|
SSJ V. 2.6. |
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object umontreal.iro.lecuyer.probdist.DiscreteDistributionInt umontreal.iro.lecuyer.probdist.LogarithmicDist
public class LogarithmicDist
Extends the class DiscreteDistributionInt
for
the logarithmic distribution. It has shape parameter
θ, where
0 < θ < 1.
Its mass function is
Field Summary |
---|
Fields inherited from class umontreal.iro.lecuyer.probdist.DiscreteDistributionInt |
---|
EPSILON |
Constructor Summary | |
---|---|
LogarithmicDist(double theta)
Constructs a logarithmic distribution with parameter θ = theta. |
Method Summary | |
---|---|
static double |
barF(double theta,
int x)
Computes the complementary distribution function. |
double |
barF(int x)
Returns bar(F)(x), the complementary distribution function. |
static double |
cdf(double theta,
int x)
Computes the distribution function F(x). |
double |
cdf(int x)
Returns the distribution function F evaluated at x (see). |
static LogarithmicDist |
getInstanceFromMLE(int[] x,
int n)
Creates a new instance of a logarithmic distribution with parameter θ estimated using the maximum likelihood method based on the n observations x[i], i = 0, 1,…, n - 1. |
double |
getMean()
Returns the mean of the distribution function. |
static double |
getMean(double theta)
Computes and returns the mean of the logarithmic distribution with parameter θ = theta. |
static double[] |
getMLE(int[] x,
int n)
Estimates the parameter θ of the logarithmic distribution using the maximum likelihood method, from the n observations x[i], i = 0, 1,…, n - 1. |
double[] |
getParams()
Return a table containing the parameters of the current distribution. |
double |
getStandardDeviation()
Returns the standard deviation of the distribution function. |
static double |
getStandardDeviation(double theta)
Computes and returns the standard deviation of the logarithmic distribution with parameter θ = theta. |
double |
getTheta()
Returns the θ associated with this object. |
double |
getVariance()
Returns the variance of the distribution function. |
static double |
getVariance(double theta)
Computes and returns the variance of the logarithmic distribution with parameter θ = theta. |
static int |
inverseF(double theta,
double u)
|
int |
inverseFInt(double u)
Returns the inverse distribution function F-1(u), where 0 <= u <= 1. |
static double |
prob(double theta,
int x)
Computes the logarithmic probability p(x). |
double |
prob(int x)
Returns p(x), the probability of x. |
void |
setTheta(double theta)
Sets the θ associated with this object. |
String |
toString()
|
Methods inherited from class umontreal.iro.lecuyer.probdist.DiscreteDistributionInt |
---|
barF, cdf, getXinf, getXsup, inverseF |
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public LogarithmicDist(double theta)
Method Detail |
---|
public double prob(int x)
DiscreteDistributionInt
prob
in class DiscreteDistributionInt
x
- value at which the mass function must be evaluated
public double cdf(int x)
DiscreteDistributionInt
cdf
in class DiscreteDistributionInt
x
- value at which the distribution function must be evaluated
public double barF(int x)
DiscreteDistributionInt
barF
in class DiscreteDistributionInt
x
- value at which the complementary distribution function
must be evaluated
public int inverseFInt(double u)
DiscreteDistributionInt
inverseFInt
in class DiscreteDistributionInt
u
- value in the interval (0, 1) for which
the inverse distribution function is evaluated
public double getMean()
Distribution
public double getVariance()
Distribution
public double getStandardDeviation()
Distribution
public static double prob(double theta, int x)
public static double cdf(double theta, int x)
public static double barF(double theta, int x)
public static int inverseF(double theta, double u)
public static double[] getMLE(int[] x, int n)
x
- the list of observations used to evaluate parametersn
- the number of observations used to evaluate parameters
public static LogarithmicDist getInstanceFromMLE(int[] x, int n)
x
- the list of observations to use to evaluate parametersn
- the number of observations to use to evaluate parameterspublic static double getMean(double theta)
public static double getVariance(double theta)
public static double getStandardDeviation(double theta)
public double getTheta()
public void setTheta(double theta)
public double[] getParams()
public String toString()
toString
in class Object
|
SSJ V. 2.6. |
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |