) [static]
StaticInitializer EmbeddedLearner::_static_initializer_ & PLearn::EmbeddedLearner::_static_initialize_ ( ) [static]
void PLearn::EmbeddedLearner::build ( ) [virtual]
void PLearn::EmbeddedLearner::build_ ( ) [private]

This does the actual building.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::ToBagClassifier, PLearn::AddCostToLearner, PLearn::SelectInputSubsetLearner, PLearn::TransformOutputLearner, PLearn::HyperLearner, PLearn::RankLearner, and PLearn::GaussMixLocalProjections.

Definition at line 113 of file EmbeddedLearner.cc.

References learner_, and PLERROR.

Referenced by build().

{
    if (!learner_)
        PLERROR("EmbeddedLearner::_build() - learner_ attribute is NULL");
}

Here is the caller graph for this function:

string PLearn::EmbeddedLearner::classname ( ) const [virtual]
bool PLearn::EmbeddedLearner::computeConfidenceFromOutput ( const Vec input,
const Vec output,
real  probability,
TVec< pair< real, real > > &  intervals 
) const [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Definition at line 257 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{
    PLASSERT( learner_ );
    return learner_->computeConfidenceFromOutput(input,output,probability,
                                                 intervals);
}
void PLearn::EmbeddedLearner::computeCostsFromOutputs ( const Vec input,
const Vec output,
const Vec target,
Vec costs 
) const [virtual]

Forwarded to inner learner.

Implements PLearn::PLearner.

Reimplemented in PLearn::ToBagClassifier, PLearn::AddCostToLearner, PLearn::SelectInputSubsetLearner, PLearn::TransformOutputLearner, PLearn::RankLearner, and PLearn::GaussMixLocalProjections.

Definition at line 236 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

Referenced by PLearn::ToBagClassifier::computeCostsFromOutputs().

{ 
    PLASSERT( learner_ );
    learner_->computeCostsFromOutputs(input, output, target, costs); 
}

Here is the caller graph for this function:

void PLearn::EmbeddedLearner::computeOutput ( const Vec input,
Vec output 
) const [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::SelectInputSubsetLearner, PLearn::TransformOutputLearner, PLearn::RankLearner, and PLearn::GaussMixLocalProjections.

Definition at line 230 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{ 
    PLASSERT( learner_ );
    learner_->computeOutput(input, output); 
}
void PLearn::EmbeddedLearner::computeOutputAndCosts ( const Vec input,
const Vec target,
Vec output,
Vec costs 
) const [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::ToBagClassifier, PLearn::AddCostToLearner, PLearn::SelectInputSubsetLearner, PLearn::TransformOutputLearner, PLearn::RankLearner, and PLearn::GaussMixLocalProjections.

Definition at line 243 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

Referenced by PLearn::ToBagClassifier::computeOutputAndCosts().

{ 
    PLASSERT( learner_ );
    learner_->computeOutputAndCosts(input, target, output, costs); 
}

Here is the caller graph for this function:

void PLearn::EmbeddedLearner::computeOutputsAndCosts ( const Mat input,
const Mat target,
Mat output,
Mat costs 
) const [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::ToBagClassifier, and PLearn::AddCostToLearner.

Definition at line 250 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{ 
    PLASSERT( learner_ );
    learner_->computeOutputsAndCosts(input, target, output, costs); 
}
void PLearn::EmbeddedLearner::declareMethods ( RemoteMethodMap rmm) [static, protected]

Declare the methods that are remote-callable.

Reimplemented from PLearn::PLearner.

Definition at line 102 of file EmbeddedLearner.cc.

References PLearn::PLearner::_getRemoteMethodMap_(), PLearn::declareMethod(), getLearner(), and PLearn::RemoteMethodMap::inherited().

{
    // Insert a backpointer to remote methods; note that this is different from
    // declareOptions().
    rmm.inherited(inherited::_getRemoteMethodMap_());
    declareMethod(
        rmm, "getLearner", &EmbeddedLearner::getLearner,
        (BodyDoc("Returns the learnt embedded learner.\n"),
         RetDoc ("the learner")));
}

Here is the call graph for this function:

void PLearn::EmbeddedLearner::declareOptions ( OptionList ol) [static, protected]

Declares this class' options.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::ToBagClassifier, PLearn::AddCostToLearner, PLearn::SelectInputSubsetLearner, PLearn::TransformOutputLearner, PLearn::HyperLearner, PLearn::RankLearner, and PLearn::GaussMixLocalProjections.

Definition at line 70 of file EmbeddedLearner.cc.

References PLearn::OptionBase::buildoption, PLearn::declareOption(), PLearn::PLearner::declareOptions(), expdir_append, forward_nstages, forward_test, learner_, PLearn::OptionBase::nosave, and provide_learner_expdir.

Referenced by PLearn::TransformOutputLearner::declareOptions(), PLearn::ToBagClassifier::declareOptions(), PLearn::SelectInputSubsetLearner::declareOptions(), PLearn::HyperLearner::declareOptions(), PLearn::GaussMixLocalProjections::declareOptions(), and PLearn::AddCostToLearner::declareOptions().

{
    declareOption(ol, "learner", &EmbeddedLearner::learner_,
                  OptionBase::buildoption,
                  "The embedded learner");

    declareOption(ol, "provide_learner_expdir", &EmbeddedLearner::provide_learner_expdir,
                  OptionBase::buildoption,
                  "Whether or not to provide the underlying learner with an experiment "
                  "directory one is given for this learner.");

    declareOption(ol, "expdir_append", &EmbeddedLearner::expdir_append,
                  OptionBase::buildoption,
                  "A string which should be appended to the expdir for the inner learner;"
                  "default = \"\".");
    declareOption(ol, "forward_nstages",&EmbeddedLearner::forward_nstages,
                  OptionBase::buildoption,
                  "Did we forward our value of nstages to the sublearner before calling "
                  "the sublearner train()");

    // 'forward_test' is set as a 'nosave' option: each subclass should set it
    // to either 'true' or 'false' depending on its specific needs.
    declareOption(ol, "forward_test", &EmbeddedLearner::forward_test,
                  OptionBase::nosave,
                  "If set to 1, will forward calls to test(..) method to the inner learner.");
 
    inherited::declareOptions(ol);
}

Here is the call graph for this function:

Here is the caller graph for this function:

static const PPath& PLearn::EmbeddedLearner::declaringFile ( ) [inline, static]
EmbeddedLearner * PLearn::EmbeddedLearner::deepCopy ( CopiesMap copies) const [virtual]
void PLearn::EmbeddedLearner::forget ( ) [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::AddCostToLearner, PLearn::HyperLearner, and PLearn::RankLearner.

Definition at line 204 of file EmbeddedLearner.cc.

References learner_, PLASSERT, and PLearn::PLearner::stage.

Referenced by PLearn::AddCostToLearner::forget().

{
    PLASSERT( learner_ );
    learner_->forget();
    stage = 0;
}

Here is the caller graph for this function:

PP<PLearner> PLearn::EmbeddedLearner::getLearner ( ) const [inline]

Definition at line 60 of file EmbeddedLearner.h.

Referenced by declareMethods(), PLearn::HyperOptimize::optimize(), PLearn::HyperSetOption::optimize(), PLearn::Stan::run(), and PLearn::HyperLearner::train().

    { return learner_; }

Here is the caller graph for this function:

OptionList & PLearn::EmbeddedLearner::getOptionList ( ) const [virtual]
OptionMap & PLearn::EmbeddedLearner::getOptionMap ( ) const [virtual]
TVec< string > PLearn::EmbeddedLearner::getOutputNames ( ) const [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Definition at line 278 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{
    PLASSERT( learner_ );
    return learner_->getOutputNames();
}
RemoteMethodMap & PLearn::EmbeddedLearner::getRemoteMethodMap ( ) const [virtual]
TVec< string > PLearn::EmbeddedLearner::getTestCostNames ( ) const [virtual]

Forwarded to inner learner.

Implements PLearn::PLearner.

Reimplemented in PLearn::ToBagClassifier, PLearn::AddCostToLearner, PLearn::RankLearner, and PLearn::GaussMixLocalProjections.

Definition at line 266 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{
    PLASSERT( learner_ );
    return learner_->getTestCostNames();
}
TVec< string > PLearn::EmbeddedLearner::getTrainCostNames ( ) const [virtual]

Forwarded to inner learner.

Implements PLearn::PLearner.

Reimplemented in PLearn::AddCostToLearner, PLearn::HyperLearner, PLearn::RankLearner, and PLearn::GaussMixLocalProjections.

Definition at line 272 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{
    PLASSERT( learner_ );
    return learner_->getTrainCostNames();
}
int PLearn::EmbeddedLearner::inputsize ( ) const [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::SelectInputSubsetLearner.

Definition at line 186 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

Referenced by PLearn::GaussMixLocalProjections::build_().

{
    PLASSERT( learner_ );
    return learner_->inputsize();
}

Here is the caller graph for this function:

bool PLearn::EmbeddedLearner::isStatefulLearner ( ) const [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Definition at line 290 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{
    PLASSERT( learner_ );
    return learner_->isStatefulLearner();
}
void PLearn::EmbeddedLearner::makeDeepCopyFromShallowCopy ( CopiesMap copies) [virtual]

Transforms a shallow copy into a deep copy.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::ToBagClassifier, PLearn::AddCostToLearner, PLearn::SelectInputSubsetLearner, PLearn::HyperLearner, PLearn::RankLearner, and PLearn::GaussMixLocalProjections.

Definition at line 296 of file EmbeddedLearner.cc.

References PLearn::deepCopyField(), learner_, and PLearn::PLearner::makeDeepCopyFromShallowCopy().

Referenced by PLearn::ToBagClassifier::makeDeepCopyFromShallowCopy(), PLearn::SelectInputSubsetLearner::makeDeepCopyFromShallowCopy(), PLearn::HyperLearner::makeDeepCopyFromShallowCopy(), PLearn::GaussMixLocalProjections::makeDeepCopyFromShallowCopy(), and PLearn::AddCostToLearner::makeDeepCopyFromShallowCopy().

{
    inherited::makeDeepCopyFromShallowCopy(copies);

    // ### Call deepCopyField on all "pointer-like" fields 
    // ### that you wish to be deepCopied rather than 
    // ### shallow-copied.
    deepCopyField(learner_, copies);    
}

Here is the call graph for this function:

Here is the caller graph for this function:

int PLearn::EmbeddedLearner::outputsize ( ) const [virtual]

Forwarded to inner learner.

Implements PLearn::PLearner.

Reimplemented in PLearn::TransformOutputLearner, PLearn::RankLearner, and PLearn::GaussMixLocalProjections.

Definition at line 198 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{
    PLASSERT( learner_ );
    return learner_->outputsize();
}
void PLearn::EmbeddedLearner::resetInternalState ( ) [virtual]

NOT forwarded by default.

NOT forwarded by default Forwarded to inner learner

Reimplemented from PLearn::PLearner.

Definition at line 284 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{
    PLASSERT( learner_ );
    learner_->resetInternalState();
}
void PLearn::EmbeddedLearner::setExperimentDirectory ( const PPath the_expdir) [virtual]

Forwarded to inner learner; takes into account expdir_append.

Reimplemented from PLearn::PLearner.

Definition at line 174 of file EmbeddedLearner.cc.

References expdir_append, PLearn::PPath::isEmpty(), learner_, PLASSERT, provide_learner_expdir, and PLearn::PLearner::setExperimentDirectory().

{
    PLASSERT( learner_ );
    inherited::setExperimentDirectory(the_expdir);
    if (provide_learner_expdir) {
        if (!the_expdir.isEmpty())
            learner_->setExperimentDirectory(the_expdir / expdir_append);
        else
            learner_->setExperimentDirectory("");
    }
}

Here is the call graph for this function:

void PLearn::EmbeddedLearner::setInnerLearnerTrainingSet ( VMat  training_set,
bool  call_forget 
) [protected]

Set training set of the inner learner.

Definition at line 132 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

Referenced by PLearn::ToBagClassifier::setTrainingSet(), and setTrainingSet().

{
    PLASSERT( learner_ );
    VMat ts = learner_->getTrainingSet();
    bool training_set_has_changed = !ts || !(ts->looksTheSameAs(training_set));
    // If 'call_forget' is true, learner_->forget() will be called
    // in this->forget() (called by PLearner::setTrainingSet a few lines below),
    // so we don't need to call it here.
    learner_->setTrainingSet(training_set, false);
    if (call_forget && !training_set_has_changed)
        // In this case, learner_->build() will not have been called, which may
        // cause trouble if it updates data from the training set.
        learner_->build();
}

Here is the caller graph for this function:

void PLearn::EmbeddedLearner::setTrainingSet ( VMat  training_set,
bool  call_forget = true 
) [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::ToBagClassifier, PLearn::AddCostToLearner, PLearn::SelectInputSubsetLearner, PLearn::HyperLearner, and PLearn::RankLearner.

Definition at line 151 of file EmbeddedLearner.cc.

References setInnerLearnerTrainingSet(), and PLearn::PLearner::setTrainingSet().

Referenced by PLearn::SelectInputSubsetLearner::setTrainingSet(), and PLearn::HyperLearner::setTrainingSet().

{
    setInnerLearnerTrainingSet(training_set, call_forget);
    inherited::setTrainingSet(training_set, call_forget);
}

Here is the call graph for this function:

Here is the caller graph for this function:

void PLearn::EmbeddedLearner::setTrainStatsCollector ( PP< VecStatsCollector statscol) [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Definition at line 167 of file EmbeddedLearner.cc.

References learner_, PLASSERT, and PLearn::PLearner::setTrainStatsCollector().

Referenced by PLearn::HyperLearner::train().

{
    PLASSERT( learner_ );
    inherited::setTrainStatsCollector(statscol);
    learner_->setTrainStatsCollector(statscol);
}

Here is the call graph for this function:

Here is the caller graph for this function:

void PLearn::EmbeddedLearner::setValidationSet ( VMat  validset) [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Definition at line 160 of file EmbeddedLearner.cc.

References learner_, PLASSERT, and PLearn::PLearner::setValidationSet().

{
    PLASSERT( learner_ );
    inherited::setValidationSet(validset);
    learner_->setValidationSet(validset);
}

Here is the call graph for this function:

int PLearn::EmbeddedLearner::targetsize ( ) const [virtual]

Forwarded to inner learner.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::ToBagClassifier.

Definition at line 192 of file EmbeddedLearner.cc.

References learner_, and PLASSERT.

{
    PLASSERT( learner_ );
    return learner_->targetsize();
}
void PLearn::EmbeddedLearner::test ( VMat  testset,
PP< VecStatsCollector test_stats,
VMat  testoutputs = 0,
VMat  testcosts = 0 
) const [virtual]

The behavior of this method depends on the value of the 'forward_test' option.

If set to 'true', the call will be forwarded to the underlying learner. If set to 'false' (default), simply call inherited::test(..). This is to allow forwarding of this method in subclasses of EmbeddedLearner that need it, while most of them will not need it.

Reimplemented from PLearn::PLearner.

Reimplemented in PLearn::AddCostToLearner, and PLearn::TransformOutputLearner.

Definition at line 220 of file EmbeddedLearner.cc.

References forward_test, learner_, PLASSERT, and PLearn::PLearner::test().

Referenced by PLearn::AddCostToLearner::test().

{
    if (forward_test) {
        PLASSERT( learner_ );
        learner_->test(testset, test_stats, testoutputs, testcosts);
    } else
        inherited::test(testset, test_stats, testoutputs, testcosts);
}

Here is the call graph for this function:

Here is the caller graph for this function:

void PLearn::EmbeddedLearner::train ( ) [virtual]

Forwarded to inner learner.

Implements PLearn::PLearner.

Reimplemented in PLearn::AddCostToLearner, PLearn::HyperLearner, and PLearn::RankLearner.

Definition at line 211 of file EmbeddedLearner.cc.

References forward_nstages, learner_, PLearn::PLearner::nstages, PLASSERT, and PLearn::PLearner::stage.

Referenced by PLearn::AddCostToLearner::train().

{
    PLASSERT( learner_ );
    if(forward_nstages)
        learner_->nstages = nstages;
    learner_->train();
    stage = learner_->stage;
}

Here is the caller graph for this function:


Member Data Documentation

A string which should be appended to the expdir for the inner learner.

Definition at line 64 of file EmbeddedLearner.h.

Referenced by declareOptions(), and setExperimentDirectory().

Definition at line 69 of file EmbeddedLearner.h.

Referenced by declareOptions(), and train().

Inner learner which is embedded into the current learner.

Definition at line 58 of file EmbeddedLearner.h.

Referenced by PLearn::SelectInputSubsetLearner::build_(), PLearn::TransformOutputLearner::build_(), PLearn::AddCostToLearner::build_(), PLearn::HyperLearner::build_(), build_(), PLearn::GaussMixLocalProjections::build_(), computeConfidenceFromOutput(), PLearn::AddCostToLearner::computeCostsFromOutputs(), PLearn::TransformOutputLearner::computeCostsFromOutputs(), computeCostsFromOutputs(), PLearn::SelectInputSubsetLearner::computeCostsFromOutputs(), PLearn::TransformOutputLearner::computeOutput(), computeOutput(), PLearn::SelectInputSubsetLearner::computeOutput(), PLearn::SelectInputSubsetLearner::computeOutputAndCosts(), computeOutputAndCosts(), PLearn::AddCostToLearner::computeOutputAndCosts(), PLearn::TransformOutputLearner::computeOutputAndCosts(), computeOutputsAndCosts(), PLearn::AddCostToLearner::computeOutputsAndCosts(), declareOptions(), PLearn::HyperLearner::finalize(), PLearn::HyperLearner::forget(), forget(), getOutputNames(), getTestCostNames(), PLearn::AddCostToLearner::getTestCostNames(), PLearn::AddCostToLearner::getTrainCostNames(), getTrainCostNames(), inputsize(), isStatefulLearner(), makeDeepCopyFromShallowCopy(), outputsize(), PLearn::TransformOutputLearner::outputsize(), PLearn::HyperOptimize::reportResult(), resetInternalState(), PLearn::HyperLearner::run(), setExperimentDirectory(), setInnerLearnerTrainingSet(), PLearn::HyperLearner::setLearnerOptions(), PLearn::SelectInputSubsetLearner::setTrainingSet(), PLearn::AddCostToLearner::setTrainingSet(), setTrainStatsCollector(), setValidationSet(), targetsize(), PLearn::ToBagClassifier::targetsize(), PLearn::TransformOutputLearner::test(), test(), PLearn::HyperLearner::train(), PLearn::AddCostToLearner::train(), and train().


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines