Goals and scope


[1] M. Barbut and B. Montjardet. Ordre et Classifications: Algèbre et combinatoire. Hachette, 1970.

[2] G. Battista, P. Eades, R. Tamassia, and I. Tollis. Graph drawing: Algorithms for the visualisation of graphs. Prentice Hall, 1999.

[3] J.-P. Bordat. Calcul pratique du treillis de Galois d'une correspondance. Mathématiques et Sciences humaines, 96:31-47, 1999.

[4] R. Cole. Automated layout of concept lattices using layered diagrams and additive diagrams. In Australasian Computer Sciences Conferences (ASC'01), pages 47-60, Queensland, Australia, 2001.

[5] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class insertion with overloading. In Proceedings of OOPSLA'96, San Jose (CA), USA, special issue of ACM SIGPLAN Notices, 31(10), pages 251-267, 1996.

[6] B. Ganter. Two basic algorithms in concept analysis.preprint 831, Technische Hochschule, Darmstadt, 1984.

[7] B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundations. Springer-Verlag, 1999.

[8] R. Godin and H. Mili. Building and maintaining analysis-level class hierarchies using Galois lattices. In Proceedings of OOPSLA'93, (DC), USA, special issue of ACM SIGPLAN Notices, 28(10), pages 394-410, 1993.

[9] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms based on galois (concept) lattices. Computational Intelligence, 11(2):216-267, 1995.

[10] A. Guénoche. Construction du treillis de galois d'une relation binaire. Mathématiques et Sciences Humaines, 109:41-53, 1990.

[11] M. Huchard, C. Roume, and P. Valtchev. When concepts point at other concepts: the case of UML diagram reconstruction. In Proceedings of the 2nd Workshop on Advances in Formal Concept Analysis for Knowledge Discovery in Databases (FCAKDD), pages 32-43, 2002.

[12] H. Leblanc. Sous-hiérarchies de Galois : un modèle pour la construction et l'évolution des hiérarchies d'objets (Galois sub-hierarchies: a model for construction and evolution of object hierarchies). Phd thesis, Univeersité Montpellier 2, 2000.

[13] L. Nourine and O. Raynaud. A fast Algorithm for building Lattices. Information Processing Letters, 71:199-201,1999.

[14] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Computing Iceberg Concept Lattices with Titanic. Data and Knowledge Engineering, 42(2):189.

[15] P. Valtchev and R. Missaoui. Building concept (Galois) lattices from parts: generalizing the incremental methods. In H. Delugach and G. Stumme, editors. Proceedings, ICCS-01, volume 2120 of Lecture Notes in Computer Science, pages 290-303, Stanford (CA), USA, 2001, Springer-Verlag.

[16] P. Valtchev, R. Missaoui, R. Godin, and M. Meridji. Generating Frequent Itemsets Incrementally: two Novel Approaches Based On Galois Lattice Theory. Journal of Experimental & Theoritical Artificial Intelligence, 14(2-3):115-142, 2002.

[17] P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards building Galois (concept) lattices. Discrete Mathematics, 256(3):801-829, 2002.

[18] F. Vogt and R. Wille. TOSCANA - a graphical tool for analyzing and exploring data. In R. Tamassia and I. G. Tollis, editors, Graph Drawing, volume 894 of Lecture Notes in Computer Sciences, pages 226-233. Springer-Verlag, 1994.

[19] R. Wille. Restructuring the lattice theory: An approach based on hierarchies of concepts. In I. Rival, editor, Ordered sets, pages 445-470, Dordrecht-Boston, 1982, Reidel.